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Abstract In March 2017, NIST (National Institute of Stan-
dards and Technology) has announced to create a portfolio
of lightweight algorithms through an open process. The
report emphasizes that with emerging applications like auto-
motive systems, sensor networks, healthcare, distributed
control systems, the Internet of Things (IoT), cyber-physical
systems, and the smart grid, a detailed evaluation of the
so called light-weight ciphers helps to recommend algo-
rithms in the context of profiles, which describe physical,
performance, and security characteristics. In recent years,
a number of lightweight block ciphers have been proposed
for encryption/decryption of data which makes such choices
complex. Each such cipher offers a unique combination of
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resistance to classical cryptanalysis and resource-efficient
implementations. At the same time, these implementations
must be protected against implementation-based attacks
such as side-channel analysis. In this paper, we present a
holistic comparison study of four lightweight block ciphers,
PRESENT, SIMON, SPECK, and KHUDRA, along with
the more traditional Advanced Encryption Standard (AES).
We present a uniform comparison of the performance and
efficiency of these block ciphers in terms of area and power
consumption, on ASIC and FPGA-based platforms. Addi-
tionally, we also compare the amenability to side-channel
secure implementations for these ciphers on ASIC-based
platforms. Our study is expected to help designers make
suitable choices when securing a given application, across a
wide range of implementation platforms.

Keywords Cyber physical systems · IoT · Security ·
Lightweight · Block ciphers · Side channels · Threshold
implementations · ASIC · FPGA

1 Introduction

The advent of the era of Internet-of-Things (IoT) has given
rise to a number of smart devices with the ability to com-
municate with each other across heterogeneous network
interfaces. Among the application domains fueled by the
growth of IoT are wireless sensor networks (WSNs) and
RFID technology, that are used widely in industrial appli-
cations, medical monitoring, home automation, and traffic
surveillance. The main constituents of any IoT framework
are the numerous end nodes/devices, that are often con-
strained in terms of their memory capacity, processing
speed, and power consumption rates. At the same time,
these nodes commonly process sensitive data that needs
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to cryptographically protected against possible leakages to
malicious adversaries. Traditional encryption mechanisms
in the public and private-key settings are mostly resource-
hungry, which makes them unsuitable for deployment in IoT
devices. This has motivated the development of a large num-
ber of symmetric-key block ciphers that are lightweight, in
the sense that they are area-efficient and/or low power con-
suming. Given such a rich class of ciphers, a designer is
often faced with the challenge of judiciously choosing the
appropriate cipher for a given application. This motivates a
comparative study of popularly deployed lightweight block
ciphers, not only in terms of their classical cryptographic
security and implementation overheads/performance, but
also in terms of their resistance to implementation-level
attacks such as side-channel analysis (SCA). SCA is consid-
ered as a potent threat to nearly all cryptographic implemen-
tations in today’s world, with the ability to compromise the
security of even mathematically robust algorithms unless
appropriately countered. This study is also in coherence
with the recent declarations from NIST on the guidelines,
and importance of design and analysis of lightweight block
ciphers with physical security also an important design
criteria [1].

1.1 Related Work

Existing surveys on lightweight block ciphers (LWC) have
primarily targeted metrics related to hardware implementa-
tions (gate equivalent, area, hardware efficiency, through-
put, power consumption, etc.) or software implementations
(code size, software efficiency, RAM size, etc.), however,
surprisingly not considering the cost for side channel protec-
tion. In [2], the authors have extensively studied the trends
in hardware and software implementations of LWC, ana-
lyzing their suitability for different embedded devices in
terms of hardware area (logic gates) and complexity. For
software implementations, different LWCs were surveyed
using RAM size requirement, execution time and code size
as benchmarking criteria [3]. In [4] and [5], the authors
have proposed benchmarking of LWCs targeting WSNs.
Targeting usage of LWCs in automotive industries [6] sur-
veyed the same in terms of hardware area (gate equivalent),
energy consumption and latency while in [7] analyzes vari-
ous LWCs with respect to energy as metric. Using ATMEL
AVR ATtiny45 8-bit microcontroller as common platform
performance of different LWCs have been evaluated w.r.t
RAM usage, code size and cycle count for smart devices
in [8]. In [9], side-channel resistance of lightweight weight
block ciphers has been studied concerning software imple-
mentations, while [10] discusses mistakes in IEEE standard
P1735 itself that allows successful launch of attack vectors
to recover plaintext. To the best of our knowledge, there
exist no prior studies that compare the additional overheads

incurred when incorporating side-channel countermeasures
in hardware across different LWC implementations. Our
paper addresses this issue by comparing the area require-
ment of various LWCs, both with and without side-channel
countermeasures, on both ASIC and FPGA platforms. This
provides a designer with a holistic overview of the suitabil-
ity of different block ciphers in resource constrained appli-
cations with varying security requirements and processing
capabilities.

1.2 Our Contributions

This paper is meant to serve as a guideline for designers
to choose between popularly deployed lightweight block
ciphers for applications targeting either ASIC or FPGA plat-
forms, with area/power consumption constraints. While a
multitude of lightweight block ciphers have been recently
proposed in the cryptographic literature, we choose four
ciphers—PRESENT, SIMON, SPECK, and KHUDRA. The
choice of ciphers is motivated by the fact that each of these
ciphers differ widely from the other in terms of structure and
implementation overhead.

PRESENT [11] is currently standardized by NIST as
the international standard for lightweight block ciphers
for hardware implementations targeting ASIC platforms.
PRESENT is an SPN (substitution-permutation network)
cipher with a set of non-linear S-Boxes (substitution
boxes) and a bit-permutation based linear diffusion layer in
each round. SIMON, proposed by NSA [12], is an ultra-
lightweight block cipher family optimized for hardware
implementations. It follows a balanced Feistel structure,
with each round comprising of bitwise AND, XOR and cir-
cular left shift operations. While this allows for extremely
area-efficient implementations, the rate of per-round diffu-
sion for SIMON is low, thus increasing the necessary num-
ber of rounds for adequate security. SPECK, again proposed
by NSA [12], is a family of block ciphers optimized for soft-
ware implementations, targeting microcontrollers, although
it is also suitable for hardware implementations. SPECK
follows the add-rotate-xor (ARX) design paradigm, where
the addition operation is modulo 2n and the rotation oper-
ations include both left and right circular shifts. According
to ECRYPT’s stream cipher benchmarks (eBASC),1 Speck
is one of the fastest ciphers available, both for long as well
as short plaintext messages. KHUDRA [13] is a lightweight
block cipher targeted specifically for FPGA platforms. It
uses a recursive Feistel structure and focuses on balancing
the use of look-up-tables (LUTs) and registers, so as to min-
imize the requirement of FPGA slices. It also achieves a
superior area-time product as compared to several existing
lightweight block ciphers.

1https://bench.cr.yp.to/ebasc.html

https://bench.cr.yp.to/ebasc.html
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The aforementioned lightweight block ciphers are com-
pared against the Advanced Encryption Standard (AES),
which serves as a baseline and highlights the resource sav-
ings that dedicated lightweight block ciphers can achieve.
For each block cipher, we present an overview of the
encryption/decryption algorithms, followed by a study of
their security against classical cryptanalytic attacks such
as linear and differential cryptanalysis. We then compare
their implementation overheads in both ASIC and FPGA
platforms. Note that FPGA devices are becoming increas-
ingly popular for IoT applications owing to their easy
reconfigurability, low power consumption, and low mem-
ory bandwidth requirements. Modern FPGAs are equipped
with even more sophisticated features such as dynamic
partial reconfiguration (DPR), that allows dynamic, energy-
efficient non-invasive modification of the existing circuit
on the FPGA, mostly to enhance functionality in the
form of added plug-ins. The plug and play philosophy
is particularly suitable for IoT applications since it sup-
ports multiple functions at a very large scale without
the need for having dedicated hardware available at all
times. In view of these advantages of FPGAs, we lay
equal impetus on ASIC and FPGA implementations in this
paper.

The focal point of this paper is side-channel security of
lightweight block cipher implementations. The main fac-
tor in quantifying the security of an implementation against
side-channel attacks is the number of traces required to
recover the secret key. Hence, to protect against these
attacks, several countermeasures have been proposed to
increase the data complexity. One of the approaches often
employed here is to decrease the signal-to-noise ratio (SNR)
(i.e., the ratio of the variance of the leakage signal to
the variance of the noise present in the device) by adding
noise [14, 15]. However, these countermeasures are gener-
ally ad-hoc and hence provide only limited resistance. On
the other hand, the countermeasures based on randomiz-
ing the intermediate variables (called Masking) had shown
to be highly resistant against DPA attacks [16–18]. In this
paper, we focus on a specific form of masking known
as threshold implementations [19]. Threshold implemen-
tations are provably secure against first-order attacks and
are based on multi-party computations and secret-sharing.
They are, in particular, resistant against glitch-based attacks
[19]. We present case-studies on threshold implementations
of the aforementioned lightweight block ciphers. A com-
parison is presented in terms of the relative overhead of
the threshold implementation of each cipher with respect
to its corresponding unprotected implementation. The com-
parisons show that the choice of the algorithm is critical

in deciding the cost of the side channel countermeasures:
an aspect which can be critical for securing lightweight
cryptosystems against physical attacks.

We briefly summarize the main contributions of the paper
below:

1. The paper serves as a guideline for designers to choose
between popularly deployed lightweight block ciphers
for applications targeting either ASIC or FPGA plat-
forms, with area/power consumption constraints.

2. The paper compares four lightweight block ciphers,
PRESENT, SIMON, SPECK, and KHUDRA, in terms
of their area and power consumption requirements on
ASIC and FPGA-based platforms. The aforementioned
lightweight block ciphers are compared against the
Advanced Encryption Standard (AES), which serves
as a baseline and highlights the resource savings that
dedicated lightweight block ciphers can achieve.

3. We also study the classical cryptanalytic security of
each of the aforementioned block ciphers laying special
stress on their security against linear and differential
cryptanalysis, as well as the state-of-the-art attacks on
reduced round versions of these ciphers.

4. We finally compare side-channel secure implemen-
tations of the aforementioned lightweight ciphers on
ASIC-based platforms. In particular, we focus on a spe-
cific form of implementation known as threshold imple-
mentations (TI) that are provably secure against first-
order DPA attacks. For a fair comparison, we illustrate
the relative overheads of these threshold implemen-
tations with respect to the corresponding unprotected
implementations.

2 Brief Introduction of Lightweight Block Ciphers

In this section, we will briefly describe lightweight block
ciphers that we have used in our analysis as test cases to
implement them at common hardware platform (FPGA and
ASIC design technology). A block cipher in general con-
tains iterative round function, where a round function can be
described as

Lin1Lin2 . . . Linn(NonLin(x)),

where x is the message block and is subjected through
a non-linear layer (NonLin) followed by n(n ≥ 1) lin-
ear layer (Lin). Compared to linear operation, a non-linear
operation is far more expensive to implement at hardware
level, so is designed as a weaker function to be operated on
smaller message size than on the entire block size and the
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operation is applied in parallel to whole block. In order to
compensate for the weak function, the linear operation is
applied to the whole block at a time as a mixing operation.
The mixing operation should be such that one bit change in
the input x will change m components in the output y, given
by maximum distance separable (MDS) matrix [20]. Struc-
turally any block cipher can be broadly categorized either as
Feistel structure [21] or Substitution Permutation Network
(SPN) [22].

2.1 Advanced Standard Encryption (AES)-128/128

The AES encryption algorithm was first published in the
year 2001 by National Institute of Standards and Technol-
ogy (NIST) [23] and adopted as standard replacing DES.
The arithmetic operations in AES operates over finite field
GF(28), using the irreducible polynomial x8 + x4 + x3 +
x + 1 for multiplication operations. The block cipher takes
128 bits (16 bytes) as message size or plaintext size as
input, along with the key of length 128 bits (16 bytes),
192 bits (24 bytes), or 256 bits (32 bytes), consisting of
14 rounds, 12 rounds, and 10 rounds respectively, depend-
ing on the key size. Structurally, the AES algorithm belongs
to the SPN family. The encryption and the key scheduling
algorithms are shown in Algorithms 1 and 2, respectively.
The block diagram of the encryption process is given in
Fig. 1.
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The RoundFunction step contains S-box layer substi-
tution, the only non-linear operation, followed by linear
operations ShiftRows, MixColumns and finally addition of
round key. A state in AES contains four rows of 32 bytes
data, so in shift row every row is given a left cyclic shift by
the amount of that corresponding row number. For instance,
row 2 will be given a left cyclic shift by two times. Mix-
columns is the mixing operation used in AES where every
column of the state is multiplied by a matrix using GF(2)
as shown below:
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where s0, s1, s2, s3 is a column input. The final step is round
key addition which is XORed with the MixColumns output.

2.2 PRESENT-64/80

PRESENT [11] is a hardware optimized lightweight cipher
which comes with good features from DES and opti-
mized hardware features from Serpent [24]. It falls in the
SPN family too and has 31 rounds of operations, with
a key size of 80-bits and plaintext text size of 64-bits.
The encryption algorithm consist of 31 rounds where in
each round key bits are XORed with message block of
last round, followed by a substitution layer (operates over
finite field GF(24)) as non-linear layer and a permutation
layer (operates over finite field GF(264)) as linear layer.
The substitution layer uses 4 × 4 S-Box 16 times in par-
allel and 32 keys in total. The encryption algorithm has
a post-whitening step after the 31st round, where the last
generated key (K32) from the key generation algorithm is
used to for the purpose. To strengthen security, PRESENT
can also take 128 bits key as input, and in that case, the
only change will be in the key scheduling algorithm. The
PRESENT encryption and the 80-bit key scheduling algo-
rithm are presented in Algorithms 3 and 4, respectively.
The block diagram of the encryption process is given in
Fig. 2.
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Fig. 2 PRESENT block cipher operation

2.3 KHUDRA-64/80

The block cipher KHUDRA [13] was designed keeping
in mind the requirement of designing block ciphers which
are also lightweight on FPGAs that are often preferred
where reconfigurability and low development cost is a man-
date. It has been shown that some algorithm choices like
PRESENT are more apt for ASIC libraries with specialized
library cells, while on FPGAs their compactness dimin-
ishes [13]. KHUDRA is unique in that way as its design
process is with FPGAs as primary target. The encryption
algorithm operates on 64-bits plaintext block, along with
80-bits key length to produce 64-bits ciphertext. The struc-
ture of KHUDRA belongs to the category of Feistel ciphers
(generalized type-2 [25]) and consist of 18 rounds. The
Feistel structure of KHUDRA has two parts: a permuta-
tion based on Feistel and F-function, where the F-function
in turn contains substitution-permutation-substitution layer.
The block cipher use S-Box layer of PRESENT as it has
“High Algebraic Degree” and “Low Differential and Lin-
ear Probability” [11]. The number of rounds inside the
F-function is 6. The key scheduling algorithm and encryp-
tion algorithm is shown in Algorithms 4 and 5, respectively.
The block diagram of the encryption process is given in
Fig. 3.
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2.4 Simon-128/128 and Speck-128/128

Simon and Speck forms a family of block ciphers [12]
where in each family there are around ten different types
of block ciphers differing in block and key size, to be used
based on the applications. If the block size in Speck or
Simon is b-bits then the key size should be a × b/2 where
(a ≥ b). The linear and non-linear operations in Simon
and Speck is only limited to modular arithmetic (addition or

subtraction), circular shifts (right or left), and bitwise oper-
ations (and, or, xor). The nonlinear operation in Simon is
due to bitwise and while in Speck, it is modular addition.
Both Simon and Speck are based on Feistel-based struc-
ture, where the round function is the Feistel map. The round
function in Simon is

RoundF(Plef t , Pright ) = (Pright ⊕ A ⊕ Key, Plef t )

where

A = (LCS(Plef t , 1))&(LCS(Plef t , 8)) ⊕ (LCS(Plef t , 2))

and LCS does left circular shift.
The round function in Speck is given as

RoundF(Plef t , Pright ) = (A, LCS(Pright , x) ⊕ A)

where

A = RCS(Plef t , y) + Pright ) ⊕ key

and RCS does right circular shift, x = 2 and y = 7 when
block size is 32-bits else x = 3 and y = 8.

The block diagram of the encryption process for Simon
and Speck is given in Figs. 4 and 5, respectively.

3 Lightweight ASIC and FPGA Implementation
and Comparison of Block Ciphers

3.1 ASIC Design Flow and Metrics

The starting point of our analysis process is to benchmark all
the abovementioned lightweight block ciphers on a common
ASIC and FPGA design platform and technology. In liter-
ature, we encounter often implementations of these ciphers
on different technology nodes, which are then scaled. These
scalings are often indicative and not accurate and therefore
may provide an inaccurate evaluation. We have used an iter-
ated design style for the block ciphers, with one round being
performed in an iteration. The S-Box architecture we men-
tion first is parallel, which means the entire block of input
is passed through several bricks of S-Boxes simultaneously.
The plaintext size, keysize, and number of rounds that we
have used to implemented in our design is summarized in
Table 1.

The CMOS technology we use to implement those block
ciphers is 180 nm. Each block cipher design is taken
through the RTL-to-GDS2 flow to estimate the area over-
head and power consumption, along with other physical
design implementation data. We have used Synopsys Design
Compiler version I-2013.12-SP5-4 for synthesis and Syn-
opsys IC-Compiler version J-2014.09-SP1 for placement
and routing the design. For simulation, we have used Syn-
opsys VCS version I-2014.03-SP1-1. Standard cell library
TSL18FS120 from Tower Semiconductor Ltd. is used for
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Fig. 3 KHUDRA block cipher
operation
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physical design. The standard cell library is character-
ized using SiliconSmart Software (Version: 2008.02-SP1p1)
characterized under Fast-Fast process(P), 1.98 V voltage
(V) and − 40 ◦C temperature (T). In typical condition, the
library, hence the designs are expected to work at 1.8 V with
normal junction temperature of 25 ◦C. The area is measured
in gate equivalents (GE), where a GE is equal to the lowest
area occupied by a 2-input NAND gate of 1x drive of given
technology (for us 180 nm).

The areas of some basic cells in terms of Gate Equiva-
lent (GE) values of the library that we have used is shown
in Table 2, and is in accordance with that shown in [26].
The clock period has been fixed to 40ns (i.e., frequency =
25 MHz). With an estimate of the area of a 1x drive 2-input
NAND gate being, 12.544 um2, the gate equivalent (GE) of
a chip is calculated as

GE = chip area (in um2)

2-input NAND gate area (in um2)
.

We have also implemented the block ciphers on FPGA
platforms using Virtex-5 family having XC5VFX100T
device (FF1738 package) for implementation. To perform
simulation and synthesis, we have used Xilinx ISE Design
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Fig. 4 SIMON block cipher operation

Suite (v14.2), while for power estimation we have used
Xpower Analyzer (v14.2).

The results of ASIC and FPGA implementations are
summarized in Tables 3 and 4, respectively. The ASIC
implementation data show that AES even though has the
best throughput, it has the highest GE. The impact on both
static and dynamic power is also visible for AES, as com-
pared to other ciphers. One of the fundamental reasons is
the choice of 8 × 8 S-boxes, which makes AES resource
hungry. Among the other ciphers, SPECK is more costly in
the hardware implementations compared to its counterpart,
SIMON, due to the use of integer modular additions. This
also has an impact on the power consumption and makes
SIMON a better hardware candidate for lightweight appli-
cations. KHUDRA, compares well with PRESENT, given
that they have both 80-bit keys. The area requirement for
KHUDRA is slightly lesser, while the better throughput
for PRESENT is due to less number of rounds, followed
by SPECK. However, as mentioned in the paper [13], the
throughput of KHUDRA can be improved significantly at
the cost of slight increase in area. The inner rounds could be
unrolled at slight increase in both area and latency (note that
each round is a small 16×16 Feistel structure, using 4×4 S-
Boxes, and this reduces the overall clock cycles increasing
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Table 1 Plaintext, key size, and number of rounds of block ciphers
used for implementation

Block cipher Plaintext size Key size Number of Sub-rounds

(in bits) (in bits) rounds

KHUDRA 64 80 18 6

AES 128 128 10 –

PRESENT 64 80 31 –

SIMON 128 128 68 –

SPECK 128 128 32 –

the throughput significantly. However, as in this evaluation,
we mainly focus on the area, and power consumption, we do
not elaborate into those design alternatives. Interested read-
ers can look into [13]. Similar observations can be made for
the implementations on FPGA platforms also.

4 Attacks on Lightweight Block Ciphers

One of the fundamental challenges of designing lightweight
block ciphers is that the underlying transformations involve
simple operations as the target platforms are constrained
with low processing and memory requirements. However,
the primary concern being security, even with these sim-
ple operations one has to mitigate the various powerful
adversaries.

Cryptanalytic attacks are evaluated based on the follow-
ing parameters:

– Space complexity: The amount of memory required to
store various internal or temporary data.

– Time complexity: The amount of computation time
required to perform the attack. Often, it could be the
number of times the cipher needs to be operated for
doing the cryptanalysis.

Table 2 Gate equivalent of some cells in TSL18FS120

Gate Gate equivalent

2-input NAND (1x) 1.0

2-input NOR (1x) 1.0

2-input OR (1x) 1.25

2-input AND (1x) 1.25

2-input XOR (1x) 2.75

2-input XNOR (1x) 2.75

NOT (1x) 0.75

2-1 MUX (1x) 2.0

DFF (1x) 4.75

1-bit full adder (1x) 4.75

Scan FF (1x) 7.5

Table 3 Block ciphers ASIC implementation

Specifications KHUDRA AES SIMON PRESENT SPECK

Gate 1939.4 10654.7 2035 2031.2 4078.1

equivalent

Frequency 25 25 25 25 25

(MHz)

Clock period 40 40 40 40 40

(ns)

Throughput 14.81 320 47.058 51.61 100

(Mbps)

Leakage 36.08 176.02 31.568 31.02 67.778

power (nW)

Dynamic 0.935 2.481 1.004 0.842 1.5091

power (mW)

– Data complexity: The number of plaintext and/or
ciphertext pairs required to perform the attack.

A block cipher should follow Kerckhoffs’ principle [27],
which says, A cryptosystem should be secure even if every-
thing about the system, except the secret key, is in public
knowledge. For a cryptanalyst, the above principle gives rise
to the following four attack scenarios:

– Ciphertext-only attack: The attacker has access to only
ciphertexts.

– Known-plaintext attack: The attacker has also addi-
tional knowledge of the corresponding plaintext from
which a ciphertext has resulted.

– Chosen-plaintext/ciphertext attack: The attacker can
choose a number of plaintexts (and/or ciphertexts), and
be given the corresponding ciphertexts (and/or plain-
texts) by the encrytion (and/or decryption) oracle.

– Adaptive chosen-plaintext and ciphertext attack: The
attacker can choose plaintexts (and/or ciphertexts) and
be given the corresponding ciphertexts (and/or plain-
texts) and based on the information obtained, iteratively
the attacker can then ask further plaintexts/ciphertexts,
and be given the corresponding ciphertexts/plaintexts.

Table 4 Block ciphers FPGA implementation

Block cipher Register count LUT count Slice count Power (W)

KHUDRA [13] 184 334 132 1.780

AES 407 2048 1004 1.786

PRESENT-64/80 165 218 109 1.78

SIMON-128/128 149 214 63 1.777

SPECK-128/128 448 599 215 1.794
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In Table 5, we summarize the various attacks that have
been launched under the above mentioned attack scenar-
ios, comparing the data, space, and time complexities of the
attacks.

The analysis shows that indeed while AES offers excel-
lent security against the known and reported cryptanalysis,
the other lightweight block ciphers have been quite resis-
tant against most of these attacks, considering the cost of
time, space, and data all taken simultaneously. Interestingly,

the ciphers Simon and Speck, though they use very simple
round functions indeed provide a good overall conventional
security, due to its large number of rounds. While this may
have an impact on latency, there could be applications where
latency is of secondary criteria, compared to area, energy,
and security. In the next section, we address the impact on
the side channel countermeasures on these bare designs.
It would be interesting to see whether the choice of the
algorithms have an impact on the cost of these protections.

Table 5 Attack results on block ciphers

Block
cipher

Attack
scenario

Attack
type

Number
of rounds
attacked

Data
complexity

Space
complexity

Time
complexity

Attack
sources

AES
128/128

Chosen-
plaintext

Impossible
differential

7 2106.2 294.2 2110.2 [28–32]

AES
128/128

Chosen-
plaintext

Square 7 2128 − 2119 264 2120 [33]

AES
128/128

Chosen-
plaintext

Collision 7 232 280 2128 [34]

AES
128/128

Chosen-
plaintext

Meet-in-
the-middle
(MiTM)

7 280 2126 2123 [34–36]

AES
128/128

Adaptive
chosen-
plaintext

Boomerang
attack

6 271 233 271 [37]

AES
128/128

Chosen-
plaintext

Biclique
MiTM

10 288 28 2126.18 [38–41]

PRESENT
-80

Known-
plaintext

Multi-
dimensional
linear

26 264 – 272 [42, 43]

PRESENT
-80

Chosen-
plaintext

Saturation 24 257 232 257 [44–49]

PRESENT
-80

Known-
plaintext

Linear 24 263.5 – – [50, 51]

PRESENT
-80

Chosen-
plaintext

Differential 16 264 232 264 [52, 53]

PRESENT
-80

Chosen-
plaintext

Structure
attack

18 264 – 276 [54]

PRESENT
-80

Chosen-
plaintext

Statistical
saturation
attack

24 257 232 257 [44]

PRESENT
-80

Chosen-
plaintext

Biclique 31 223 – 279.76 [55, 56]

KHUDRA Chosen-
plaintext

Meet-in-
the-middle
(MiTM)

14 251 264.86 266.19 [57]

KHUDRA Known-
plaintext

Guess-and-
determine

14 2 negligible 264 [58]

Speck
128/128

Chosen-
plaintext

Differential 17 2113 222 2113 [59, 60]

Simon
128/128

Chosen-
plaintext

Impossible
differential

22 2129.226 2123.203 2187.527 [61]

Simon
128/128

Chosen-
plaintext

Differential 40 2124.796 264 2120.474 [61]
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5 Overhead Analysis of Side Channel
Countermeasures Using Threshold
Implementations

In spite of resistance against classical cryptography, hard-
ware implementations of block ciphers have been chal-
lenged by side channel analysis [62, 63]. This powerful class
of adversaries tries to exploit the correlation between the
measured information, which are referred to as side chan-
nels, with the internal data, and eventually the secret key.
Many applications like smart meters, automotive compo-
nents are at the disposal of the adversary, and the physical
possession make this threat potent. The exact form of
side channels, like power, electromagnetic (EM) radiations,
sound, faults, could depend on the applications. As IoT
devices are more vulnerable to power and EM radiation
based side channel attacks due to their insecure and vulner-
able installations, strong and efficient countermeasures are
required to protect them. However, though sound counter-
measures exist, they come with a formidable cost, making
it really challenging for resource constrained environments.
Hence, it is an open area of research as to develop cipher
operations which are not only lightweight, but also have
a lesser cost due to the additions of the countermeasures.
In our analysis, we analyze the lightweight ciphers men-
tioned, wrt. such a sound countermeasure, called Threshold-
Implementation (TI) [19].

The main purpose of any side channel attack countermea-
sure pertaining to hardware or software level is to make all
cryptographic computations independent of the secret key.
To achieve the same use of randomization in data, data hid-
ing and masking are the most prominent methods. But all
these methods require additional random values or masks
for non-linear layer computations and for intermediate val-
ues produced during a round, which otherwise would cause
information leakage making it vulnerable to SCA. The pres-
ence of circuit level glitches can also lead to leakage of
side channel information has been reported in literature. So,
we focus on TI as a sound countermeasure protecting the
designs provably against first-order and higher order side
channel attacks even in presence of glitches. This approach
is based on secret sharing method [64], where a function
having algebraic degree d is implemented with d + 1 shares
to resist first-order side channel attack. Let P and K be the
input plaintext and key, respectively. Then, for a d-share TI
P and K can be represented as

P = p1 ⊕ p2 ⊕ p3 ⊕ · · · ⊕ pd

K = k1 ⊕ k2 ⊕ k3 ⊕ · · · ⊕ kd

where P and K are n-bit vectors. Let, Y = fnl(P, K),
where fnl(fnl : GF(2n) �→ GF(2n)) be a non-linear
function. Then for the d-share implementation, there would
be d non-linear functions to process d-output shares of Y

such that each share processed fulfills three requirements as
follows:

– Correctness: This property ensures that when outputs of
different shares are combined, the original output can
be retrieved in a correct way.

P = p1 ⊕ p2 ⊕ p3 ⊕ · · · ⊕ pd

K = k1 ⊕ k2 ⊕ k3 ⊕ · · · ⊕ kd

Y = y1 ⊕ y2 ⊕ y3 ⊕ · · · ⊕ yd .

– Uniformity: This property ensures uniform distribution
of input share should also result in uniform distribution
in output share

– Non-completeness: This property ensures that the equa-
tion to evaluate any output share should be independent
of at least one input share for each variable. It is because
of this property, in spite of the presence of glitches in
the circuit secret information is not revealed as at any
instant of time not all shares are present to compute the
output

yi = f
(i)
nl (x1, x2, . . . , xi−1, xi+1, . . . , xd, k1, k2, . . . ,

ki−1, ki+1, . . . , kd),

where, i ∈ {1 . . . d} and f
(i)
nl is i-th share function.

As evident from this description, because of the addi-
tional shares, the cost of the design increases manifold,
making them unsuitable for resource constrained devices.
So, we evaluate based on the lightest known 3-share TI of
the block ciphers in terms of area(Gate Equivalent) in ASIC,
and the side channel leakage. For side channel evaluation,
we resort to the FIPs conformance style of evaluation fol-
lowing the Test-Vector-Leakage Assessment (TVLA) which
is based on statistical hypothesis testing using T test [65].
The TVLA evaluations have been performed on the stan-
dard SASEBO G-II evaluation platforms [66]. We have also
implemented a 3-share TI for the KHUDRA block cipher
for which there was no reported design. It may be empha-
sized here that 2-share implementations would have been
lighter than 3-share TI implementations but it violates the
non-completeness property. In the case of 2-share TI pro-
cessing, an output share is always a function of both the
shares as illustrated in the below example:

Let f (x, y) = x · y, and x1, x0, y1, y0 be shares of x

and y such that x = x1 + x0 and y = y1 + y0. Then the
output shares are processed as

f1 = x0 · y0, f2 = x1 · y1

f3 = x1 · y0, f4 = x0 · y1 .

Then, all possible combinations of f1, f2, f3, f4
to obtain two output shares would violate the non-
completeness property. For example, combining f1 and f2
would need all the input shares, while combining f1 and
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f3 would need all the input shares of x. Likewise, f1 with
f4 would require all the input shares of y. This makes 2-TI
insecure against side channels in the presence of glitches.

The general strategy for 3-share TI implementations of
block ciphers is shown in Fig. 6. The shared implementa-
tion architecture consists of three parallel instances of linear
layer, one for each share, and one shared non-linear unit
having the 3-share functions as described above processing
all the shares together. In Fig. 6, each instance of linear func-
tion Linear processes an input share X[i] and key share
K[i] to produce intermediate share M[i] where i is the ith

share (1 ≤ i ≤ 3). All the M[i] vectors are fed into the
shared NonLinear function to produce new output share
Y [i] vectors.

5.1 Test Vector Leakage Assessment (TVLA): T Test
Methodology

The TVLA test is a conformance test which attempts to
detect the presence of any leakage in a cryptographic core.
The block cipher hardware is made to operate on a constant
selected plaintext, and the power consumption is compared
with when the cipher operates on randomly chosen inputs.
The existence of any differentiability denotes presence of
leakage of information which can be potentially exploited
by an adversary for key recovery. The basis of the test is
statistical hypothesis testing using Welch’s T test. We state
that briefly. Interested readers are requested to refer [67].

Suppose, the number of power traces collected for a fixed
plaintext denoted by | A | for set A , and number of power
traces processing random inputs denoted by | B | for set B.
The sample mean, variance forA is denoted byμA and σ 2

A
respectively and similar forB as well. Then, a null hypothe-
sis is made withμA =μB , after whichWelch’s T test is used
to accept or reject the null hypothesis with a confidence of
99.9%. The formula for T test is shown below:

t = μA − μB√
σ 2

A|A | + σ 2
B|B|

.

Linear(K,X) Linear(K,X) Linear(K,X)

Y[1] Y[2] Y[3]

K[1]X[1] X[2] K[2] X[3] K[3]

NonLinear(m1,m2,m3)

M[1] M[2] M[3]

Fig. 6 3-share TI block diagram

If the value of t >| 4.5 |, then the null hypothesis is rejected
and the cryptographic algorithm is said to fail first-order
leakage.

In the following sections, we discuss the 3-TI implemen-
tations of the lightweight ciphers which have been designed
in literature. In particular, KHUDRA had not been designed
using TI, so we present a TI implementation of the block
cipher to compare the overheads wrt. an unprotected design.

5.2 3-TI Simon-128/128

In the bit-serialized Threshold Implementation of Simon as
shown in Fig. 7 and reported in [68], in every clock cycle,
1-bit of internal state is processed. So if the circuit takes n-
bit size plaintext as input, n/2-clock cycles will be required
to complete the whole round.

In Fig. 7, S1 and S2 are shift-registers while F1 and
F2 are FIFO (First-In-First-Out) channels. During the first
phase (marked as 1 in Fig. 7), the look-up-table (LUT) pro-
cesses 3-bits from S1, during first eight clock cycles of
every round, a key bit and output of F2, storing the result
in S2. So, during this phase, the new values are stored in
S2, while old values are consumed from S1 for process-
ing. Once S2 gets full, S2 gets connected to F1 which will
store new values. This phase is the second phase (marked
as 2 in Fig. 7) and continues for 56 clock cycles. The func-
tionalities of S1 and S2 get swapped in next round, again
having two phases. We choose to cover 3-share TI hard-
ware architecture [69] of the Simon-128/128 as part of our
study as the 3-share implementation adheres to correct-
ness, non-completeness, and uniformity requirements of TI
as compared to a 2-share implementation which does not
fulfill non-completeness property. Let, P = L0 ‖ R0 be the
plaintext having L (left) and R (right) components as input
to Simon (superscript 0 represents round). For the 3-share
structure, two random masks are generated each for L0 and
R0 and expressed as

L0 = l01 ⊕ l02 ⊕ l03 (l01 and l02 are random)

R0 = r01 ⊕ r02 ⊕ r03 (r01 and r02 are random)

    3

8

key
   Control

(LUT)
56−bits (F1) 64−bits (F2)

 S2

S1

1

2

R[63:0]L[55:0]

L[63:56]

Fig. 7 Bit-serial simon architecture
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Fig. 8 Bit-serial speck architecture

The above masking method is applicable for generating
3-shares of key as well. The left and right component of
each share is processed as given by the following equations:

li+1
1 = ri

2 ⊕ S2(li2) ⊕ S1(li2) · S8(li2) ⊕ S1(li3) · S8(li2)

⊕S1(li2) · S8(li3) ⊕ ki
2

li+1
2 = ri

3 ⊕ S2(li3) ⊕ S1(li3) · S8(li3) ⊕ S1(li3) · S8(li1)

⊕S1(li1) · S8(li3) ⊕ ki
3

li+1
3 = ri

1 ⊕ S2(li1) ⊕ S1(li1) · S8(li1) ⊕ S1(li2) · S8(li1)

⊕S1(li1) · S8(li2) ⊕ ki
1

ri+1
1 = li1

ri+1
2 = li2

ri+1
3 = li3

The linear part of both data-path and key schedule units
are instantiated three times one for each share as shown
in Fig. 6. The hardware overhead with and without T I

implementation are shown in Table 6.

5.3 3-TI Speck-128/128

The architecture of bit-serialized implementation of Speck
[70] is shown in Fig. 8. Each round of the cipher in bit-
serialized mode requires 64 clock cycles, so a total of 2048
clock cycles are required for 32 rounds. The 128-bit plain-
text is divided into left and right component each of 64-bit

G2

G1

F1

F2

F3

m1

m2

m3

S(m1)

S(m2)

S(m3)

444

444

444

G3

Fig. 10 Decomposed S-box with three shares

length. Register R3 (54-bits) and R4 (8-bits) hold 64-bit
left part of plaintext while register R5 (61-bits) along with
R1/R2 (3-bits) hold the right part and A = R2[61] and
B = R1[61]. Starting at 8th-bit the feedback function of the
left register accepts 1-bit(x) from register R3, 1-bit(y) from
register R5 and performs ADD (full adder) operation fol-
lowed by XOR. To implement three share implementation,
three copies of bit-serial implementation are instantiated,
each unit processing every share as shown in Fig. 6. In every
round, Speck has a cyclic rotation and XOR operations
which are linear and a non-linear addition operation. The
plaintext and key is split into 3-shares, where 2-shares are
generated randomly and third being computed. The linear
operations can process each share separately while non-
linear layer process the shares according to the following
equations:

si
1 = xi

1 ⊕ yi
1 ⊕ ci

1

si
2 = xi

2 ⊕ yi
2 ⊕ ci

2

si
3 = xi

3 ⊕ yi
3 ⊕ ci

3

ci+1
1 = xi

2y
i
2 ⊕ xi

2y
i
3 ⊕ xi

3y
i
2 ⊕ xi

2c
i
2 ⊕ xi

2c
i
3 ⊕ xi

3c
i
2 ⊕ yi

2c
i
2

⊕yi
2c

i
3 ⊕ yi

3c
i
2

ci+1
2 = xi

3y
i
3 ⊕ xi

3y
i
1 ⊕ xi

1y
i
3 ⊕ xi

3c
i
3 ⊕ xi

3c
i
1 ⊕ xi

1c
i
3 ⊕ yi

3c
i
3

⊕yi
3c

i
1 ⊕ yi

1c
i
3

ci+1
3 = xi

1y
i
1 ⊕ xi

1y
i
2 ⊕ xi

2y
i
1 ⊕ xi

1c
i
1 ⊕ xi

1c
i
2 ⊕ xi

2c
i
1 ⊕ yi
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i
1

⊕yi
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i
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2c
i
1

Fig. 9 PRESENT (w = 4-bits)
serial implementation
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Table 6 Hardware overhead
comparison with and without
threshold implementation in
terms of gate equivalents

Block cipher Tech. node (nm) Tech. lib. Unprotected (GE) Protected (GE) Area overhead

KHUDRA 180 TSL18FS120 tower 1090 3738 2.5x

-64/80 [13] Semiconductor ltd.

PRESENT 45 NanGate 45 nm open 1619.23 5236.49 2.2x

-64/80 [76] Cell library

SIMON 90 TSMC 90 nm cell 1234 5686 3.6x

-128/128 [69] library

SPECK 180 TSL18FS120 Tower 2018 5940.6 1.9x

-128/128 [26] Semiconductor ltd.

AES- 45 NanGate 45 nm open 2421 6340 1.6x

128/128 [74] Cell library

where xi
j and yi

j are i-th bits of two words, ci
j denotes carry

bit and j indicates j -th share. So,

xi = xi
1 ⊕ xi

2 ⊕ xi
3

yi = yi
1 ⊕ yi

2 ⊕ yi
3

ci = ci
1 ⊕ ci

2 ⊕ ci
3 .

The hardware overhead with and without T I implemen-
tation are shown in Table 6.

5.4 3-TI PRESENT-64/80

The algorithm description of Present has already been
introduced before in this paper. The algebraic degree of
Present S-box is 3, so the S-box function can be divided
into two quadratic functions, where each quadratic func-
tion can be decomposed into 3-shares following uniform,
non-completeness and correctness properties of Thresh-
old Implementation countermeasure against side channel
attacks. The 4-bit serialized implementation [71] of Present
is shown in Fig. 9. The DAT A State module consist of 16
4-bit registers which can operate both in serial and parallel
mode. In serial mode, it forwards 4-bit data to next stage
while in parallel mode it performs permutation using one
clock cycle. Similar function is performed by KEY State

register which consist of 20 4-bit wide register. So, a round

of PRESENT requires 16 clock cycles to perform substitu-
tion layer and 1 clock cycle to perform permutation layer.
Each round of serialized implementation takes 17 clock
cycles, so for 31 rounds a total of 547 (17 × 31 + 20)
clock cycles are required, where 20 clock cycles are required
at initialization phase comprising of key and data loading.
After completion of 31 rounds Done signal becomes 1 to
load the final ciphertext.

The S-box (non-linear) function S(x) (S : GF(24) �→
GF(24)) can be decomposed into G(x) (G : GF(24) �→
GF(24)) and F(x)(F : GF(24) �→ GF(24)), where
S(x) = F(G(x)). Each of F(x) and G(x) is split into three
shares as shown in Fig. 10 where,

F(m1⊕m2⊕m3) = F1(m2, m3)⊕F2(m1, m3)⊕F3(m1, m2)

and

x = m1 ⊕ m2 ⊕ m3 (m1, m2, m3 shares of x) .

For 3-share TI implementation the linear layer units are
instantiated three times one for each share, with one copy
of shared S-box unit as shown in Fig. 6. The hardware over-
head with and without T I implementation are shown in
Table 6. The details of equations of each share inside the
S-box is given in [71].

Fig. 11 AES(w = 8-bits) serial
implementation
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Fig. 12 AES S-box

5.5 3-TI Advanced Standard Encryption (AES)-128/128

The architecture of byte serial implementation of AES is
based on compact structure of the AES S-box proposed in
[72] (Fig. 11). The design is based on sub-field isomor-
phisms which executes linear mapping transformations on
the input of S-box by changing the basis from GF(28) to
GF(24) and thenGF(22). The results from the smaller field
are then combined back to the original basis GF(28), with
a final inverse linear mapping transformation to result in
the output of the S-box as shown in Fig. 12. More details
of these mappings can be found in [73]. The stages of
the S-box and how it can be extended to 3 share Thresh-
old Implementation has been throughly discussed in [74].
The byte-serial architecture [75] is shown in Fig. 11. The
DAT A State and KEY State modules consist of 16 8-bit
registers. Each round of AES requires 21 clock cycles per
round with additional 16 clock cycles to load the cipher-
text, so in total 226 clock cycles are required for encryption.
Three share masking can be implemented using a shared S-
box as described in [74]. The architecture will consist of
three instances of linear layer each processing a share as
shown in Fig. 6 along with one instance of the shared S-box.
Due to the presence of pipelining stages in the shared S-box,
4 additional clock cycles are required along with 21 clock
cycles per round, so in total 266 clock cycles are required
for the encryption. The hardware overhead with and without
T I implementation is shown in Table 6.

5.6 3-TI KHUDRA-64/80

In order to complete this study, we perform a 3-TI imple-
mentation of KHUDRA, on which there are no reported
works. The architecture of a 4-bit serialized implementa-
tion of KHUDRA is shown in Fig. 13. KHUDRA uses
the same S-box as that of Present, so the equations for
3 share TI implementation of shared S-box of Present is
applicable here as well. The F-function block for KHU-
DRA, as shown in Fig. 13, has 6 rounds and iterates over

24 clock cycles, where in each 4 clock cycles one round
of F-function gets executed. So, the left and right branch
of F-function that pass through S-box takes 48 clock cycles
to complete the whole F-function round and in total 864
(48 × 64) clock cycles for 18 rounds. The TI shared S-
box will have one instance while other components will
have three instances, one for each share. The hardware over-
head with and without T I implementation are shown in
Table 6.

The increase in hardware overhead of unprotected design
with their protected counter-part are noted in Table 6. We
observe that the overheads range from 1.6 to 3.6. Interest-
ingly with the TI protection the GE of AES does not blow
up as high as that of some of the more lightweight ciphers,
like SIMON. Hence, we conclude with the comment that
although a cipher without protection may be lightweight, the
cost along with the side channel protections is also a very
important design choice.
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Fig. 13 KHUDRA serial implementation
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6 Conclusion

The importance of securing IoT devices along with meeting
the resource constraints requirements of IoT is both chal-
lenging and of utmost importance. Amidst the plethora of
block ciphers, it is a difficult design choice to select appro-
priate ciphers for a given application. In this paper, we
present a comprehensive analysis and study of some chosen
lightweight block ciphers with various design principles and
evaluate them wrt. area overhead, throughput, power con-
sumption, security against classical cryptanalysis and side
channel security. We evaluate hardware implementations of
SIMON, SPECK, PRESENT, KHUDRA, and AES on both
ASIC and FPGA platforms. Notably, we evaluate the unpro-
tected designs on the same ASIC technology, and bring out
the extremes in these ciphers which could be suitable to var-
ious applications. Furthermore, we evaluate 3-TI implemen-
tations of these ciphers as a sound countermeasure against
side channels and show that different crypto-algorithms
have different overheads wrt. these countermeasures. The
study can be further developed in coherence to the recent
call from NIST, to design and analyze lightweight ciphers
with physical security as also an important design criteria.
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Biryukov A (2015) Triathlon of lightweight block ciphers for the
internet of things. IACR Cryptology ePrint Archive 2015:209

4. Cazorla M, Marquet K, Minier M (2013) Survey and benchmark
of lightweight block ciphers for wireless sensor networks. In:
SECRYPT. SciTePress, pp 543–548

5. Roman R, Alcaraz C, Lopez J (2007) A survey of cryptographic
primitives and implementations for hardware-constrained sensor
network nodes. MONET 12(4):231–244

6. Ghosh S, Misoczki R, Zhao L, Sastry MR (2017) Lightweight
block cipher circuits for automotive and iot sensor devices. In:
Proceedings of the hardware and architectural support for security
and privacy, HASP ’17. ACM, New York, NY, USA, pp 5:1–5:7

7. Kerckhof S, Durvaux F, Hocquet C, Bol D, Standaert F-X
(2012) Towards green cryptography: a comparison of lightweight
ciphers from the energy viewpoint. In: CHES, vol 7428 of LNCS.
Springer, pp 390–407

8. Balasch J, Ege B, Eisenbarth T, Gérard B, Gong Z, Güneysu T,
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