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Security in wireless networks has traditionally been considered
to be an issue to be addressed separately from the physical radio
transmission aspects of wireless systems. However, with the emer-
gence of new networking architectures that are not amenable to
traditional methods of secure communication such as data encryp-
tion, there has been an increase in interest in the potential of the
physical properties of the radio channel itself to provide commu-
nications security. Information theory provides a natural frame-
work for the study of this issue, and there has been considerable
recent research devoted to using this framework to develop a
greater understanding of the fundamental ability of the so-called
physical layer to provide security in wireless networks. Moreover,
this approach is also suggestive in many cases of coding tech-
niques that can approach fundamental limits in practice and of
techniques for other security tasks such as authentication. This
paper provides an overview of these developments.
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W ireless communication is one of the most ubiquitous of
modern technologies. Cellular communication alone is

accessible to an estimated 5 billion people, and this is but one
of an array of wireless technologies that have emerged in recent
decades. Wireless networks are increasingly used for a very
wide range of applications, including banking and other finan-
cial transactions, social networking, and environmental monitor-
ing, among many others. For this reason, the security of wireless
networks is of critical societal interest. Security has traditionally
been implemented at the higher, logical layers of communica-
tion networks, rather than at the level of the physical transmis-
sion medium. For data confidentiality, encryption is the primary
method of ensuring secrecy, a method that works well in most
current situations. However, in some emerging networking archi-
tectures, issues of key management or computational complexity
make the use of data encryption difficult. Examples include ad
hoc networks, in which messages may pass through many inter-
mediate terminals on the way from source to destination, and
sensor or radio-frequency identification (RFID) networks such
as might arise in the envisioned Internet of Things, in which the
end devices are of very low complexity. For these and other rea-
sons, there has been considerable recent interest in developing
methods for secure data transmission that are based on the phys-
ical properties of the radio channel (the so-called wireless physi-
cal layer). These results are based on information theoretic char-
acterizations of secrecy, which date to some of Claude Shannon’s
early work on the mathematical theory of communication (1).
Whereas Shannon’s work focused on symmetric key encryption
systems, perhaps a more relevant development in this area was
Aaron Wyner’s work on the wiretap channel, which introduced
the idea that secrecy can be imparted by the communication
channel itself without resorting to the use of shared secret keys
(2). Although not focusing on wireless networks per se, this work
nevertheless lays the mathematical groundwork for the study of
this issue on a much broader scale and particularly in the context
of wireless networks.

For the reasons noted above, wireless physical layer security
has become a major research topic in recent years, and consider-

able progress has been made in understanding the fundamental
ability of the physical layer to support secure communications
and in determining the consequent limits of this ability (3, 4). In
particular, it has been shown that the two principal properties
of radio transmission—namely, diffusion and superposition—
can be exploited to provide data confidentiality through several
mechanisms that degrade the ability of potential eavesdroppers
to gain information about confidential messages. These mecha-
nisms include the exploitation of fading, interference, and path
diversity (through the use of multiple antennas), all of which
also lead to potential techniques for implementation in practi-
cal wireless systems. Moreover, the random nature of wireless
channels provides sources of common randomness that can be
used to extract shared secret keys from the physical layer, thereby
allowing more traditional methods of data protection to be
applied.

This paper reviews these developments, beginning with a brief
historical account of the use of information theory to char-
acterize secrecy more generally and then discussing the main
results for the principal channel models of interest in modern
wireless networks. General information theoretic concepts are
defined briefly as needed; these are explained in greater depth
in ref. 5.

Shannon’s Cipher System
Shannon was the first person who studied, in ref. 1, the prob-
lem of secure communication from an information theoretic per-
spective. He considered a noiseless cipher system as illustrated in
Fig. 1. A transmitter (Alice) wishes to convey a message M to a
legitimate receiver (Bob) while keeping it secret from an eaves-
dropper (Eve), who intercepts the transmission. Alice and Bob
share a common secret key K that is unknown to Eve. To estab-
lish the secrecy of the message, Alice uses this key to encrypt
the message M into a codeword X , which is then transmitted.
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Fig. 1. Shannon’s cipher system.

Accordingly, Bob uses K to decrypt the received codeword X to
recover M .

A communication scheme is considered to be secure if
the mutual information between the message M and the
codeword X , which is overheard by Eve, is exactly zero,
i.e., I (M ;X ) = 0. Mutual information is defined in terms of
(Shannon) entropies as I (M ;X ) =H (M ) − H (M |X ), where
the entropy H (M ) = −

∑
p(m) log p(m) describes the uncer-

tainty about the random variable M , where p(m) is the
probability with which M takes on the value m , whereas
the conditional entropy H (M |X ) describes remaining uncer-
tainty in M after X has been observed. I (M ;X ) = 0 thus
implies that the uncertainty H (M ) about the message M
is equal to the uncertainty H (M |X ) when the codeword X
is given. In other words, the message and the codeword must
be statistically independent. This condition is termed perfect
secrecy and implies that the codeword X reveals no informa-
tion about the message M . As a consequence, even if Eve
has unbounded computational capabilities, the best strategy of
Eve to infer the confidential information is to throw away the
observed codeword and to simply guess the transmitted mes-
sage. Shannon showed that perfect secrecy can be achieved, but
only if the entropy H (K ) of the secret key K is at least as large
as the entropy H (M ) of the confidential message M (1); i.e.,
H (K ) ≥ H (M ).

Assuming the message and the secret key to be sequences
of binary numbers, perfect secrecy is achieved by the so-called
one-time pad approach (6), where the codeword is simply the
binary addition [exclusive or (XOR) operation] of the message
and the secret key; i.e., X = M ⊕ K . This idea extends beyond
the binary case and the result holds in a much more general set-
ting, which is known as the crypto lemma (7).

The observation that Alice and Bob must share a secret key
of the same length as the message they want to exchange seems
discouraging at first. But this mainly stems from the fact that
the communication channel is assumed to be noiseless so that
Eve observes exactly the same as Bob. However, the physical
layer especially in wireless communication systems is anything
but noiseless. In the following we will see that this imperfec-
tion of the communication channel can be explicitly exploited to
establish secrecy by physical layer methods without the need of a
shared secret key.

Wyner’s Wiretap Channel
The wiretap channel was introduced by Wyner (2) and its com-
munication task is similar to Shannon’s cipher system: Alice
wants to transmit a confidential message to Bob while keeping
it secret from Eve. The wiretap channel generalizes the previ-
ous scenario by considering noisy communication channels as
shown in Fig. 2. However, no secret key is available to the
legitimate users.

Accordingly, the objective is now twofold: Alice must encode
the message M into a codeword X n of length n such that Bob,

having received Y n , can reliably recover the message; i.e.,

P{M̂ 6=M } −→
n→∞

0.

Note that a codeword of length n makes use of the channel n
times; i.e., X n = (X1, ...,Xn), where Xi is sent in the i th channel
use. Similarly, Y n = (Y1, ...,Yn) and Z n = (Z1, ...,Zn) describe
corresponding channel outputs at the legitimate receiver and
eavesdropper, respectively.

At the same time, the message must be kept secret from Eve.
An issue then is how to specify secrecy in this setting, which is
discussed next.

Secrecy Criterion. Shannon’s cipher system considered the cri-
terion of perfect secrecy. This is a very stringent criterion as
it requires strict statistical independence between the message
M and the channel output Z n at Eve. In particular, when the
communication channel is noisy, this is hard to realize and it is
reasonable to relax the criterion by requiring statistical indepen-
dence only asymptotically in the block length n .

Having in mind that the channel output at Eve should
not reveal any information about the confidential message,
Wyner defined secrecy in terms of equivocation, or conditional
entropy (2). Specifically, he required that the conditional entropy
1
n
H (M |Z n) ≈ 1

n
H (M ) so that the knowledge of the channel

output Z n does not decrease the uncertainty rate about the mes-
sage M ; in other words, it does not provide any information
about M . This criterion is known as weak secrecy and is often
equivalently written in terms of mutual information as

1

n
I (M ;Z n) −→

n→∞
0.

This quantity describes the information leaked about M to Eve
in terms of a rate due to the normalization by the block length n .
This definition of secrecy has its vulnerabilities (8) and can be
strengthened by dropping the division by n to

I (M ;Z n) −→
n→∞

0.

This condition is termed strong secrecy and the intuition is to
have the total amount of information leaked to Eve vanish as
n → ∞. Strong secrecy for the wiretap channel was first consid-
ered in refs. 9 and 10. Recently, different approaches to achieve
strong secrecy were presented in refs. 11–15. One might question
whether this definition for secrecy is meaningful. And indeed,
strong secrecy ensures that the decoding error approaches one
exponentially fast for any decoding strategy Eve may use (16).
This demonstrates the usefulness of the strong secrecy criterion
and establishes a desirable and practically relevant operational
meaning.

Recently, this criterion was further strengthened by consid-
ering semantic security (17). Here, Eve is not only not able to
decode the transmitted message, but also not able to obtain any
information about it at all.

Fig. 2. Wyner’s wiretap channel.
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Secrecy Capacity. Recall that Alice must encode the message
into a codeword such that it is useful for Bob to recover the
transmitted message (reliability) and at the same time the same
codeword is useless for Eve (security). These two requirements
seem to be conflicting and it is not obvious that it is possible to
achieve both simultaneously.

Surprisingly, it is indeed possible and the so-called secrecy
capacity characterizes the maximal rate at which both require-
ments are met. For discrete memoryless channels, for which the
relation between the transmitted input and received output sym-
bols at each independent channel use can be described by a con-
ditional probability distribution of the channel output given the
channel input, Wyner established the secrecy capacity in ref. 2 for
the case of degraded channels, i.e., channels for which X−Y −Z
form a Markov chain, which means that X and Z are statistically
independent conditioned on Y . This result was subsequently
generalized by Csiszár and Körner to the general, nondegraded
case in ref. 18.

The secrecy capacity of the discrete memoryless wiretap chan-
nel is given by

CS = max
V−X−(Y ,Z)

(
I (V ;Y )− I (V ;Z )

)
, [1]

where the maximization is over all random variables V and X
such that the Markov chain relationship V − X − (Y ,Z ) is sat-
isfied. (The prefixed V introduces artificial noise into the sys-
tem and serves to make the eavesdropper channel noisier. This
is known as channel prefixing.) Intuitively, the mutual informa-
tion term I (V ;Y ) represents the channel quality of the legit-
imate link and describes the rate at which Alice can reliably
transmit to Bob. Accordingly, the term I (V ;Z ) represents the
channel quality of the eavesdropper link and the maximum trans-
mission rate is penalized exactly by this quantity. Another impor-
tant observation is that to have a positive secrecy capacity, the
channel to Bob has to be “less noisy” than the channel to Eve;
i.e., I (V ;Y ) > I (V ;Z ) for some V . This means Alice and Bob
must have an advantage over Eve at the physical layer itself.

The crucial idea for achieving the secrecy capacity is the
following: Instead of using all of the available resources for
message transmission, a certain part of them are used for ran-
domization by adding “dummy” messages unknown to Bob and
Eve. Specifically, for each confidential message Alice wants to
transmit, there are multiple valid codewords and a stochastic
encoder chooses one of them uniformly at random. The key
idea is now to choose the randomization rate for each confiden-
tial message roughly as I (V ;Z ), i.e., according to Eve’s channel
quality. Thus, Eve will be saturated with the useless information
carried by the dummy variables, leaving no remaining resources
for decoding the confidential message itself (19). Because the
channel quality to Bob supports reliable transmission roughly
at rate I (V ;Y ), the remaining rate available for secure trans-
mission of the confidential message is I (V ;Y ) − I (V ;Z ) as
Bob usually has to decode both the confidential message and the
dummy variables to recover the correct message.

Secure Communication over Wireless Channels
In this section, the information theoretic approaches to security
discussed above for discrete memoryless channels are extended
to models for physical wireless channels. Wireless physical layer
security is one of the key applications of these concepts, as a sig-
nal broadcast over a wireless medium is not only received by its
intended receiver but also easily eavesdropped upon by nonle-
gitimate receivers. As we have noted above, the imperfection of
the wireless medium will help establish security by exploiting the
noisy channel.

Gaussian Wiretap Channels. The Gaussian wiretap channel is
the most basic model for a wireless channel, having linear

time-invariant multiplicative links corrupted by additive white
Gaussian noise. When Alice transmits a signal Xi , the received
signals YB,i at Bob and YE,i at Eve at channel use i can then be
expressed as

YB,i = hBXi + NB,i and YE,i = hEXi + NE,i , [2]

where hB and hE are the channel gains between Alice and Bob
and between Alice and Eve, respectively, and NB,i and NE,i are
additive white Gaussian noises, independent of the transmitted
signals, with zero means and variances σ2

B and σ2
E , respectively.

Here, white noise refers to a random process that is independent
from channel use to channel use.

Considering an average transmit power constraint of P , the
secrecy capacity of the Gaussian wiretap channel was established
in ref. 20 and is given by

CS =
1

2
log
(

1 +
P |hB |2

σ2
B

)
− 1

2
log
(

1 +
P |hE |2

σ2
E

)
.

The secrecy-capacity–achieving strategy is to transmit with full
power P and to choose the input signals according to a Gaus-
sian distribution. This latter choice is by no means obvious, as
Gaussian input maximizes the information flow to Bob, but at
the same time also to Eve. Interestingly, the secrecy capacity in
this case turns out to be equal to the difference between the
main channel’s Shannon capacity and the eavesdropper chan-
nel’s Shannon capacity. From this it follows immediately that
secure communication is possible if and only if Bob has a bet-
ter channel than Eve in the sense that the signal-to-noise ratio
of the main channel must be larger than that of the eaves-
dropper channel; i.e., |hB |2/σ2

B > |hE |2/σ2
E . We return to this

point later.

Multiantenna Wiretap Channels. Systems with multiple transmit
and receive antennas, so-called multiple-input multiple-output
(MIMO) systems, can improve the performance of wireless
transmission significantly and hence form the basis of most mod-
ern high-capacity wireless systems. Thus, the MIMO wiretap
channel is particularly of interest. Accordingly, Alice, Bob, and
Eve are assumed to have multiple transmit and receive antennas,
respectively. Note that a multiantenna eavesdropper can also
be interpreted as multiple single-antenna eavesdroppers that
cooperate.

When Alice transmits a vector-valued signal X i , the received
vector-valued signals YB,i at Bob and YE,i at Eve can be
expressed as

YB,i = HBX i + NB,i and YE,i = HEX i + NE,i ,

where HB and HE are matrices containing multiplicative channel
gains, and NB,i and NE,i are independent (of each other and
for different values of i) additive Gaussian noise vectors at Bob
and Eve with zero means and identity covariance matrices. The
transmission is subject to an average transmit power constraint
tr(Q) ≤ P with Q = E[X iXT

i ] being the covariance matrix of the
transmitted signal.

The secrecy capacity of the MIMO Gaussian wiretap channel
was established in refs. 21 and 22 and is given by

CS = max
tr(Q)≤P

(
1

2
log det

(
I + HBQHT

B

)
− 1

2
log det

(
I + HEQHT

E

))
. [3]

Similarly to the scalar case, capacity is achieved by transmit-
ting with full power P and by choosing Gaussian-distributed
input symbols. Although, in principle, the secrecy capacity of
the MIMO wiretap channel is given by the above relation, it
remains to find the optimal transmit covariance matrix Q that
maximizes the rate in [3]. Analytically, this is a nontrivial task as
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the corresponding optimization problem is nonconvex in general.
Accordingly, the optimal transmit covariance matrix has been
characterized only for certain special cases. For example, the
optimal transmit strategy is known for the general matrix power
constraint Q 4 S with S < 0 being a positive semidefinite matrix
(23), full-rank channels, or isotropic eavesdroppers (24).

A scenario that is completely understood is the multiple-input
single-output wiretap channel, in which Alice has multiple trans-
mit antennas, Bob has a single receive antenna only, and Eve may
have multiple receive antennas. In this case, the optimal transmit
covariance matrix is known in closed form (21). Denoting the
channel to Bob by the vector hB and that to Eve by the matrix
HE , the solution of the secrecy rate maximization problem in
[3] is

CS =
1

2
log
(
λmax(I + PhBhT

B , I + PHT
E HE )

)
,

with λmax the largest generalized eigenvalue of the two matri-
ces I + PhBhT

B and I + PHT
E HE . The optimal transmit strategy

achieving the secrecy capacity is to form a beam in the direction
of the generalized eigenvector corresponding to λmax.

Partial Channel State Information. The previous discussions have
in common that knowledge of the gains of all channels (including
those to eavesdroppers) is available to the legitimate users. This
condition is termed perfect channel state information (CSI) and
such idealized communication assumptions allow one to obtain
important insights and to develop an understanding of the fun-
damental principles of wireless physical layer security. However,
due to the nature of the wireless channel, but also due to practi-
cal limitations such as inaccurate channel state estimation or lim-
ited feedback schemes, practical systems always have to deal with
limited CSI. In particular, perfect eavesdropper CSI is question-
able unless the eavesdroppers are otherwise legitimate network
participants, as malevolent eavesdroppers will not provide any
information about their channels or may even jam or otherwise
influence the legitimate channel. A survey on secure communi-
cation under channel uncertainty and adversarial attacks can be
found in ref. 25.

A realistic model for the unpredictable nature of the wire-
less channel and the imperfections of practical implementations
is to assume that the actual realization of the channel gains is
unknown to Alice and Bob but is known to lie in an uncer-
tainty set of possible channels. This is the concept of compound
channels and it accordingly requires reliability and secrecy for
all possible channel realizations in this uncertainty set. Such a
guaranteed performance criterion is particularly relevant for the
transmission of confidential information that must be kept secret
regardless of the actual channel conditions.

The compound wiretap channel has been studied, for example,
in refs. 16, 26, and 27. In this scenario, the legitimate channel and
eavesdropper channel are not known, but belong to uncertainty
sets HB and HE . Such channels can be studied abstractly, but
there are also useful concrete versions of possible uncertainty
sets. For example, due to limited channel estimation capability,
the true channel to Bob might be considered to be in a certain
neighborhood of its estimated version. Accordingly, a reasonable
uncertainty set is given by a (spherical) set

HB =
{

HB : HB = H0 + ∆H, ‖∆H‖2 ≤ ε
}

[4]

with ‖ · ‖2 the spectral norm. Then, ε describes the maximum
estimation error ∆H around the estimated channel H0. Another
uncertainty model is to assume that the received channel gain for
the eavesdropper is limited; i.e.,

HE =
{

HE : ‖HE‖2 ≤ ε
}
. [5]

Here, ‖HE‖2 corresponds to the largest channel gain, which is
thus assumed to not exceed ε. Such an uncertainty set models, for

example, the scenario in which an eavesdropper cannot approach
the transmitter beyond a minimum protection distance. All such
scenarios are covered by the concept of compound channels.

Assuming [4] and [5] to be the uncertainty sets for Bob’s and
Eve’s channels yields a compound wiretap channel that reflects
two practically relevant points: First, Eve’s desire is to be confi-
dential so that only minimal CSI is available to Alice. It might be
known only that Eve is beyond a certain protection distance, as
noted above. And second, Bob on the other hand wants to max-
imize the rate and, accordingly, is willing to share his CSI with
Alice. However, due to practical limitations only a channel esti-
mate is available, resulting in additive uncertainty. This model is
studied in ref. 27.

Determining the secrecy capacity of the compound wiretap
channel is a challenging task and it is known only for certain
special cases. For degraded channels, i.e., for which each poten-
tial eavesdropper channel realization is a degraded version of all
possible legitimate channel realizations, the secrecy capacity has
been established in refs. 16 and 26 for discrete memoryless chan-
nels and in ref. 26 for MIMO Gaussian channels. The compound
MIMO wiretap channel above with uncertainty sets [4] and [5]
is not degraded and is one of the few examples for which the
secrecy capacity has been established for the nondegraded case:

CS = max
tr(Q)≤P

(
min

HB∈HB

1

2
log det

(
I + HBQHT

B

)
− max

HE∈HE

1

2
log det

(
I + HEQHT

E

))
.

The analysis reveals the characteristic structure of secure com-
munication under channel uncertainty. The maximum transmis-
sion rate is limited by the worst channel to Bob and by the
best channel to Eve. This result confirms the intuition that for
guaranteeing reliable and secure communication, one has to
be prepared for the worst channel conditions. This result fur-
ther shows how the performance degrades because of channel
uncertainty.

Fading Wiretap Channels. In the above discussion, the channel
has been considered to be fixed during the entire duration of
transmission. In particular, for the previously discussed Gaus-
sian wiretap channel, the multiplicative channel gains hB and hE
in [2] are constant. For wireless channels this is rarely the case
because multipath propagation and interference usually result in
changing communication conditions, particularly for mobile net-
works. This phenomenon is known as fading. In such an envi-
ronment, the input–output relations of the channels are typically
modeled as

YB,i = hB,iXi + NB,i and YE,i = hE,iXi + NE,i ,

where all hB,i , hE,i , NB,i , and NE,i are mutually independent.
Here, hB,i and hE,i are fading coefficients that characterize the
communication conditions at channel use i . The input signal is
subject to an average power constraint 1

n

∑n
i=1 E[X 2

i ] ≤ P and
the noise processes, which are independent from channel use to
channel use, are Gaussian with zero means and variances σ2

B and
σ2
E respectively, as before.
For ergodic fading channels, the fading coefficients are inde-

pendent and identically distributed and are allowed to change
from channel use to channel use. Thus, Alice, Bob, and Eve
might experience a different fading state for each channel use.
Assuming that all terminals have perfect CSI about the current
fading state, so-called instantaneous CSI, the ergodic secrecy
capacity has been studied in ref. 28 and is given as

CS = max
EA[γ]≤P

EA

[
1

2
log
(

1 +
γ|hB |2

σ2
B

)
− 1

2
log
(

1 +
γ|hE |2

σ2
E

)]
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with γ the power allocation (to be explained below) and

A =

{
(hB , hE ) :

|hB |2

σ2
B

>
|hE |2

σ2
E

}
[6]

so that the expectation is taken over all fading realizations in
which Bob experiences a better channel in terms of signal-
to-noise ratio than Eve; i.e., EA[·] denotes the expectation over
all (hB , hE ) ∈ A.

The key idea behind this result is that the instantaneous CSI
allows one to decompose the fading channel into a set of parallel
and time-invariant channels. Now, each fading realization corre-
sponds to a particular wiretap channel and it remains to deter-
mine the optimal power allocation γ between all these parallel
wiretap channels. Obviously, power is allocated only to those fad-
ing realizations in which Bob experiences a better channel than
Eve [6]. The fading wiretap channel has been intensively dis-
cussed in refs. 28–30. In ref. 31 a layered decoding and secrecy
approach is discussed, which adapts to the channel quality with-
out requiring perfect CSI.

Having a closer look at the secrecy capacity of the (static)
wiretap channel and the fading wiretap channel, one observes
the following. Whereas for the (static) wiretap channel secure
communication is possible only if Bob has a better channel than
Eve, i.e., |hB |2/σ2

B > |hE |2/σ2
E , for the fading wiretap channel

it suffices to have P{|hB |2/σ2
B > |hE |2/σ2

E}> 0 to have a posi-
tive secrecy capacity. Thus, interestingly, fading is actually bene-
ficial for communicating confidential information. Even if Eve’s
channel is better than Bob’s on average, the ergodic secrecy
capacity is positive, because whenever Bob experiences a better
channel than Eve instantaneously (which will happen infinitely
often), this fading realization can be exploited for secure
communication.

Physical Layer Security in Wireless Networks
There has been considerable effort in extending and generaliz-
ing concepts and results for the wiretap channel to more com-
plex multiuser scenarios as well. We briefly discuss the practically
relevant models of the broadcast channel, multiple access chan-
nel, interference channel, and relay channel. These channels give
insight into the properties of more complex networks.

Broadcast Channel. The broadcast channel describes the commu-
nication scenario in which one sender transmits information to
several receivers. For example, this channel describes the down-
link phase of a cellular communication system in which a base
station transmits data to several mobile users.

The broadcast channel with confidential messages models the
communication scenario in which one transmitter Alice trans-
mits a common message M0 to two receivers Bob 1 and Bob 2
and a confidential message M1 to one receiver, say Bob 1, which
must be kept secret from the other one. Thus, Bob 2 is a legiti-
mate receiver for the common message M0 and, at the same time,
an eavesdropper for the confidential message M1. This scenario
models situations, for example, in which some (basic) content is
multicast while other (premium) content is unicast. It was intro-
duced by Csiszár and Körner (18) and is depicted in Fig. 3. Here,
instead of a single secrecy capacity, we have a region of possi-
ble reliable rates R0 for the common message and secrecy rates

Fig. 3. Broadcast channel with confidential messages.

Fig. 4. Multiple-access channel with confidential messages.

R1 for the confidential message. The secrecy capacity region has
been established and is given by all rate pairs (R0,R1) that satisfy

R0 ≤ min{I (U ;Y1), I (U ;Y2)}
R1 ≤ I (V ;Y1|U )− I (V ;Z |U )

for random variables U − V − X − (Y1,Y2). The basic coding
idea for achieving this rate region is based on a combination of
superposition coding and wiretap coding. The common message
M0 designated for both receivers is encoded first and represented
by the auxiliary random variable U . As M0 must be decoded at
both receivers, the corresponding rate is limited by the weaker of
the channel qualities to Bob 1, i.e., I (U ;Y1), and to Bob 2, i.e.,
I (U ;Y2). Then, superimposed on that, the confidential message
M1 is encoded in V according to the same principle as for the
wiretap channel discussed above. Accordingly, the confidential
rate is limited by a similar difference of both channel qualities
but conditioned on U because the common message is known at
both receivers.

In a similar way to that for the wiretap channel, the broad-
cast channel with confidential messages has been subsequently
extended into several directions as well, including MIMO Gaus-
sian channels (32), channels with partial CSI (33), and fading
channels (28).

Multiple-Access Channel. The multiple-access channel is the coun-
terpart to the broadcast channel: Multiple senders transmit
information to a single receiver. An example of where this occurs
is in the uplink phase of a cellular system in which several mobile
users transmit data to a base station.

In a multiple-access channel with confidential messages two
senders Alice 1 and Alice 2 transmit confidential messages M1

and M2 to a single receiver Bob. Each transmitter overhears the
transmission of the other one so that Alice 1 and Alice 2 must
send their confidential messages such that they are decodable
by Bob but leak no information to the other transmitter. This
situation is visualized in Fig. 4. Again, we have a region of secret
rates for the two users’ messages. Inner and outer bounds on this
region have been derived in ref. 34, although the secrecy capacity
region itself remains unknown.

A slightly different setting is given by the multiple-access wire-
tap channel in which both transmitters are trustworthy but their
communication must be secured from an external eavesdropper.
This situation has been studied, for example, in refs. 35 and 36.
Similar to the multiple-access channel with confidential messages
the secrecy capacity region is unknown and only inner and outer
bounds have been established so far.

Interference Channel. The interference channel describes the
communication scenario in which multiple transmitter–receiver
pairs interfere with each other. Each sender is interested only
in transmitting information to its designated receiver. However,
due to the open nature of the wireless medium, the transmitted
signals are received not only by the intended receivers but also
by the other users.

The interference channel with confidential messages considers
two transmitters Alice 1 and Alice 2 who wish to transmit their
confidential messages M1 and M2 to their respective receivers
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Fig. 5. Interference channel with confidential messages.

Bob 1 and Bob 2. Because both transmissions interfere with each
other, each transmitter must encode and transmit its message in
such a way that it is kept secure from the counterpart receiver.
This is shown in Fig. 5. Inner and outer bounds on the secrecy
capacity region for this channel have been established in refs. 37
and 38.

A different communication scenario is given by the cogni-
tive interference channel with one common and one confiden-
tial message. Here, the common message is known to both
transmitters and must be conveyed to both receivers whereas
the confidential message is known only at one transmitter and
must be conveyed to its respective receiver, keeping the other
receiver ignorant of it. Unlike the other interference scenarios,
the secrecy capacity region is known in this case (39).

Relay Channel. The aim of a relay is to support the communica-
tion between a transmitter and a receiver. Relays are used, for
example, for coverage and range extension or to increase the
maximal transmission rate.

The relay channel with confidential messages considers the
scenario in which the sender Alice wishes to transmit a confi-
dential message to receiver Bob. The transmission is supported
by an untrusted relay so that Alice must encode and transmit the
message in such a way that the relay is able to help the communi-
cation, but does not get any information about the message. This
has been studied in refs. 40 and 41.

The relay channel with an external eavesdropper differs from
the previous scenario by having a trusted relay, but the confiden-
tial transmission must be secured against an external eavesdrop-
per. This situation is considered in ref. 42.

Secret-Key Generation
In the previous discussions we saw how information theoretic
approaches can be used to secure a confidential message trans-
mission over a wireless channel. We now discuss how these infor-
mation theoretic approaches can be used to generate secret keys
based on public discussion and subsequently with the help of
wireless channels. Surveys of the use of the wireless physical layer
for secret-key generation can be found in refs. 43 and 44.

Public Discussion. Secret-key generation using public discussion
was first considered simultaneously by Ahlswede and Csiszár (45)
and Maurer (46). In this setting the two terminals Alice and Bob
observe correlated versions Y n

A and Y n
B of a common random

source. Based on these observations both terminals want to agree
on the same secret key; i.e., P{KA 6= KB} → 0 as n →∞, where
KA and KB are secret keys generated at Alice and Bob, respec-
tively. To do so, they are allowed to exchange unlimited infor-
mation (in multiple iterations) via a noiseless public channel.
However, this channel is eavesdropped upon so that whatever is
exchanged via public discussion must not reveal any information
about the secret key itself. This condition is modeled similarly to
the wiretap channel by adopting a strong secrecy criterion,

I (Φ;KA,KB ) −→
n→∞

0,

where Φ denotes the public discussion over the public channel.
In other words, the secret key must be independent of the public
discussion. This scenario is shown in Fig. 6.

The aim is now to determine the secret-key capacity, which
characterizes the maximal rate at which secret keys can be gen-
erated. In refs. 45 and 46 it has been shown that for the case of
unlimited public communication, the secret-key capacity is

CK = I (YA;YB ). [7]

Moreover, it has been shown that this rate can be achieved by a
single one-way communication from Alice to Bob.

The crucial idea for generating a uniformly distributed secret
key of rate [7] is based on Slepian–Wolf coding (5) and can
be outlined as follows. All sequences Y n

A that can be observed
by, say, Alice are divided into bins, with each one containing
2nI (YA;YB ) sequences. Now, when Alice observes Y n

A , she sets
the secret key to the index of the particular sequence and sends
only the bin index (but not the index of the sequence itself) over
the noiseless channel to Bob. Based on the Slepian–Wolf cod-
ing idea, having observed Y n

B this bin index is sufficient for Bob
to infer the other observation Y n

A . Thus, Bob is able to choose
the same secret key as Alice. As the bin index and the sequence
index are independent, no information about the secret key is
leaked to Eve.

In the previous model, Eve was able to eavesdrop upon
the public communication only over the noisy channel. This
has been extended by allowing Eve to further observe its own
correlated observation Y n

E of the common random source as
depicted in Fig. 6. Whereas for the previous scenario the
secret-key capacity is known, this is no longer the case when
Eve has observed her own realization. Only upper and lower
bounds on the secret-key capacity CK are known: I (YA;YB )−
min{I (YA;YE ), I (YB ;YE )} ≤ CK ≤ min{I (YA;YB ), I (YA;
YB |YE )}. Although arbitrary information exchange between
Alice and Bob is allowed in principle, the lower bound is
achieved by a one-way communication from Alice to Bob
or Bob to Alice only. Comparing this rate with the rate in
[7], it can be interpreted as the maximum secret-key rate
I (YA;YB ) that can be generated minus some information leak-
age min{I (YA;YE ), I (YB ;YE )} to Eve. This reveals the same
structure as that for the secrecy capacity of the wiretap channel
in [1]. However, it is possible to control whether information is
leaked from Alice, I (YA;YE ), or from Bob, I (YB ;YE ).

In the above setting, the public communication was unlimited
in the sense that no restrictions on the corresponding commu-
nication rate have been made. In practical applications, how-
ever, there might be such restrictions that then result in a certain
degradation in secret-key capacity (47).

Wireless Channels. Now we extend the previous discussion on
secret-key generation based on public discussion to the practi-

Fig. 6. Secret-key generation.
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cally relevant case of wireless channels. We will see that wireless
channels themselves can serve as sources of common random-
ness, making previous concepts applicable (43, 48, 49).

The scenario is the same: Two terminals Alice and Bob want to
generate a secret key, keeping an eavesdropper Eve in the dark.
Both terminals can transmit over a wireless fading channel and
can further use a noiseless public channel for public discussion.
Eve overhears the transmissions over the wireless channel and
also eavesdrops upon the public discussion. The crucial idea is
to exploit the reciprocity of the wireless channel to obtain corre-
lated observations of the common fading channel. Then the key
can be generated as discussed above.

When Alice transmits a signal XA over the wireless channel,
the received signals YB at Bob and YE at Eve are

YB = hABXA + NB and YE = hAEXA + NE

with hAB and hAE the channel gains between Alice and Bob and
Eve, respectively. NA and NB are additive Gaussian noise terms
with zero means and variances σ2. Alternatively, when Bob trans-
mits a signal XB , the received signals YA at Alice and YE at Eve
are YA = hBAXB + NA and YE = hBEXB + NE .

If both transmissions happen in the same frequency band and
within the coherence time of the channel, it is reasonable to
assume that the channel between Alice and Bob is reciprocal;
i.e., hAB = hBA. Even if the channel is not perfectly recipro-
cal, it suffices to obtain correlated versions that are useful for
the following secret-key generation process. Moreover, as Eve’s
location is assumed to be different from Alice’s and Bob’s, the
transmitted signals experience different transmission conditions,
resulting in channel observations hAE and hBE at Eve that are
independent of hAB and hBA.

In a first phase, Alice and Bob send training signals that allow
each terminal to estimate its channel h̃AB and h̃BA. If the train-
ing symbols are sent within the channel coherence time T , Alice
and Bob are able to obtain correlated versions of the common
channel gain. This allows both terminals to use the same pro-
tocol: They can agree on a secret key by using the correlated
versions of the common channel gain and by using the pub-
lic channel for exchanging information based on Slepian–Wolf

coding. Then a secret key of rate

RK =
1

T
I (h̃AB ; h̃BA) =

1

2T
log
(

1 +
σ4
1P

2T 2

4(σ4 + σ2σ2
1PT )

)
[8]

can be generated. The expression [8] reveals that the secret-key
rate depends on the transmit power P as well as the coherence
time T of the channel. As expected, with increasing power P
the secret-key rate increases as well. However, with increasing
coherence time T the secret-key rate decreases and approaches
zero. Thus, from a secrecy perspective, a rapidly varying channel
is beneficial whereas a slowly varying channel or a channel that is
almost constant results in a low key rate.

Conclusion
In this paper, we have reviewed recent research in the field
of wireless physical layer security, which exploits the physical
properties of radio channels, notably diffusion and superposi-
tion, to provide security in wireless data transmission. By using
an information theoretic formalism, we have seen that, in all of
the principal channel models of wireless networking, the physi-
cal layer can in principle support reliable data transmission with
perfect secrecy under realistic conditions. Note that a common
theme of these results is a reliance on accurate channel modeling.
Although this is a common approach in the design and analysis
of communication systems, it nevertheless means that robustness
to the model used is a factor that needs to be considered in prac-
tice. We have discussed this issue in the context of channel state
information, but it is in general an important issue for further
research.

Although we have focused here primarily on the fundamen-
tal issue of secrecy capacity, practical issues such as code design
(50), authentication (51), and medium access control (52) have
been considered in this context as well. Moreover, these basic
ideas have been applied in other settings, such as optical com-
munication (53, 54) and situations with adversarial attacks (25),
and in other application areas, such as biometric identification
systems (55, 56) and smart electricity grids (57).
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16. Bjelaković I, Boche H, Sommerfeld J (2013) Secrecy results for compound wiretap
channels. Probl Inf Transm 49:73–98.

17. Bellaire M, Tessaro S, Vardy A (2012) A cryptographic treatment of the wiretap chan-
nel. Proceedings of Advances in Cryptology (CRYPTO), eds Safavi-Naini R, Canetti R
(Springer, Berlin), pp 1–31.

18. Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans
Inf Theory 24:339–348.

19. Massey JL (1983) A simplified treatment of Wyner’s wire-tap channel. Proceedings
of the 21st Allerton Conference on Communication, Control and Computing (IEEE,
Piscataway, NJ), pp 268–276.

20. Leung-Yan-Cheong SK, Hellman ME (1978) The Gaussian wire-tap channel. IEEE Trans
Inf Theory 24:451–456.

21. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas I: The
MISOME wiretap channel/Part II: The MIMOME wiretap channel. IEEE Trans Inf Theory
56:5515–5532.

22. Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE
Trans Inf Theory 57:4961–4972.

23. Bustin R, Liu R, Poor HV, Shamai(Shitz) S (2009) An MMSE approach to the secrecy
capacity of the MIMO Gaussian wiretap channel. EURASIP J Wirel Commun Netw
2009:370970.

24. Loyka S, Charalambous CD (2013) Further results on optimal signaling over secure
MIMO channels. Proceedings of the IEEE International Symposium on Information
Theory (IEEE, Piscataway, NJ), pp 2019–2023.

25. Schaefer RF, Boche H, Poor HV (2015) Secure communication under channel uncer-
tainty and adversarial attacks. Proc IEEE 103:1796–1813.

Poor and Schaefer PNAS | January 3, 2017 | vol. 114 | no. 1 | 25

http://dx.doi.org/{}


26. Liang Y, Kramer G, Poor HV, Shamai (Shitz) S (2009) Compound wiretap channels.
EURASIP J Wirel Commun Netw 2009:142374.

27. Schaefer RF, Loyka S (2015) The secrecy capacity of compound MIMO Gaussian chan-
nels. IEEE Trans Inf Theory 61:5535–5552.

28. Liang Y, Poor HV, Shamai(Shitz) S (2008) Secure communication over fading channels.
IEEE Trans Inf Theory 54:2470–2492.

29. Gopala PK, Lai L, El Gamal H (2008) On the secrecy capacity of fading channels. IEEE
Trans Inf Theory 54:4687–4698.

30. Khisti A, Tchamkerten A, Wornell GW (2008) Secure broadcasting over fading chan-
nels. IEEE Trans Inf Theory 54:2453–2469.

31. Zou S, Liang Y, Lai L, Poor HV, Shamai (Shitz) S (2015) Broadcast networks with layered
decoding and layered secrecy: Theory and applications. Proc IEEE 10:1841–1856.

32. Ly HD, Liu T, Liang Y (2010) Multiple-input multiple-output Gaussian broadcast chan-
nels with common and confidential messages. IEEE Trans Inf Theory 56:5477–5487.

33. Schaefer RF, Boche H (2014) Robust broadcasting of common and confidential mes-
sages over compound channels: Strong secrecy and decoding performance. IEEE Trans
Inf Forensics Secur 9:1720–1732.

34. Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE
Trans Inf Theory 54:972–1002.

35. Tang X, Liu R, Spasojevic P, Poor HV (2007) Multiple access channels with general-
ized feedback and confidential messages. Proceedings of the IEEE Information Theory
Workshop (IEEE, Piscataway, NJ), pp 608–613.

36. Tekin E, Yener A (2008) The Gaussian multiple access wire-tap channel. IEEE Trans Inf
Theory 54:5747–5755.

37. Koyluoglu OO, El Gamal H, Lai L, Poor HV (2011) Interference alignment for secrecy.
IEEE Trans Inf Theory 57:3323–3332.

38. Liu R, Maric I, Spasojevic P, Yates R (2008) Discrete memoryless interference and broad-
cast channels with confidential messages: Secrecy rate regions. IEEE Trans Inf Theory
54:2493–2507.

39. Liang Y, Somekh-Baruch A, Poor HV, Shamai (Shitz) S, Verdú S (2009) Capacity of
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