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Abstract We investigate classifiers in the sample compression framework that can be spec-
ified by two distinct sources of information: a compression set and a message string of addi-
tional information. In the compression setting, a reconstruction function specifies a classifier
when given this information. We examine how an efficient redistribution of this reconstruc-
tion information can lead to more general classifiers. In particular, we derive risk bounds
that can provide an explicit control over the sparsity of the classifier and the magnitude of
its separating margin and a capability to perform a margin-sparsity trade-off in favor of
better classifiers. We show how an application to the set covering machine algorithm re-
sults in novel learning strategies. We also show that these risk bounds are tighter than their
traditional counterparts such as VC-dimension and Rademacher complexity-based bounds
that explicitly take into account the hypothesis class complexity. Finally, we show how these
bounds are able to guide the model selection for the set covering machine algorithm enabling
it to learn by bound minimization.
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1 Introduction

The sample compression framework (Littlestone and Warmuth 1986; Floyd and Warmuth
1995) has recently been revived and showed significant promise in offering generalization
risk bounds for algorithms, that are both tight and usable in practice. The main advantage of
these risk bounds is that they do not explicitly depend on some hypothesis class complex-
ity measure (such as VC dimension) when applied to a data-independent hypothesis class.!
Another important advantage of sample-compression bounds is that they can be applied to
data-dependent hypothesis classes. The explicit complexity considerations can be viewed
as a limiting factor in other frameworks such as those based on Vapnik-Chervonenkis the-
ory or Rademacher complexities. The hypothesis class complexity dependence in the risk
bounds generally make them tight in asymptotic limits rendering them unusable for guid-
ing a learning algorithm. Another limitation appears in the form of a lack of control over
the quantities that affect the risk bound in explicit terms. Compression bounds on the other
hand have a significant advantage in terms of the independence from the explicit inclusion
of hypothesis class complexity measure in risk consideration. In this work, we see how we
can obtain bounds that enable the user to devise learning strategies that can take advantage
of and optimize the quantities affecting the generalization error of the classifier.

Learning algorithms try to produce classifiers with small prediction error by trying to
optimize some function that can be computed from a training set of examples and some
properties of a classifier. We currently do not know exactly what function should be opti-
mized but several forms have been proposed. At one end of the spectrum, we have the set
covering machine (SCM) (Marchand and Shawe-Taylor 2001, 2002), that tries to find the
sparsest classifier making few training errors. At the other end, we have the support vector
machine (SVM) (Boser et al. 1992), that tries to find the maximum soft-margin separating
hyperplane on the training data. Both of these learning machines can produce classifiers
having good generalization. The obvious question that arises is: Is it worthwhile to investi-
gate if classifiers with improved generalization could be found by learning algorithms that
try to optimize a non-trivial function that depends on both the sparsity of a classifier and the
magnitude of its separating margin?

In this work, we investigate this possibility in the compression framework to a generic
extent and in particular with regard to the set covering machine learning setting with data-
dependent balls. Sample compression algorithms are characterized by the existence of: (i) a
compression function that, when given a training set, outputs a small subset of training
examples and some additional information that characterize the classifier; and (ii) a recon-
struction function that can reconstruct the classifier using this subset and the additional in-
formation.

In essence, the (reconstructed) classifier uses two complementary sources of informa-
tion viz. the compression set (the subset of examples output by the compression function)
and the message string (the additional information needed to obtain a classifier). The main
objective of this work is to examine if an efficient distribution of classifier reconstruction
information can be done between these two sources to achieve better classification perfor-
mance. More importantly, we would like to know if it is possible to achieve an explicit

IBut, if the learning algorithm uses a data-independent hypothesis class, the VC dimension may well affect
the size of the compression set. The compression set size and the VC dimension can be closely related.
Warmuth (2003) in fact conjectures that for any hypothesis class of VC dimension d, there exist a compression
scheme of size at most d (also see Kuzmin and Warmuth 2007; Rubinstein and Rubinstein 2008 for some
recent results on specific cases).
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control over trading-off the information dispensed between the above two sources in favor
of better generalization.

We first consider a generic risk bound in the compression framework and derive a form
that shows explicit dependence in terms of a prior distribution on the compression set and the
associated messages. We then go on to investigate if the information can be more efficiently
dispensed between these two quantities.

Our first approach is an information theoretic approach inspired by the PAC-MDL ap-
proach of Blum and Langford (2003) who have derived a PAC-MDL risk bound for clas-
sifiers that unifies most of the standard risk bounds in one common framework. This PAC-
MDL bound is stated in a non-standard “transductive” setting where, given a training set of
m labeled examples, the goal of the learner is to construct a small message string that can be
used by a receiver to predict the labels of an unlabeled set of m + n examples that contains
the m training examples (without their labels). Consequently, one important drawback of the
PAC-MDL bound is that it does not capture the sample-compression bound (Littlestone and
Warmuth 1986) very well. Indeed, in the PAC-MDL transductive setting, the learner has to
build a message string that specifies a compression subset among m + n examples whereas,
in the usual “inductive” setting,” the learner just needs to specify the compression subset
among m training examples. Because of this, the PAC-MDL bound is usually substantially
larger than the sample-compression bound.

In Sect. 2 of this paper, we therefore propose a generic data-compression risk bound that,
although less universal than the PAC-MDL bound, unifies the Occam’s razor bound (Blumer
et al. 1987) and the sample-compression bound in the usual inductive setting. This bound,
as we will see, is a tighter version of the sample-compression bound of Littlestone and War-
muth (1986). The bound reduces to the tightest version of the Occam’s razor bound (Lang-
ford 2005) when no compression set is used and also reduces to the tightest version of the
sample-compression bound when no message string of additional information is used. We
illustrate, on the set covering machine (SCM) (Marchand and Shawe-Taylor 2002), how the
learner can tradeoff these two complementary sources of information (the compression set
and the message string) to obtain classifiers having a smaller risk.

Our second approach is a PAC-Bayes approach. The PAC-Bayes theorem was first pro-
posed by McAllester (2003) and then improved by others (see Langford 2005 for a survey).
However, for all these versions of the PAC-Bayes theorem, the prior P must be defined
without reference to the training data. Consequently, these theorems cannot be applied to
the sample-compression setting where classifiers are partly described by a subset of the
training data (as for the case of the SCM). We draw motivation from the work of Laviolette
and Marchand (2007) who have now generalized the PAC-Bayes approach to the sample-
compression setting. It should be noted that, in this work, we adopt the PAC-Bayes approach
only for the message portion (for a given fixed compression set) and derive a bound that is
valid uniformly for all compression subsets. Consequently, the bound derivation presented
here is simpler and more specialized than the one presented in Laviolette and Marchand
(2007). Howeyver, the latter bound is valid for the more general case of a stochastic average
over several compression subsets.

We then go on to show how these two approaches yield new learning strategies for the
SCM algorithm. This is an extension of the works in Laviolette et al. (2005, 2006), Shah
(2006). Basically, in order to incorporate the notion of margin, we use two approaches. The
first one is an information theoretic approach that uses a bit string to code for the separating

21n this setting, the task of the learner is to find a classifier with the smallest true risk.
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margin. The second approach aims at obtaining an actual margin interval around the decision
surface of the classifier.

1.1 Organization

In Sect. 2, we derive the generic compression risk bound that shows explicit dependence
on the compression set and a message string of additional information. For completeness,
Sect. 3 gives a brief overview of the set covering machine algorithm. Then in Sect. 4, we first
show how we can recover the compression bound of the original SCM formulation and then
go on to show how we can redistribute the reconstruction information efficiently resulting
in a bound that can perform a non-trivial margin-sparsity trade-off. Section 5 then gives a
learning strategy inspired by the new bound derived in the previous section. The PAC-Bayes
bound is then derived in Sect. 6 for which a soft-greedy learning algorithm is proposed in
Sect. 7.

An empirical analysis of the performance of various approaches and their comparison
with the SVM appear in Sect. 8 where we also investigate if the risk bounds by themselves
can guide the learning process. Section 9 then places the findings in context and provides an
unified view of this work. Finally, we conclude in Sect. 10.

2 A generic data compression risk bound

In this section, we give a tight data-compression risk bound on the generalization error
of a sample compressed classifier. The bound takes into account, along with the empirical
performance of the classifier, the compression achieved by the classifier and the additional
information required for reconstruction in the form of associated messages. In essence, the
classifier, as mentioned above, is signified by two sources of information: the compression
set and the message string. Dispensing the information content between these two quantities
efficiently will enable us to obtain better trade-off capabilities between the sparsity of a
classifier and the magnitude of its separating margin as we will see later.

Let z be a random tuple representing an example-label pair, i.e. z = (x, y) such that
x € X and y € ). We consider classification problems where the input space X’ consist of
an arbitrary subset of R” and the output space ) = {0, 1}. Further, we adopt the PAC setting
where each example z is drawn according to a fixed, but unknown, probability distribution
D on X x Y. The (true) risk R(f) of any classifier f is defined as the probability that it
misclassifies an example drawn according to D:

def

RHE P (f0#N= E 1(f0#)

where I (a) = 1 if predicate a is true and 0 otherwise. Given a training set S = (zy, ..., Z,)
of m examples, the empirical risk Rs(f) on S, of any classifier f, is defined according to:

of 1 m of
Rs(NE=D I #ME B I(fX#Y)
m x,)~S

i=l1

Let Z denote the collection of m random variables {Z,, Z,, ..., Z,,} whose instantia-
tions gives the training set S =z" ={z,,...,2,}.

We are interested in learning algorithms that have the following property. Given a training
set S ={zy,...,2,} of m samples, the classifier A(S) returned by algorithm A is described
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entirely by two complementary sources of information: a subset z; of S, called the com-
pression set, and a message string o which represents the additional information needed to
obtain a classifier from the compression set z;.

Given a training sample S = {z,, ..., z,}, we define the compression set z; by a vector
of indices i:

idéf(il,iz,---,ﬂn) @
with i;e{l,...,m} Vj @
and il <i2<"'<i\i\ (3)

where |i| denotes the number of indices present in i. In addition to the notation used so far,
we will use i to denote the set of indices not present in i. Hence, we have S = z; U z; for any
vector i € Z where Z denotes the set of the 2" possible realizations of i.

When given an arbitrary compression set z; and an arbitrary information message o,
the reconstruction function R must output a classifier that we will denote by R (o, ;). The
information message o is chosen from the set M(z;). This set M(z;) consists of all the
distinct messages that can be attached to the compression set z;. Further, M(z;) must be
defined a priori (before observing §) for all possible compression sets z;. We denote by Mg
the union of all such sets of messages:

Ms S| JM@)

ieZ

This should be contrasted with both the pure sample compression setting where the clas-
sifier can be reconstructed solely from the compression set and the usual data-independent
settings where the classifier space is defined without reference to the training data. The per-
ceptron learning rule and the SVM are examples of learning algorithms where the final clas-
sifier can be reconstructed solely from a compression set (Graepel et al. 2000, 2001, 2005).
Indeed, in the case of the perceptron learning rule, the compression set consists of the train-
ing examples on which the perceptron rule updates its weights while learning. In the case of
the SVM, the compression set consists of all the support vectors identified by the learning
algorithm. In both the cases the learning algorithms themselves acts as the reconstruction
functions when applied to the respective compression sets. No additional information is
required when the classifiers are reconstructed in this manner.

On the other hand, the usual data-independent setting specifies, for learning algorithms,
the space of classifiers { without reference to the training data. We can recover this usual
setting when each classifier is identified only by a message o taken from M (z;) for z; = ¢.
In this case the reconstructed classifier is of the form R (o, #). Hence, in this limit, we have
a data-independent set 7 of classifiers given by the reconstruction function R and the set of
messages M such that

H={R(0,?)|oc € M}

The reconstruction function for SCMs needs both a compression set and a message string.
We define priors over Z x Mg for any possible S € D™. Moreover, for any given S, we will
consider only the priors Ps that can be factored as

Ps(i,0) = Pz (1) Prcy) (0)

where Pz(i) is the prior probability of using the vector i of indices as defined above and
where Py (0) is the prior probability of using the message string o given that we use the
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compression set z;. The message string o can also be a parameter® chosen from a continuous
set M(z;). In this case, Puq;) (o) would specify a probability density function.

Later, we will see how the learner can tradeoff the compression set size with the length of
the message strings to obtain a classifier with a smaller risk bound and, hopefully, a smaller
true risk.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly
for all compression sets and message strings. To obtain the tightest possible risk bound, we
fully exploit the fact that the distribution of classification errors is a binomial. The binomial
tail Bin(k, m, r) associated with a classifier of (true) risk r is defined as the probability that
this classifier makes at most k errors on a test set of m examples:

k
Bin(k, m, r) def Z (’?)ri(] —pymi

i=0

Followin_g (Blum and Langford 2003; Langford 2005), we now define the binomial tail
inversion Bin(k, m, §) as the largest risk value that a classifier can have while still having a
probability of at least § of observing at most k errors out of m examples:

Bin(k, m, §) = sup{r : Bin(k, m, r) > 8}

From this definition, it follows that Bin(m Rs( f),m,8) is the smallest upper bound,
which holds with probability at least 1 — §, on the true risk of any classifier f with an
observed empirical risk Rg(f) on a test set of m examples:

Pz {R(f) <Bin(mRzn(f),m,8)}=1-8 Vf “

where we denote Prynpm (.) by Pz (.).

The bound Bin(m Rs(f), m, 8) does not hold simultaneously (i.e., uniformly) for all clas-
sifiers f member of some predefined class F. As a result the quantifier V f appears outside
the probability Pz« {-}. In contrast, the proposed risk bound of Theorem 1 holds uniformly
for all compression sets and message strings. The above bound is sometimes called a test
set upper bound, since it can be used with a test set to give an upper bound for any fixed
classifier (Langford 2005).

The proposed risk bound (Theorem 1) is a generalization of the sample-compression
risk bound of Langford (2005) to the case where part of the data-compression informa-
tion is given by the message string. It also has the property to reduce to the Occam’s Ra-
zor bound when the sample compression set vanishes. The idea of using a message string
as an additional source of information was also used in (Littlestone and Warmuth 1986;
Ben-David and Litman 1998) to obtain a sample-compression bound looser than the bound
presented here.

Moreover, the proposed bound applies to any compression set-dependent distribution of
messages Py, satisfying:

Y Pum@) <1 Vg Q)

oeM(zy)

3In the present case of SCM, this would correspond to the radii values for the data-dependent balls as we will
see later.
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and any prior distribution Pz of vectors of indices satisfying:

> P <1 (6)

i€z

Theorem 1 For any reconstruction function R that maps arbitrary subsets of a training
set and message strings to classifiers, for any prior distribution Pr on the set of vectors
of indices, for any compression set-dependent distribution of messages Py, and for any
§ € (0, 1], we have:

Py {Vie T Yo € M(Z): R(R(0.Zy))
< Bin((m — i) Rz (R(0, Z0)), (m — i), Pr(®) Prap(0)8)} = 1 =8

where, for any training set 7", Rzi,( f) denotes the empirical risk of classifier f on the
examples of " that do not belong to the compression set z;.

Proof Consider:

P'EPy{3ieT: 30 e M(Z): R(R(o, Zs))
> Bin((m — [i)) Rz, (R(0, Zi)), m — il), Pz (i) Prtz(9)8) }

To prove the theorem, we show that P’ < §. Since Pz (-) = EziPZi—\zi(')a and since the ex-
amples are supposed i.i.d., (4) applies when we replace Z™ and m by zj|z; and m — |i|
respectively. This, together with the union bound, and (5) and (6) imply that we have:

P'<) Ez Y Priy{R(R(0,Z)

ieZ oceM(Zy)

> Bin((m — [il) Rz,(R(0, Z4)), (m — |il), Pz (i) Ppsgay) (0)8) }

<> Ez Y Pr)Puuy(0)s

ez ceM(Zy)

<34 O

The proof of Theorem 1 contains three inequalities. The last two inequalities come from
(4), (5), and (6) and cannot be improved. The first inequality comes from the application of
the union bound for all the possible choices of a compression subset of the training set and
for all possible choices of message strings given a compression set.

It is important to note that, once Pz and P, are specified, the risk bound of Theorem 1
for classifier R(o, z;) depends on its empirical risk and on the product Pz (i) Ppy;)(0).
However, ln(m) is just the amount of information needed to specify a classifier
R(o, z;) once we are gliven a training set and the priors Pz and P . The In(1/ Pz (i)) term
is the information content of the vector of indices i that specifies the compression set and
the In(1/Ppq() (o)) term is the information content of the message string o given z;. Con-
sequently the bound of Theorem 1 specifies quantitatively how much training error learning
algorithms should trade-off with the amount of information needed to specify a classifier by
iando.

Any bound expressed in terms of the binomial tail inversion can be turned into a more
conventional and looser bound by inverting a standard approximation of the binomial tail
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such as those obtained from the inequalities of Chernoff and Hoeffding. Here, we make
use of the following approximations (proof provided in Appendix A) for the binomial tail
inversion:

Lemma 1 For any integer m > 1 and k € {0, ..., m}, we have:
1 “U (™) 4 in( 2

exp — n ‘ n 3

(™) 1 %)
m—k k 8

Therefore, these approximations enable us to rewrite the bound of Theorem 1 into the
following looser (but somewhat clearer and more conventional) form:

Bin(k, m, 8)

IA

Corollary 1 For any reconstruction function R that maps arbitrary subsets of a training
set and message strings to classifiers, for any prior distribution Pz of vectors of indices, for
any compression set-dependent distribution of messages Ppq,), and for any § € (0, 1], we
have:

sz {Vi S I, Vo € M(Zl) R(R(Gv Zl))

RIS NS PV I,
m—d—k k Pz (i) Ppy()(0)d

and, consequently:

sz {Vi (S I, Vo € M(Zl) . R(R(05 Zl))

1 m—d 1
Sm—d—k[h‘< k )““(Pza)PM(zi)(a)a)“21_5 ®

def o\ . . . . def
where d = |i| is the sample compression set size of classifier R(o,Z;) and k =

|i|Rzi,(R(a, 7)) is the number of training errors that this classifier makes on the examples
that are not in the compression set.

It is now quite clear from Corollary 1 that the risk bound of classifier R (o, Z;) is small
when its compression set size d and its number k of training errors are both much smaller
than the number m of training examples and when o is short. These are uniform bounds over
a set of data-dependent classifiers defined by the reconstruction function R. In contrast, VC
bounds (Vapnik 1998) and Rademacher bounds (Mendelson 2002) are uniform bounds over
a set of functions defined without reference to the training data. Hence, these latter bounds
do not apply naturally to our case.

The bound of (8) is very similar to, and slightly tighter than, the recent bound of Marc-
hand and Sokolova (2005) owing to the more efficient treatment of errors by the binomial
tail inversion.

The looser bound of (9) is similar to the bounds of Littlestone and Warmuth (1986) and
Floyd and Warmuth (1995) when the set M of all possible messages is independent of the
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compression set z; and when we choose:

Prap(o) =1/IM| Yo eM (10)
m\ ! 1
Pr() = <|i|> m+1)"" VieZ (1)

But other choices that give better bounds are clearly possible. For example, in the following
sections we will use:

-1
Pr(i) = (ﬁ) ¢(Jif)  with C(a)déf%(aﬂ)’2 VaeN 12)

which satisfies the constraint of (6) since Zf’il i~2 = 72 /6. This choice for P; has the
advantage that the risk bounds do not deteriorate too rapidly when |i| increases.

3 The set covering machine

The SCM algorithm was motivated originally by the idea of learning a conjunction (or
disjunction) of literals via the standard monomial learning algorithm proposed by Valiant
(1984). Haussler (1988) showed that this problem could be reduced to the minimum
set cover problem which, although NP-hard, has a good worst-case upper bound for the
greedy heuristic (Chvatal 1979). Motivated by this observation Marchand and Shawe-
Taylor (2001, 2002) generalized this algorithm for learning conjunctions (or disjunctions) of
data-dependent Boolean attributes to the case of learning these functions over arbitrary sets
of Boolean valued features, i.e. features constructed from data. Also, the algorithm provides
some learning parameters to control the tradeoff between the accuracy and the size of the
conjunction (or disjunction) so as to deal with the problems of noisy data and overfitting.

Let the training set S = P U N consists of a set P of positive training examples and a
set N of negative training examples. A feature is defined as an arbitrary Boolean-valued
function that maps X onto {0, 1}.

Let F = {hi}y:l be any set of features ;. The learning algorithm when given any such
set / returns a small subset 7 C f of features. Given this subset F and an arbitrary input
vector x € X, the output f(x) of the SCM is defined to be:

F) = V,erhi(x) for a disjunction
Nicrhi(x) for a conjunction
where £;(x) € {0, 1} denotes the output of feature /; on x.
We will use the usual definition for consistency:

Definition 1 A function (or a feature) is said to be consistent with an example if it correctly
classifies that example. Similarly, a function (or a feature) is said to be consistent with a set
of examples if it correctly classifies all the examples in that set.

Here, we will focus on conjunction case since the case of disjunction is completely anal-
ogous. From the above definition, it follows that f is consistent with P iff each h; € F is
consistent with P. Moreover, if Q; denotes the subset of examples of A/ on which feature
h; makes no errors, then f makes no error on A if and only if | ;.- Qi = N. Hence, as
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was first observed by Haussler (1988), the problem of finding the smallest set F for which
f makes no training errors is just the problem of finding the smallest collection of Q;s that
cover all N (where each corresponding /; makes no error on P). This is the well-known
minimum set cover problem (Garey and Johnson 1979). The interesting fact is that, although
itis N P-hard to find the smallest cover, the sef covering greedy algorithm will always find a
cover of size at most z In(JV'|) when the smallest cover that exists is of size z (Chvatal 1979;
Kearns and Vazirani 1994). Moreover this algorithm is very simple to implement and just
consists of the following steps: first choose the set Q; which covers the largest number of
elements in N, remove from A and each Q; the elements that are in Q;, then repeat this
process of finding the set Oy of largest cardinality and updating A and each Q; until there
are no more elements in A.

The SCM built on the features found by the set covering greedy algorithm will be con-
sistent with S only when there exists a subset £ C [ of features whose conjunction (or a
disjunction) is consistent with S. However, this constraint is not really required in practice
since we do want to permit the user of a learning algorithm to control the trade-off between
the accuracy achieved on the training data and the complexity (here the size) of the classifier.
Indeed, a small SCM which makes a few errors on the training set might give better general-
ization than a larger SCM (with more features) which makes zero training errors. One way
to include this flexibility into the SCM is to stop the set covering greedy algorithm when a
maximum number v of features is reached. In this case, the SCM will contain fewer features
and will make errors on those training examples that are not covered. But these examples
all belong to NV and, in general, we do need to be able to make errors on training examples
of both classes. Hence, early stopping is generally not sufficient and, in addition, we need
to consider features that also make some errors with P provided that many more examples
in NV can be covered. Hence, for a feature A, let us denote by Q) the set of examples in
N covered by feature & and by R, the set of examples in P on which % makes an error.
Given that each example in P misclassified by / should decrease by some fixed penalty p
its “importance”, the usefulness U, of feature h is defined by the following equation:

Uy E 104l — p- IR (13)

Hence, the set covering greedy algorithm is modified in the following way. Instead of
using the feature that covers the largest number of examples in A/, the feature & € F that
has the highest usefulness value U, is used. We remove from N and each Q, (for g # h)
the elements that are in Q) and we remove from each R, (for g # h) the elements that are
in R;. Note that we update each such set R, because a feature g that makes an error on
an example in P does not increase the error of the machine if another feature 4 is already
making an error on that example. We repeat this process of finding the feature / of largest
usefulness U, and updating N, and each Q, and R,, until only an € fraction of elements
remain in A/ (early stopping the greedy).

3.1 Data-dependent balls

Marchand and Shawe-Taylor (2001, 2002) gave an implementation of the SCM algorithm
with a set of features they called data-dependent balls and proposed a risk bound for SCM
with this set of features. We will use this set of features for our case too. In this case of data-
dependent balls, each feature is identified by a training example, called a center (X., y.),
and a radius p. Given any metric d, the output 4(X) on any input example x of such a feature
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is given by:

_)ye ifdx.x) <p
h() = { -y, otherwise

where —y, is the boolean complement of y,.

Marchand and Shawe-Taylor (2002) have proposed to use another training example x;,
called a border point, to code for the radius so that p = d(X., X;). Moreover, only the posi-
tive examples are used to denote a border point although both a negative as well as a positive
example can be a potential ball center. This is done to ensure the consistency of each feature
in the conjunction to the set of positive examples in the compression set so as to optimize the
use if messages (since we do not need additional information for border points that are neg-
ative examples).* A data-dependent ball centered at x.. has its radius defined as d (x., X;) — €
when x, is a negative example and as d(X., X;) + € when X, is a positive example, and where
€ is a arbitrarily small positive real number.

In the next section, we show how we can apply the risk bounds of Theorem 1 and Corol-
lary 1 to derive the risk bounds for the SCM with data-dependent balls. First, we will show
how we can recover the original sample compression bound (though tighter in our case) for
the SCM by incorporating most of the classifier reconstruction information in the compres-
sion set. Then, we will go on to describe how an efficient redistribution of the reconstruction
information between the compression set and the corresponding message distribution can
lead to classifiers that offer explicit control over trading-off magnitude of the separating
margin and the sparsity.

For this task, we will provide choices for the distribution of messages Pj,(;) which are
more appropriate than the simplest choice given by (10). Indeed, we feel that it is important
to allow the set of messages to depend on the sample compression z; since it is conceivable
that for some z;, very little extra information may be needed to identify the classifier whereas
for some other z;, more information may be needed. Without such a dependency on z;, the
set of possible messages M would be unnecessarily large and would loosen the risk bound.
But, more importantly, the risk bound would not depend on the particular message o used.
However, we feel that it is important for learning algorithms to be able to trade-off the
complexity (or information content) of i with the complexity of o. Hence, a good risk bound
should somehow indicate what the proper trade-off should be.

4 Adapting the generic risk bound
4.1 Recovering the compression bound for SCM

Let us now see how, incorporating most of the classifier information in the compression set
leads to a (relatively) pure compression bound. We will basically recover (a tighter version
of) the compression bound for the set covering machine.

Consider the formulation of the set covering machine with data-dependent balls de-
scribed in Sect. 3.1. In order to understand the distribution of messages that we need to
specify for this case, let us start with the reconstruction function in the case of the classical
SCM. For this case, we can define the reconstruction function R(z;, o) as follows (Marc-
hand and Shawe-Taylor 2002). Given any arbitrary compression set z; = ziC ru zic” U ziB ’

4In an analogous manner, in the case of disjunction, we require that each feature be consistent with the
negative examples in the compression set.
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c . o .
where z,” and ZiC " denote the subsets containing the positive and negative center examples

. B . c
respectively and z; ” denotes the set of positive border examples. Then, for each x; € z,”, R

creates a ball centered at x; with radius p = maxjezc,, U d(x;,X;) + €. Similarly, R creates
i i

a ball centered at each x; € zic " with radius p = minjezc,, U d(x;,X;) — €. Finally, R builds
i i
a conjunction of these features. Note therefore that the message o given to R only has to
. . . By . .
give the necessary information to reconstruct the set z; ”. In other words, o simply points
. Cp .
out which elements of z;” are used at least once as border points.
c B . .

Let n(z;) = |zic "l 'and p(z;) = |z;”| + |z;”| be, respectively, the number of negative and
the number of positive examples in compression set z;. Let b(o) be the number of border
point examples specified in message o and let ¢(a) be the same as defined in (12). We
then need a message to identify the border points from among the set of positive examples
in compression set. Since, we do not have any a priori knowledge about which positive
examples in the compression set are border points, we assign equal probability to all possible
subsets of size b(c) in p(z;). Hence, we establish the following message distribution in
terms of the border examples to code radii:

N
Pz (@) = £(b(0)) - (‘Zg)) ) (14)

since, in that case, we have for any compression set z;:

p(z;) —1
(z1)
Y Puw@)=Y ) Y (Z(i)) <1

oeM(z;) b=0 o:b(o)=b

With this distribution P, we obtain the following sample compression risk bound.

Corollary 2 Let R be the reconstruction function for the SCM as described above. For any
prior distribution Pz of vectors of indices, for any compression set-dependent distribution
of messages P, and for any 6 € (0, 11, we have:

sz {Vi € I, Yo € M(Zl) . R(R(G, Zl))

< ﬁ((m — [iD Rz, (R(@, Z2)), m — i, M)} 15

m p()
(\i|) ’ (b(a))
where, for any training set 7", R, ( f) denotes the empirical risk of classifier f on the
examples of 7" that do not belong to the compression set 7;, p(z;) denotes the number of

positive examples in z; and b(o') denote the number of positive examples that are the border
points.

Note that the risk bound of Corollary 2 is tighter than the one provided by Marchand
and Shawe-Taylor (2002) owing to the more efficient treatment of the training errors by the
virtue of the binomial tail inversion.

4.2 Margins in terms of message distribution

Let us now see how we can distribute the classifier reconstruction information more effi-
ciently between the compression set and the message string so as to get not only tighter
guarantees but also a capability to perform a non-trivial margin-sparsity trade-off.
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Consider an alternate scheme to encode the radii values based on utilizing a bit string. The
idea is to use a message string having the fewest number of bits, much like an Occam’s Razor
framework. In this case, no border points are used and the compression set only consists of
ball centers. Consequently, the risk bounds of Theorem 1 and Corollary 1 will be smaller
for classifiers described by this method provided that we can find a message strings that can
code each radius value efficiently, i.e., using only a few bits. We expect that this will be the
case whenever there exists a large interval [ry, ;] (i.e., a margin) of radius values such that
no training examples are present between the two concentric spheres, centered on x,, with
radius r and r,. The best radius value in that case will be the one that has the shortest code.
A similar idea was applied by von Luxburg et al. (2004) for coding the maximum-margin
hyperplane solution for support vector machines.

Hence, the problem is reduced to one of coding a radius value r € [r, ;] C [0, R] where
R is some predefined value that cannot be exceeded and where [r|, ;] is an interval of
“equally good” radius values.® We propose the following diadic coding scheme for the iden-
tification of a radius value that belongs to that interval. Let / be the number of bits that we use
for the code. We adopt the convention that a code of / = 0 bits specifies the radius value R /2.
A code of / = 1 bit either specifies the value R /4 (when the bit is 0) or the value 3R /4 (when
the bitis 1). A code of [ = 2 specifies one of the following values: R/8,3R/8,5R/8,7R/8.
Hence, a code of [ bits specifies one value among the set A; of radius values:

d 2j—1 2
Al __ef { J R}
j=1

i+

Given an interval [r1, ;] C [0, R] of radius values, we take the smallest number [/ of bits
such that there exists a radius value in A; that falls in the interval [ry, r;]. In this way, we
will need at most |log,(R/(r, —r;))] bits to obtain a radius value that falls in [r;, r,].

Hence, to specify the radius for each center of a compression set, we need to specify the
number / of bits and a /-bit string s that identifies one of the radius values in A;. Therefore,
the message string o sent to the reconstruction function R, for a compression set z;, consists
of the set of pairs (/;,s;) of numbers needed to identify the radius of each center i € i.
The risk bound does not depend on how we actually code o (for some receiver). It only
depends on the a priori probabilities assigned to each possible realization of o. We choose
the following distribution:

def
Pz (@) = Pragzy (i sty -5 L i)

=[Jea 27" (15)

iei

where ¢ (I;) is given by (12).

Note that by giving equal a priori probability to each of the 2% strings s; of length I;,
we give no preference to any radius value in A; once we have chosen a scale R that we
believe is appropriate. The distribution ¢ that we have chosen for each string length /; has
the advantage of decreasing slowly so that the risk bound does not deteriorate further too
rapidly as /; increases. Other choices are clearly possible.

With the above choice for the message distribution, we deduce the following bound:

5By a “good” radius value, we mean a radius value for a ball that would cover many negative examples and
very few positive examples (see the learning algorithm).

@ Springer



188 Mach Learn (2010) 78: 175-201

Corollary 3 Let R be the reconstruction function for the new SCM as described above. For
any prior distribution Pz of vectors of indices, for any compression set-dependent distribu-
tion of messages Py, and for any 8 € (0, 1], we have:

Py {Vi € T.Yo € M(Zi): R(R(o.Z4))

< ﬁ((m — i) Rey (R(@, Z0)). (m — i), E((,Li)') (1’[;(&) ~2-’f>s>} > 15
Iil iei

where, for any training set 7", Rzi_( f) denotes the empirical risk of classifier f on the
examples of " that do not belong to the compression set z;.

By comparing the risk bounds of Corollaries 2 and 3 for the two possible choices we
have for coding each radius (either with an example or with a message string), we notice
that it should be preferable to code explicitly a radius value with a string whenever we use
a number / of bits less than log, m (roughly). Hence, this will be the case whenever there
exists an interval [ry, r,] of “good” radius values such that m  R/(r, — r1).

Let us emphasize that the risk bound of Corollary 3, provides a guide for choosing the
appropriate tradeoff between sparsity (the inverse of the size of the compression set) and
margin (represented here by the inverse of the expected length of the message string). In-
deed, the risk bound for an SCM with a decision surface having a large margin of separation
(small /;s) may be smaller than the risk bound of a sparser SCM having a smaller margin
(large [;s).

5 Learning in the premise of Corollary 3

In this section, we propose an alternate learning strategy for the SCM that can exploit the
capabilities of the bound of Corollary 3. We will also examine how good this bound is in
guiding the model selection process.

Ideally, we would like to find a conjunction of balls that minimizes the risk bound of
Corollary 3. Unfortunately, this cannot be done efficiently in all cases since this problem is
at least as hard as the (NP-hard) minimum set cover problem (Marchand and Shawe-Taylor
2002) as discussed before. Hence, we can make use of the set covering greedy heuristic of
Sect. 3. However, we need to adapt this heuristic to the new framework. We do this in the
following way.

We first modify the greedy heuristic by allowing a maximum number of bits /* that can
be used for coding the radius of each ball. Classifiers obtained with a small value of /*
will, on average, have a large separating margin. Moreover, for this new learning algorithm,
the distribution of messages given by (15) is defined for a fixed value of R (the “predefined
radius value that cannot be exceeded”). Hence, in this case, R should be chosen from the de-
finition of each input attribute without observing the data. Consequently, this will generally
force each ball of the classifier to use a large number of bits for its radius value; otherwise
the final classifier is likely to make numerous training errors. We have therefore used the
following scheme to choose R from the training data. We first choose a value R* from the
definition of each input attribute (without observing the data). This could be R* = \/n for
the case of n {0, 1}-valued attributes. Then, we consider ¢ equally-spaced values for R in
the interval (0, R*]. The message string o described in Sect. 4.2 is then just preceded by the
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index to one of these ¢ possible values. The value of R referred to by this index will then
be used for every ball of the classifier. For this extra part of the message, we have assigned
equal probability to each of the ¢ possible values for R. With this scheme, we only need to
multiply Pz, (o) of (15) by 1/t. Nevertheless, this introduces one more adjustable para-
meter in the learning algorithm: the value of R.S Therefore, p,I*, and R are the “learning
parameters”, in addition to the early stopping criterion v (denoting the maximum number of
features allowed) that our heuristic uses to generate a set of classifiers. At the end, we can
use the bound of Corollary 3 to select the best classifier. Another alternative is to determine
the best parameter values by cross-validation.

6 A PAC-Bayes risk bound

In the learning strategy for SCM motivated by Corollary 3, we achieved efficient control
over trading-off the magnitude of the separating margin and the sparsity of the classifier.
However, it did impose a scaling constraint. Consequently, the proposed algorithm for the
SCM suffered from the fact that the radius values, used in the final classifier, depends on an
a priori chosen distance scale R. In this section, we apply a PAC-Bayes approach to code the
messages given a fixed compression set in an attempt to alleviate the scaling constraint im-
posed earlier. We derive a PAC-Bayes risk bound that is valid uniformly for all compression
sets.

Recall that, given a training set S, the compression set z; C § is defined by a vector of

indices i & (i1, ..., i) that points to individual examples in S. For the case of a conjunction
of balls, each j € i points to a training example that is used for a ball center and the message
string o 1in this setting will be the vector p of radius values that are used for the balls. Hence,
given z; and p, the classifier (i.e. conjunction) is obtained from R(p, ).’

Recently, Laviolette and Marchand (2007) have extended the PAC-Bayes theorem to
the sample-compression setting. Their proposed PAC-Bayes risk bound depends on a data-
independent prior P and a data-dependent posterior Q that are both defined on Z x M
where Z denotes the set of the 2" possible index vectors i and M denotes, in our case, the
set of possible radius vectors p. The posterior Q is used by a stochastic classifier, called
the sample-compressed Gibbs classifier G o, defined as follows. Given a training set S and
given a new (testing) input example X, a sample-compressed Gibbs classifier Gy chooses
randomly (i, p) according to Q to obtain classifier R(p, z;) which is then used to determine
the class label of x.

Here, we focus on the case where, given any training set S, the learner returns a Gibbs
classifier defined with a posterior distribution Q having all its weight on a single vector i.
Hence, a single compression set z; will be used for the final classifier. However, the radius p;
for each i € i will be chosen stochastically according to the posterior Q. Hence we consider
posteriors Q such that Q(i’, p) = I (i =1) Q;(p) where i is the vector of indices chosen by
the learner. Hence, given a training set S, the true risk R(G g,) of Gy, and its empirical risk
Rs(G g,) are defined by

RGo) ¥ E RR(p.m):  Rs(Go)= E Ry(R(p.m)

6We have used 7 & 30 different values of R in our experiments.

7We assume that the examples in z; are ordered as in S so that the kth radius value in p is assigned to the kth
example in Sj.
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where i denotes the set of indices not present in i. Thus, ini=@andivi=(,...,m).

In contrast with the posterior Q, the prior P assigns a non zero weight to several vec-
tors i. Let Pz (i) denote the prior probability P assigned to vector i and let P;(p) denote the
probability density function associated with prior P given i. The risk bound depends on the
Kullback-Leibler divergence KL(Q|| P) between the posterior Q and the prior P which, in
our case, gives

~ _ Qi)
KL@ilP = F I )

For these classes of posteriors Q and priors P, the PAC-Bayes theorem of Laviolette and
Marchand (2007, Corollary 8) reduces to the following simpler version.

Theorem 2 (Laviolette and Marchand 2007) Given all our previous definitions, for any
prior P and for any § € (0, 1]

Pz (VQi KI(Rs(Go)IIR(G o) = -— i

m+1
KL(Qi [|P) +In 5 >1-36
where
1—
l—p

k1<q||p>¥q1n%+(1—q>1n

Jorq <p

To obtain a bound for R(G y;) we need to specify Qi(p), Pz(i), and P;(p).
Since all vectors i having the same size |i| are, a priori, equally “good”, we choose

1
Pr(i) = 5 p(liD)

(i)

for any p(-) such that ) /_; p(d) = 1. As we saw earlier, in Sect. 4.2, it is generally prefer-
able to choose, for p(d), a slowly decreasing function of d since the risk bound will deteri-
orate for large |i|.

For the specification of P;j(p), we assume that each radius value, in some predefined
interval® [0, R], is equally likely to be chosen for each p; such that i € i. That is, we consider,
for each p;, P(p;) = % if 0 < p < R and zero otherwise. Here R is some “large” distance
specified a priori. For Qj(p), a margin interval [a;, b;] € [0, R] of equally good radius
values is chosen by the learner for each i € i. Hence, we choose

I il o
Pi(P):{(l)_[ieiﬁ = (E) if0<p; <R,Vi€i

otherwise
and
0i(p) = Hieiﬁ ifa; < p; <b;,Vi €i
iP)=10 otherwise

Therefore, the Gibbs classifier returned by the learner will draw each radius p; uni-
formly in [a;, b;]. A deterministic classifier is then specified by fixing each radius values
pi € la;, b;]. Tt is tempting at this point to choose p; = (a; + b;)/2 Vi €1 (i.e., in the middle

8Note that this quantity is not the same as the scale in Sect. 4.2.
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of each interval). However, we will see shortly that the PAC-Bayes theorem offers a better
guarantee for another type of deterministic classifier.

Consequently, with these choices for Q;(p), Pz(i), and Pi(p), the KL divergence be-
tween Q; and P is given by

m 1 R
kel = <|i|) +1“<p<|i|>> i gh‘(b,- —a,->

Notice that the KL divergence is small for small values of |i| (whenever p(]i|) is not too
small) and for large margin values (b; — a;). Hence, the KL divergence term in Theorem 2
favors both sparsity (small [i|) and large margins. Hence, in practice, the minimum might
occur for some G g, that sacrifices sparsity whenever larger margins can be found.

Since the posterior Q is identified by i and by the intervals [a;, b;] Vi € i, we will now
refer to the Gibbs classifier G o, by G, where a and b are the vectors formed by the unions
of ;s and b;s respectively. To obtain a risk bound for G!,, we need to find a closed-form
expression for R S(G;b). For this task, let U[a, b] denote the uniform distribution over [a, b]
and let o/ ,(x) be the probability that a ball with center x; assigns to x the class label y;
when its radius p is drawn according to Ula, b]:

1 ifdx,x;) <a
i def —d(X,X; .
0} (%) = Propeyiap(hi,(x) =y) = 88X if g <d(x,x;) < b
0 ifdx,x;) >b

Therefore,

a(ﬁ'b(x) ify, =1

i def ) T /
Sa,b(x) - PrpwU[a.b](ht,p(X) - 1) - { 1— O}i,b(x) if Vi = 0

Now let G, (x) denote the probability that the conjunction of balls outputs 1 when each
pi € p are drawn according to Ula;, b;]. We then have

G =] &, ®

iei

Consequently, the risk Ry ,)(Gl;) on a single example (x, y) is given by Gi, (x) if y =0
and by 1 — G;b(x) otherwise. Therefore

R(x,y)(G;b) = y(l - G;b(x)) + - y)G;b(X) =(- 2y)(GLh(X) - y)

Hence, the empirical risk Rs(G',) of the Gibbs classifier G, is given by

Rs(Gly) = > (1 =2y)(Glyx) = ¥))

m — |i| —
jei

From this expression we see that R s(Gi,b) is small when G;b (x;) is close to y; Vj € i

Training points where G;b (x;) ~ 1/2 should therefore be avoided.

The PAC-Bayes theorem below provides a risk bound for the Gibbs classifier G;h. Since
the Bayes classifier B;b just performs a majority vote under the same posterior distribution as
the one used by G;h, we have that B;b (x) =1iff G;h (x) > 1/2. From the above definitions,
note that the decision surface of the Bayes classifier, given by G;b (x) = 1/2, differs from the
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decision surface of a deterministic classifier in which the boundary for each feature is fixed
at the center of each interval, i.e., p; = (a; + b;)/2 Vi € i. Let us denote such a deterministic
classifier by Cj,. In fact there does not exists any classifier Cj, that has the same decision
surface as the Bayes classifier Bi,. From the relation between Bi, and G, it also follows
that Ry (BL,) < 2R, (GL,) for any (x,y). Consequently, R(BL,) <2R(G!,). Hence,
we have the following theorem.

Corollary 4 Given all our previous definitions, for any § € (0, 1], for any p satisfying
Yo p(d) =1, and for any fixed distance value R, we have:

Py» (Vi, a,b: R(G;b) <sup {e: kl(RS(GLb)He) < . 1 : |:ln <m>

SRRV
1 R m+1
1“<p(|i|))+,.zdln<bi—ai>+1“ Sz

Furthermore: R(Bi,) <2R(Gi}) Vi, a,b.

Recall that the KL divergence is small for small values of [i| (whenever p(]i]) is not
too small) and for large margin values (b; — a;). Furthermore, the Gibbs empirical risk
R S(G;b) is small when the training points are located far away from the Bayes decision
surface G‘b(x) =1/2 (with Gi X))~y Vje i). Consequently, the Gibbs classifier with
the smallest guarantee of risk should perform a non trivial margin-sparsity tradeoff.

7 Learning in the premise of Corollary 4: a soft greedy approach

Corollary 4 suggests that the learner should try to find the Bayes classifier B that uses a
small number of balls (i.e., a small |i|), each with a large separating margin (b; — a;), while
keeping the empirical Gibbs risk Rs(Gi}) at a low value. To achieve this goal, we have
adapted the greedy algorithm for the set covering machine (SCM).

In our case, however, we need to keep the Gibbs risk on S low instead of the risk of
a deterministic classiﬁer Since the Gibbs risk is a “soft measure” that uses the piece-wise
linear functions o, , instead of “hard” indicator functions, we need a “softer” version of the
utility function U;. Indeed, a negative example that falls in the linear region of a o, ;, is in
fact partly covered. Following this observation, let k be the vector of indices of the examples
that we have used as ball centers so far for the construction of the classifier. Let us first define
the covering value C(G¥,) of G, by the “amount” of negative examples assigned to class 0
by G';h:

G%)E D -yl - G4 x))]

jek

We also define the positive-side error £(GY,) of GY, as the “amount” of positive examples
assigned to class O:

£(GY) = Y il - Ghxp]
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‘We now want to add another ball, centered on an example with index i, to obtain a new vector
k' containing this new index in addition to those present in k. Hence, we now introduce the
covering contribution of ball i (centered on x;) as

O (i) £ C(Glyy) — C(GY)
=1 —y)[l —& , x)Ghx)]
+Y A=yp[1 =&l , x)]Ghy(x))

jek

and the positive-side error contribution of ball i as

b( )dif ( a’b’) _E(Gl;b)
=yl =&, &) G+ >y [1 &, (x)]GEx))

jek

Typically, the covering contribution of ball i should increase its “utility” and its positive side
error should decrease it. Hence, we define the utility U (i) of adding ball i to Gk ab a8

def

Upb (1) = Coy (1) = p - £, ()

where parameter p represents the penalty of misclassifying a positive example. For a fixed
value of p, the “soft greedy” algorithm simply consists of adding, to the current Gibbs
classifier, a ball with maximum added utility until either the maximum number of possible
features (balls) has been reached or that all the negative examples have been (totally) cov-
ered. It is understood that, during this soft greedy algorithm, we can remove an example
(x;, y;) from S whenever it is totally covered. This occurs whenever G¥, (x;) = 0.

The term ), «iIn(R/(b; — a;)), present in the risk bound of Corollary 4, favors “soft
balls” having large margins b; — a;. Hence, we introduce a margin parameter y > 0 that we
use as follows. At each greedy step, we first search among balls having b; — a; = y. Once
such a ball, of center x;, having maximum utility has been found, we try to increase further
its utility by searching among all possible values of @; and b; > a; while keeping its center
x; fixed.® Both p and y will be chosen by cross validation on the training set.

8 Empirical results on natural data

We have compared the new information theoretic learning algorithm (called here SCM-IT),
that codes each ball radius with a message string, and the new PAC-Bayes learning algorithm
(called here SCM-PB) with the old algorithm (called here SCM), that codes each radius
with a training example. All of these algorithms were also compared with the support vector
machine (SVM) equipped with a RBF kernel of variance y and a soft margin parameter C.
Each SCM algorithm used the L, metric since this is the metric present in the argument of
the RBF kernel.

Each algorithm was tested on 11 UCI data sets. Each data set was randomly split in two
parts. About half of the examples were used for training and the remaining examples were

9The possible values for a; and b; are defined by the location of the training points.
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Table 1 Results of SVM and classical SCM on UCI datasets

Data set SVM results SCM-cv SCM-b

Name Train Test C y SVs Errs b Errs b Errs
Breastw 343 340 1 5 38 0.044 2 0.032 1 0.035
Bupa 170 175 2 0.17 169 0.377 2 0.405 2 0.4
Credit 353 300 100 2 282 0.17 12 0.216 1 0.19
Glass 107 107 10 0.17 51 0.271 4 0.186 4 0.177
Haberman 144 150 2 1 81 0.26 2 0.273 1 0.26
Heart 150 147 1 0.17 64 0.176 1 0.190 1 0.156
USvotes 235 200 1 25 53 0.065 8 0.13 3 0.095
Diabetis 468 300 1 5 432 0.413 5 0.263 5 0.263
German 500 500 100 1.50 498 0.446 36 0.288 10 0.286
Thyroid 107 108 5 5 88 0.398 2 0.074 1 0.083
Tonospher 175 176 1 1.50 153 0.090 7 0.045 7 0.045

Table 2 SCM-IT and PAC-Bayes-SCM results on UCI datasets

Data set SCM-IT-cv SCM-IT-b SCM-PB-cv SCM-PB-b
Name Train Test b [*  Errs b I*  Errs b y Errs b y Errs
Breastw 343 340 1 3 0.035 1 1 0.035 4 0.08 0.029 1 0.05 0.029
Bupa 170 175 2 7 0394 11 7 0382 6 01 0382 1 005 0417
Credit 353 300 11 6 0.163 8 5 0153 11 0.09 0.183 2 0.03 0.21
Glass 107 107 7 6 0177 3 5 0168 16 0.04 0.177 4 0.02 0.233
Haberman 144 150 8 2 024 2 2 0246 1 02 0253 1 0.12 0.4
Heart 150 147 1 2 0.163 1 2 015 1 0 0.190 1 0.04 0.163
USvotes 235 200 7 3 0.095 4 2 0075 18 0.14 0.06 1 0.03 0.09
Diabetis 468 300 12 7 0266 88 0 0.31 2 002 027 1 0.18 0.266
German 500 500 19 7 0.294 3 3 028 43 0.16 0274 1 0.08 0.288
Thyroid 107 108 3 0 0.064 30 0.040 3 004 0055 1 0.06 0.064
Ionospher 175 176 5 3 0.039 0 0039 10 0.03 0.011 5 0.03 0.039

used for testing. The corresponding values for these numbers of examples are given in the
“train” and “test” columns of Tables 1 and 2. The learning parameters of all algorithms
were determined from the training set only. The parameters C and y for the SVM were
determined by the 5-fold cross validation (CV) method performed on the training set. The
parameters that gave the smallest 5-fold CV error were then used to train the SVM on the
whole training set and the resulting classifier was then run on the testing set. Exactly the
same method (with the same 5-fold split) was used to determine the learning parameters of
SCM, SCM-IT and SCM-PB. These results are referred to (in Tables 1 and 2) as SCM-cv,
SCM-IT-cv and SCM-PB-cv.

The “SVs” column of the SVM results refers to the number of support vectors present
in the final classifier. The “errs” column, for all learning algorithms, refers to the fraction
of classification errors obtained on the testing set. Finally, the “b”, “I*” and “y” columns
of the SCM results refer, respectively, to the number of balls, the maximum number of bits
used by the final classifier in the case of SCM-IT and the margin parameter (divided by the

@ Springer



Mach Learn (2010) 78: 175-201 195

average distance between the positive and the negative examples) in the case of SCM-PB.
The results reported for SCM-PB (in Table 2) refer to the Bayes classifier only. The results
for the Gibbs classifier are similar. Note, however, that in the case of SCM-PB the algorithm
is optimized for the Gibbs classifier. The reported result for the SCM-PB Bayes classifier
are the ones for which the corresponding Gibbs risk is optimized. Finally, the best error rates
obtained over all the approaches are presented in bold face.

8.1 Learning by bound minimization

A risk bound defines an optimization problem for learning algorithms: the algorithm should
find the classifier with the smallest risk bound. We see here how our risk bound performs
in practice to select the best classifier from the same classifier space as in the case of above
mentioned CV experiments. That is, we have the same possible choices of the learning para-
meters that we have used for the 5-fold CV method.!° For each of the proposed approaches
of Sects. 4.2 and 6, we use the risk bounds of Corollary 3 and Corollary 4 to perform the
model selection and therefore output the classifier that minimizes the respective bounds.
We test the classifier thus chosen on the testing set and report the results. For the original
SCM, we use the bound of Corollary 2. These results are referred to (in Tables 1 and 2)
as SCM-b, SCM-IT-b and SCM-PB-b respectively. The aim of this evaluation is to assess
whether explicit bound minimization can indeed be competitive with cross-validation.

Finally, Fig. 1 compares the performance of the various versions of the SCM to that of
the SVM when performing the model selection from cross validation (Fig. 1(a)) as well
as compares the performance of the classical SCM, SCM-IT and SCM-PB when the risk
bounds guides the model selection process as opposed to cross validation for each method
against an SVM benchmark (Figs. 1(b), 1(c) and 1(d), respectively).

9 Analysis and discussion: putting the pieces together

The risk bounds based on dispensing the reconstruction information between the compres-
sion set and the additional information efficiently has a crucial balancing effect. This also
offers an explicit control over the margin and sparsity of the classifier. Moreover, these risk
bounds are pragmatic and can successfully guide the model selection process. This is quite
important since they afford new optimization criteria for the learning algorithm in addition
to empirical risk minimization. This also demonstrates the effectiveness of the sample com-
pression framework in offering tight and pragmatic bounds usable in practice. Moreover,
the bounds in this framework are general enough to be applied to a variety of learning algo-
rithms and settings. See for instance, the work of Shah (2007) for a similar approach applied
in the context of decision tree learning algorithm and Shah (2006) in the context of learn-
ing conjunctions of decision stumps applied to microarray data. We now analyze the main
observations of this work.

9.1 Risk bounds

An efficient redistribution of reconstruction information resulted not only in tighter bounds
but also alternate learning strategies for the SCM. The bounds of Corollary 3 and Corollary 4

101¢ consists of an exhaustive list of possible values for (p, I*, v).
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Fig. 1 Error rates comparison for the SVM, the classical SCM, SCM-IT and SCM-PB. The suffixes -cv
and -b denote the test error rates for respective SCM when the model selection was performed using
cross-validation and the risk bound respectively. Part (a) compares the SVM, SCM, SCM-IT and SCM-PB
all with cross validation based model selection. Parts (b), (¢) and (d) compare the algorithm performance of,
respectively, SCM, SCM-IT and SCM-PB when the risk bounds are used for model selection to that of cross
validation-based model selection. In each case, results of the SVM are shown as benchmarks

are tighter than the bounds proposed for the SCM earlier in Marchand and Shawe-Taylor
(2001) and Marchand and Shawe-Taylor (2002). They are also tighter than the binomial
tail inversion version of the bound for the SCM with data-dependent balls in the original
setting (using a training example to signify the border) in Corollary 2. In the new versions,
the compression set now consists of only one example per ball unlike the previous versions
while the radius information is contained in the message distribution.

Moreover, the new strategy also enables an explicit control over trading off sparsity in
favor of a larger magnitude of the separating margin. We examine this effect in more detail
next.

9.2 Empirical results and margin-sparsity trade-off

Let us analyze the empirical results with regard to some criteria of interest starting with the
test performance of the learning algorithms resulting from the new formulations of Sects. 5
and 7. We discuss, in this subsection, the results when the model selection is done using
cross validation. Let us analyze these for both the new formulations of the SCM. Note that
the results of Table 2 should be compared to the results for the original formulation of SCM
presented in Table 1.
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For the information theoretic formulation “SCM-IT”, the margin-sparsity trade-off effect
is notably visible in the case of Credit, Haberman and US Votes datasets and to some extent in
the case of Thyroid dataset (see the “errs” column under “SCM-IT-cv” in Table 2). The case
of credit and US Votes dataset are the cases when the algorithm opts for sparser classifiers at
the cost of higher margins (see the /* column under “SCM-IT-cv” in Table 2). In contrast,
the learning algorithm sacrifices some sparsity in favor of margin in the case of Haberman
dataset to achieve better accuracy.

In the case of the PAC-Bayes SCM formulation “SCM-PB”, the margin-sparsity effect is
prominent in the case of USVotes, German and Ionosphere datasets and to a lesser extent in
the case of Bupa and Credit datasets (see the “errs” column under “SCM-PB-cv” in Table 2).
In the case of the USVotes, German and Ionosphere, the algorithm sacrifices sparsity sig-
nificantly in favor of higher margins (see the “y” column under “SCM-PB-cv” in Table 2).
A similar effect with marginal gain in accuracy can be seen in the case of bupa dataset as
well. In the case of credit, the algorithm favor a relatively sparse solution as compared to the
SCM’s original formulation.

For other datasets, in both the SCM-IT and SCM-PB cases, the improvements are gen-
erally marginal as compared to the original SCM formulation. However, when compared to
the SVM (Table 1), both the original SCM and the new formulations consistently perform
better except in the case of bupa where SVM gives marginally better results.

9.3 Learning by bound minimization

Let us analyze the effectiveness of the proposed risk bounds of Sects. 4.2 and 6 in guiding
the model selection process. The information theoretic bound of Sect. 4.2 appears to perform
better than the PAC-Bayesian formulation in general. The models selected by bound in the
case of SCM-IT (see the columns under “SCM-IT-b” in Table 2) are generally comparable
and in some cases better than the ones selected using cross-validation. The most notable
results are in the case of credit, USVotes and Thyroid datasets where the bound yields better
results than the cross-validation. In fact, the results for the Thyroid dataset using the model-
selection via bound are the best over all the approaches.

In contrast, the PAC-Bayes bound of Sect. 6, although tight, is not as effective in perform-
ing model selection as the information theoretic bound. Nevertheless, the results obtained
via model selection using this bound (see the columns under “SCM-PB-b” in Table 2) are
still comparable to the ones obtained by cross-validation.

The main reason for this difference in performance seems to be the importance given to
sparse classifiers by the PAC-Bayes bound. This can be easily seen in the empirical results
(see column “b” under “SCM-PB-b” in Table 2) where the models selected by the bound are
consistently sparser (and mostly with very small margins as seen in the “y” column under
“SCM-PB-b” in Table 2) than those selected via cross-validation.

9.4 Time complexity analysis

For SCM with data-dependent balls, the algorithm’s time complexity is shown to be
O (m?log(m)) (Marchand and Shawe-Taylor 2002, Theorem 9) where m is the number of
training examples. In the information theoretic approach of Sect. 4.2, we maintain the orig-
inal complexity of O (m?log(m)) for the SCM with data-dependent balls.!' However, in the

1 ]Although, we have a slight advantage in that we do not test over the boundaries of each example. However,
this does not change the worst case complexity.
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PAC-Bayes formulation of Sect. 7 of the SCM algorithm, we have about an extra log(m)
factor in overall time complexity as described below.

9.4.1 Time complexity analysis for the PAC-Bayes formulation

We analyze the running time of PAC-Bayes soft greedy SCM learning algorithm of Sect. 6
for fixed p and y. For each potential ball center, we first sort the m — 1 other examples
with respect to their distances from the center in O (mlogm) time. Then, for this center x;,
the set of a; values that we examine are those specified by the distances (from x;) of the
m — 1 sorted examples.'? Since the examples are sorted, it takes time € O (km) to compute
the covering contributions and the positive-side error for all the m — 1 values of a;. Here
k is the largest number of examples falling into the margin. We are always using small
enough y values to have k € O(logm) since, otherwise, the results are terrible. It therefore
takes time € O (mlogm) to compute the utility values of all the m — 1 different balls of a
given center. This gives a time € O (m?logm) to compute the utilities for all the possible m
centers. Once a ball with a largest utility value has been chosen, we then try to increase
further its utility by searching among O (m?) pair values for (a;, b;). We then remove the
examples covered by this ball and repeat the algorithm on the remaining examples. It is well
known that greedy algorithms of this kind have the following guarantee: if there exist r balls
that cover all the m examples, the greedy algorithm will find at most » In(m) balls. Since we
almost always have r € O (1), the running time of the whole algorithm will almost always
be € O(m?1og?(m)).

10 Conclusion and future work

In this work, we investigated the classifiers in the sample compression framework that are
specified by two distinct sources of information: a compression set and a message string
of additional information. In the compression setting, a reconstruction function specifies a
classifier when given this information. We examined how an efficient redistribution of re-
construction information can lead to more general classifiers. More particularly, we showed
how we can obtain risk bounds that can provide an explicit control over these two quantities:
the classifier sparsity and the magnitude of its separating margin. We further showed how a
non-trivial margin-sparsity trade-off can be achieved by such redistribution; and that when
such a trade-off is achieved in practice, classifiers with better performance can be obtained.

In this paper, we mostly worked with the set covering machine algorithm with data-
dependent balls. However, the generic risk bounds proposed in Sects. 4.2 and 6 are general
enough to be applied to other learning settings. (See for instance, Shah 2007; Shah 2006 for
application on decision trees and conjunctions of decision stumps respectively.)

Another very important issue that we address in this work is the practical utility of the
proposed risk bounds in what is termed as learning by bound minimization. This provides
an important alternative to other learning strategies, esp. empirical and structural risk min-
imization. We showed, how the proposed bound can guide the model selection process and
yield at least as good as (or sometimes better) classifier when compared to traditional cross
validation based model selection approach. One of the main advantages of such sample
compression based risk bounds over other frameworks comes from the independence of

12Recall that for each value of a;, the value of b; is set to a; + y at this stage.
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risk bounds from (explicit inclusion of) hypothesis class complexity considerations. This
property not only makes the proposed bounds quite useful in practice but also makes them
applicable to data-dependent learning settings. This is in contrast with hypothesis class com-
plexity dependent bounds such as VC or Rademacher complexity-based bounds. Empirical
results validate these observations.

An interesting dimension to investigate in the future would be the extension of this ap-
proach to the case of SCM with half-spaces (Marchand et al. 2003).

Similarly, other classes of decision based learners such as decision lists can also yield in-
teresting results. However, the approaches proposed here should be viewed in their general
applicability to classifiers in sample compression settings where the reconstruction infor-
mation can be dispensed efficiently between compression sets and messages so as to obtain
explicit control over the sparsity and the magnitude of the separating margins of the classi-
fiers.
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Appendix A: Proof of Lemma 1

We first show that

k

Bin(k, m,r) & Z(’?)r"(l —rn < <’Z>(l —rynk

i=0

Let f be a classifier with risk R(f) = r. Recall that the binomial tail distribution
Bin(k, m, r) associated with a classifier of (true) risk » is defined as the probability that
this classifier makes at most k errors on a test set of m examples:

k

Bin(k, m, r) & Z (@)ri(l -
i

i=0

Pr{3SC{1,2,....m}A|S|=m —k: Rs(f) =0}

IA

Z Pr{Rs(f) =0} (the union bound)
Sc{l,...,m}: |S|l=m—k

— m _aym—k __ m _o\m—k
_(m—k>(l r) = <k>(1 r)

&gk, m,r)

Hence, the tail of the binomial is a decreasing function of » when k and m are fixed. It
follows that:

def

Bin(k, m, 8) = sup{r : Bin(k, m, r) > 8}

IA

sup{r: g(k,m,r) > &}
{r:gtk,m,r)=24}
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The value of r that satisfies the equation g(k, m,r) = § is precisely given by:

1 m 1
= 1—exp|———(1 In~
= 1-ew| o (n (7))
Bintk, m.8) < 1 U (™) +m? 0
in(k, m, §) < exp — n f n(S

Hence,
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