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Abstract—Modern processors are using increasingly larger
sized on-chip caches. Also, with each CMOS technology gen-
eration, there has been a significant increase in their leakage
energy consumption. For this reason, cache power management
has become a crucial research issue in modern processor design.
To address this challenge and also meet the goals of sustainable
computing, researchers have proposed several techniques for
improving energy efficiency of cache architectures. This paper
surveys recent architectural techniques for improving cache
power efficiency and also presents a classification of these
techniques based on their characteristics. For providing an
application perspective, this paper also reviews several real-world
processor chips that employ cache energy saving techniques. The
aim of this survey is to enable engineers and researchers to get
insights into the techniques for improving cache power efficiency
and motivate them to invent novel solutions for enabling low-
power operation of caches.

Index Terms—Cache energy saving techniques, architectural
techniques, dynamic energy, leakage energy, power management,
low-power, energy efficiency, green computing, classification,
survey

I. INTRODUCTION

As we are entering into an era of green computing, the
design of energy efficient IT solutions has become a topic of
paramount importance [1]. Recently, the primary objective in
chip design has been shifting from achieving highest peak per-
formance to achieving highest performance-energy efficiency.
Achieving energy efficiency is important in the design of all
range of processors, such as battery-driven portable devices,
desktop or server processors to supercomputers.

To meet the dual and often conflicting goals of achieving
best possible performance and best energy efficiency, several
researchers have proposed architectural techniques for dif-
ferent components of the processor, such as processor core,
caches, DRAM (dynamic random access memory) etc. For
several reasons, managing energy consumption of caches is a
crucial issue in modern processor design. With each CMOS
(complementary metal oxide semiconductor) technology gen-
eration, there is a significant increase in the leakage energy
consumption [2], [3]. According to the estimates of Interna-
tional Technology Roadmap for Semiconductors (ITRS); with
technology scaling, leakage power consumption will become
a major industry crisis, threatening the survival of CMOS
technology itself [4]. Further, the number of processor cores on
a single chip has greatly increased over years and future chips
are expected to have much larger number of cores [5]. Finally,

to bridge the gap between the speed of processor and main
memory, modern processors are using caches of increasingly
larger sizes. For example, modern desktop processors gener-
ally have 8 MB last level caches [6] while server systems are
designed with 24 to 32 MB last level caches [7], [8]. On chip
caches consume 16% of the total power in Alpha 21264 and
30% of the total power in StrongARM processor core [9]. In
both Niagara and Niagara-2 processors, L2 cache consumes
nearly 24% of the total power consumption [10]. Thus, the
power consumption of caches is becoming a large fraction of
processor power consumption. To address the challenges posed
by these design trends, a substantial amount of research has
been directed towards achieving energy efficiency in caches.
The focus of this paper is to review some of these techniques.

The rest of the paper is organized as follows. Section II
presents a brief background on modeling of CMOS energy
consumption and discusses the essential design principles
which guide cache energy saving approaches. Section III and
IV discuss the approaches which have been proposed for
saving dynamic and leakage energy, respectively. In these
sections, we first discuss the landscape of the techniques
proposed and then discuss a few of them in more detail. We
highlight the basis of similarities and differences between the
techniques. Since leakage energy is becoming an increasing
fraction of cache power consumption [2], [3], [59], we focus
more on leakage energy saving techniques than dynamic
energy saving techniques. Section V discusses the approaches
which are used for saving both dynamic and leakage energy. To
show real-life implementation of the research ideas, Section VI
discusses some of the commercial chip designs which employ
cache energy saving techniques. Finally Section VII concludes
the paper.

As it is not possible to cover all the techniques in full detail
in a review of this length, we take the following approach
to restrict the scope of the paper. Although the techniques
designed to improve performance are also likely to save
energy, in this survey we only consider those techniques which
aim to optimize energy efficiency and have been shown to
improve energy efficiency. Further, cache energy saving can
also be achieved using circuit-level techniques (e.g., low-
leakage devices), however, in this paper we mainly focus
on architecture-level techniques which allow runtime cache
power management. Lastly, since different techniques have
been evaluated using different simulation infrastructure and
workloads, we do not include their quantitative improvement
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TABLE I
CLASSIFICATION OF TECHNIQUES PROPOSED FOR DIFFERENT CACHES

Caches/Criterion Energy-saving techniques (ESTs)
For first-level cache (L1) [11]–[18]
For last-level caches (L2 or L3) [19]–[30]
For instruction caches [31]–[44]
For data caches [9], [15], [16], [18], [18], [45]–[48]
ESTs utilizing hardware support [12], [13], [48]–[53]
ESTs utilizing software support [17], [23]–[26], [38], [54]–[56]
ESTs utilizing compiler support [40], [41], [45], [57], [58]

results. Rather, we focus on their key design principles, which
can provide valuable insights.

II. BACKGROUND AND RELATED WORK

The power consumption of CMOS circuits is mainly clas-
sified in two parts, namely dynamic power (also called active
power) and leakage power (also called static power). In what
follows, we present the modeling equations for both dynamic
and leakage power in their simplified forms, which helps to
gain insights into how energy saving techniques work. For a
more detailed modeling, we refer the reader to [60], [61].

Dynamic power (Pdynamic) is dissipated whenever transis-
tors switch to change the voltage in a particular node, while
leakage power (Pleakage) is dissipated due to leakage currents
that flow even when the device is inactive. Mathematically,
they are given by,

Pdynamic = α× Ceff × V 2
DD × F (1)

Pleakage = VDD × Ileak ×N × kdesign (2)

Here α shows the activity factor, VDD shows the supply
voltage, Ceff shows the effective capacitance and F shows the
operating frequency. Further, N is the number of transistors,
kdesign is the design dependent parameter and Ileak is the
leakage current, which is a technology dependent parameter.

From Eq. 1 we infer that, for a given CMOS technology
generation, dynamic power consumption can be reduced by
adjusting voltage and frequency of operation or by reducing
the activity factor (e.g., by reducing the number of cache
accesses or the number of bits accessed in each cache access
etc.). Similarly, from Eq. 2, it is clear that, for a given CMOS
technology generation, the opportunity of saving leakage en-
ergy lies in redesigning the circuit to use low-power cells,
reducing the total number of transistors or putting some parts
of caches into low (or zero) leakage mode. Based on these
essential principles, several architectural techniques have been
proposed, which we discuss in the next sections.

Modern processor cores have multi-level cache hierarchy
with L1, L2, L3 caches etc. Also, typically at level one,
data and instruction caches are designed as separate caches,
while at lower levels (i.e., at level 2 and 3), instruction and
data caches are unified. These caches have different properties
and different techniques utilize these properties to save cache
energy. Table I summarizes the techniques which are proposed
for L1 or L2/L3, and for instruction or data caches. More
detailed discussion of some of these techniques is presented
in the following sections.

First-level caches (FLCs) are designed to minimize access
latency, while last level caches (LLCs) are designed to mini-
mize cache the miss-rate and the number of off-chip accesses.
Accordingly, FLCs are smaller (e.g., 32KB or 16KB), have
smaller associativity and employ parallel lookup of data and
tag arrays [21]. In contrast, LLCs are much larger (e.g.,
2MB, 4MB etc.), have higher associativity and employ serial
(phased) lookup of data and tag arrays. Thus, as an example,
an energy saving technique which increases the cache access
latency is more suitable for LLCs, than for FLCs. Also, due
to their relatively smaller sizes and large number of accesses,
FLCs spend a larger fraction of their energy in the form
of dynamic energy, while LLCs spend a larger fraction of
their energy in the form of leakage energy [27], [30]. As
for instruction/data caches, instruction access stream exhibits
strong spatial and temporal locality and hence, the instruction
cache is very sensitive to increase in access latency. The
working set and reuse characteristic of instruction cache is
different from that of data cache. Also, since instruction cache
does not hold dirty data, reconfiguring it does not lead to
write-back of dirty data and thus, reconfiguration of instruction
cache can be more easily implemented than that of the data
cache.

Table I also classifies the techniques based on whether
they need hardware, software and/or compiler support. While
compiler-based approaches incur no or minimal hardware
overhead, compiler analysis may not be possible in all
situations and also compiler only has limited information.
Software-based approaches can leverage the software to make
more complex decisions and consider the impact of energy
saving techniques on components of the processor other than
the cache, however, software-only approaches generally can-
not exercise the opportunity of frequent reconfigurations and
also incur larger implementation overhead than hardware-only
approaches. Hardware-based approaches can utilize simple yet
low-overhead algorithms, and can also exercise the opportunity
of fine-grained and frequent reconfigurations. However, these
approaches cannot easily take other components of processor
into account.

Kaxiras and Martonosi [62] survey some of the architectural
techniques proposed for saving energy in processors and
memory hierarchies. This paper differs from their work, in
that we review several recent developments which have been
made in the fast evolving field of design of energy efficient
architectural techniques. Also, we exclusively focus on the
techniques aimed to save cache energy to provide more in-
depth insights. Finally, to show the practical application of
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the research ideas, we also discuss the examples of many
commercial chips which use cache energy saving designs.

III. DYNAMIC ENERGY SAVING APPROACHES

A. Overview

Recently several techniques have been proposed for sav-
ing dynamic energy. Before discussing them in detail, it is
helpful to see their underlying similarities and differences by
classifying them across several dimensions. Some techniques
save dynamic energy by reducing the number of accesses to a
particular level of cache hierarchy by using additional memory
structures. These structures are used either for data storage
[38], [55], [63]–[65], or prediction of cache access result [11],
[14], [15], [49], [66] or for pre-determination of cache access
result [18], [28], [50], [67]–[69].

Some techniques reduce the number of cache ways accessed
in each cache access by either using software information
[17] or compiler information [40], [57] or hardware-based
approaches [12], [28], [47], [49], [50], [67], [69], [70]. A few
techniques provision accessing frequent (hot) data with lower
energy to reduce average dynamic energy of cache access [21],
[46].

Some techniques trade-off access time for gaining energy
efficiency by performing the various tasks required for cache
accesses in sequential manner instead of simultaneously (i.e.,
in parallel manner). If a cache hit/miss decision has already
been taken, further tasks can be avoided for saving dynamic
energy. For example, a few techniques access cache ways
sequentially [14], [37], [49], [54]; some other techniques
perform matching of tag-bits in multi-step manner [71], while
some techniques reduce the number of tag bits which are
active or are required for comparison [22], [34], [72]–[74].
Techniques have also been proposed which reduce the data
transferred in each cache access (e.g., [76]). Also, while the
above mentioned techniques can also be extended for saving
dynamic energy in multiprocessor systems, some techniques
have been especially designed to address the issues related to
saving energy in multiprocessor systems [57], [66], [75]. Table
II provides an overview of dynamic energy saving techniques.

B. Discussion

Kin et al. [63] propose a small filter cache which is placed
in front of the conventional L1 cache. By trying to serve most
of the accesses from the data present in the filter cache, their
technique reduces the number of L1 accesses and thus saves
dynamic energy. The tradeoff involved in the use of filter cache
is that for achieving a reasonably high hit-rate in the filter
cache, the size of filter cache needs to be large, which, in
turn, increases its access time and energy consumption.

Dropsho et al. [54] discuss an ‘accounting cache’ archi-
tecture, which works on the temporal locality property of
caches. It uses LRU replacement policy which places most
frequently used blocks near MRU way-positions and thus,
most accesses are likely to hit in those ways. Using this
idea, accounting cache logically divides cache ways into two
parts, named primary and secondary. On any cache access,
initially only the primary ways are accessed; the secondary

ways are accessed only if there is a miss in primary ways.
Thus, due to the reduction in the average number of way-
comparisons, accounting cache saves dynamic energy. Udipi
et al. [21] propose ‘non-uniform power access’ in the cache,
where certain ways of the cache are accessible at low energy
using low-swing wires. These ways are used as MRU ways.
Thus, their technique saves energy by making the “common
case” (i.e., hits to MRU ways) energy efficient.

Yang and Gupta [46] discuss a ‘frequent value’ data cache
design, which divides the data cache into two arrays. For
accesses made to frequent (i.e., hot) cache lines, only the first
data array is accessed, while for accesses made to infrequent
(i.e., cold) cache lines, both data arrays are accessed. Further,
frequent cache lines are stored in encoded form and for ac-
cesses made to them, number of bit comparisons are reduced,
leading to saving in dynamic energy.

Jones et al. [40] propose a technique for saving energy
in instruction caches. Their technique works by using the
compiler to place the most frequently executed instructions
at the start of the binary. At runtime, these instructions are
explicitly mapped to specific ways within the cache. When
these way-placed instructions are fetched, only the specific
ways are accessed. This leads to saving in cache dynamic
energy.

Powell et al. [14] use the technique of predicting the
cache way, which is likely to contain the data. On a cache-
access, first only a single way is accessed. Thus, on a correct
prediction, the cache behaves just like a direct mapped cache
and the dynamic energy of cache access is reduced. However,
on misprediction, all the cache ways have to be accessed.
Thus, a misprediction leads to increase in cache access time
and energy. Also, use of their technique leads to non-uniform
cache hit latency on a right and wrong prediction of cache
access result. To address this, way-selection based techniques
have been proposed (see Section V).

Zhu and Zhang [49] propose a technique which combines
way-prediction and phased access mechanisms to reduce
dynamic energy of caches. Their technique uses the way-
prediction mode to handle a cache hit and the phased mode
(i.e., accessing tag array first and based on the result, accessing
data array) to handle a cache miss. Their technique uses
simple predictors to predict the result of cache access. When
the access is predicted to hit, the way-prediction scheme
determines the desired way and probes that way only. When
the access is predicted to miss, the phased-access scheme
accesses all the tags of the cache-set first and then only the
appropriate cache way is accessed. Thus, their technique saves
cache energy by reducing the number of accesses to data
arrays.

Tsai and Chen [64] propose a technique for improving
energy efficiency of embedded processors by using a memory
structure called “Trace Reuse cache”. The Trace Reuse cache
is used at the same level of memory hierarchy as conventional
instruction cache. It works by reusing the retired instructions
from the pipeline back-end of a processor to efficiently deliver
instructions in the form of traces. This enables the processor
to sustain a higher instruction rate, which improves both
performance and energy efficiency.
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TABLE II
CLASSIFICATION OF DYNAMIC ENERGY SAVING TECHNIQUES

Criterion Energy-saving techniques (ESTs)
ESTs using extra for data storage [38], [55], [63]–[65],
memory storage for prediction of cache access result [11], [14], [15], [49], [66]

for pre-determination of cache access result [18], [28], [50], [67]–[69]
Reducing number using software [17],
of ways consulted compiler [40], [57] ,
in each access hardware [12], [28], [47], [49], [50], [67], [69], [70]
Reducing switching Sequential cache-way access [14], [37], [49], [54],
activity multi-step tag-bit matching [71],

reducing active tag bits or those actually compared [22], [34], [72]–[74]
accessing frequent (hot) data with lower energy [21], [46]

ESTs for multicores [57], [66], [75]
or multiprocessors

Ghosh et al. [67] propose a technique named ‘Way Guard’
to save dynamic energy in caches. This technique uses a
segmented counting Bloom filter [77] with each cache way.
By accessing this structure before a cache access, the cache
controller can determine whether the requested cacheline is
not present in a particular way. To save energy, the lookup of
those cache ways can be avoided which do not contain the
requested data.

Park et al. [71] discuss techniques for reducing tag com-
parisons by making an early estimation of cache hit or miss
and using the result for skipping tag comparisons, if possible.
Their method tracks the hotness or coldness (depending on
the frequency of accesses made) of a cache line and for cold
cache lines, a partial tag comparison is performed before full
tag comparison to explore the possibility of early termination
of tag comparison to save energy. Additionally, their method
first compares the tags of hot lines, and only in case of a
miss, it compares the tags of cold lines. Since by temporal
locality property of caches, most of the cache hits are likely
to occur in hot blocks, this method saves energy by reducing
tag comparisons.

Kwak and Jeon [72] propose a technique to reduce the
power consumed in tag-accesses. Their technique works on the
observation that since program applications typically exhibit
high memory access locality, most of the tag bits of successive
memory addresses are expected to be same, except for a
few differences in the LSB-side bits. Thus, by storing the
MSB-side bits in compressed form, the actual number of bits
required for comparison can be reduced. Based on this, their
technique logically divides the cache tag in two parts, namely
lower tag bits and higher tag bits. For applications with low
memory access locality, the number of bits which are taken as
lower tag bits (i.e., LSB-side bits) need to be larger and vice
versa. Further, the higher tag bits are stored in compressed
form. On any cache access, when tag-matching is performed;
all the lower tag bits and only the compressed higher tag bits
are compared, which leads to saving of cache energy.

Guo et al. [58] present techniques to reduce the energy
overhead of prefetching techniques. One of their techniques
uses compiler information to identify memory addresses which
are useful for prefetching and then, prefetches only those
memory addresses. Another technique proposed by them uses
a small prefetch filter buffer (PFB) to reduce the overhead of
L1 tag look-up related to prefetching. PFB is used to store the

most recently prefetched cache tags and a prefetching address
is checked against PFB. If the address is found in the PFB,
prefetching is avoided, which leads to saving of energy.

Fang et al. [17] propose a method to save dynamic energy
by utilizing software semantics in cache design. For saving
instruction cache energy, their technique works on the obser-
vation that a user-mode instruction fetch cannot hit in a cache
line that contains kernel-mode code. Based on this, on a user-
mode instruction fetch, only the cache-ways containing user-
mode code are accessed. For saving data cache energy, their
technique works on the observation that an access to stack
data cannot hit in a way containing heap data and vice versa.
Hence, they store an extra bit with each tag to identify whether
the data belongs to stack or heap. Checking this bit at the time
of access helps in early identification of cross-checks between
stack and heap. Using this information, checking those ways
can be avoided which are sure to lead to cache miss.

Recently, researchers have proposed 3D-stacked DRAM
caches, where 3D die stacking is used to interconnect a
processor die with a stack of DRAM dies using through-silicon
vias (TSVs) [123]. 3D die stacking technology promises
lower interconnect power consumption, smaller chip footprint
and increased on-chip bandwidth and for these reasons, this
technology is already finding commercial adoption [124].
However, 3D die stacking technology also presents significant
power and thermal challenges [125]. To address this, several
architecture-level techniques have been proposed.

Jevdjic et al. [126] present a 3D stacked DRAM cache
design which aims to achieve high energy efficiency and
performance by intelligent cache management. In DRAM
caches, using a small (e.g. 64B) block size leads to optimized
use of cache capacity and bandwidth, but high lookup latency.
On the other hand, using a large granularity (e.g. 4KB pages)
leads to fast lookup and reduced tag overhead at the cost of
poor bandwidth and cache capacity utilization. Jevdjic et al.
propose a cache design, which allocates data at granularity
of pages, but fetches only those pages that will be accessed
during page’s residency in the cache. This avoids bringing
unnecessary pages into the cache which improves cache and
bandwidth utilization. The prediction of useful blocks is made
by identifying spatial correlation. The experimental results
show that in terms of energy efficiency, their technique outper-
forms conventional (i.e. without die-stacking) cache and also
block-based and page-based 3D stacked DRAM cache designs.
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TABLE III
CLASSIFICATION OF LEAKAGE ENERGY SAVING TECHNIQUES (RECONFIG.= RECONFIGURATION)

Criterion Energy-saving techniques (ESTs)
Circuit-level ESTs state-preserving [33], [48], [51], [78], state-destroying [44]
Micro-architectural ESTs state-preserving [19], [31], [39], [42], [45], [52], [53], [79]

state-destroying [13], [20], [23]–[25], [29], [43], [70], [80]–[86]
either or both [30], [41], [87], [88]

Reconfig. granularity way-level [20], [52], [53], [56], [89]–[93]
set-level (or bank-level) [43], [92]
hybrid (set and way) level [23], [81], [94]
cache block-level [13], [29], [31], [41], [42], [45], [78]–[80], [84], [88]
cache sub-block level [86], cache color level [24]–[26]
cache sub-array level [82]

Reconfig. Frequency Static [89], [91], [93], dynamic (all in the next three rows)
dynamic reconfig. Fixed large interval [13], [20], [23]–[25], [42], [43], [52], [81], [82], [84], [92], [94]

variable interval [29], [79], [80]
continuous reconfig. [30], [31], [41], [45], [52], [53], [78], [86], [87]

Basic property on Inclusion property of cache hierarchies [30]
which ESTs work temporal locality [13], [29], [31], [41], [42], [45], [48], [52], [79], [80], [84], [86]

varying working set size [23]–[26], [43], [81], [94], [95]
What is turned-off Only data array (and not tag array) [29], [80], [96]

both data and tag arrays (almost all others)
Profiling: offline Offline (or compiler analysis) [41], [43], [45], [81], [93], [94], [97]–[100]
or online online (almost all others)
Thermal aware ESTs [88], [92], [93], [101], [102]
ESTs for multi-cores/ [26], [27], [56], [70], [85], [87], [96], [99], [100], [103]–[113]
multi-processors
Integration with DVFS [36], [90], [109], [114]–[116]
other approaches data compression [83], [106], [117], [118], prefetching [119]
ESTs in different QoS systems [24], [26], real-time systems [98], [99], [120]
application contexts embedded multitasking systems [97], [99], [121], [122]

Sun et al. [127] propose a heterogeneous 3D DRAM ar-
chitecture to implement both L2 cache and main memory
within the 3D stacked DRAM dies. Because of larger density
of DRAM, larger sized DRAM caches can be architected in
the same area compared to SRAM caches. Sun et al. study
use of multiple (viz. 2, 4 and 8) layers of stacked DRAM
and show that their proposed 3D DRAM cache design offers
better energy efficiency than 2D SRAM design. Moreover, use
of larger number of layers helps in reducing the access latency
and energy consumption.

IV. LEAKAGE ENERGY SAVING APPROACHES

A. Overview

As explained before, leakage energy saving approaches
work by turning off a part of the cache to reduce the leakage
energy consumption of the cache. Based on the data retentive-
ness of turned-off blocks, the leakage energy saving techniques
are classified into two broad types, namely state-preserving
and state-destroying techniques. The state-preserving tech-
niques turn off a block while preserving its state (e.g.,
[33], [48], [51], [78]). This means that when the block is
reactivated, it does not need to be fetched from next level
of memory. State-destroying techniques (e.g., [44]) do not
preserve the state of the turned-off block, but generally save
more energy in the low-power states than the state-preserving
techniques. Several microarchitecture level techniques utilize
state-preserving leakage control (e.g., [19], [31], [39], [42],
[45], [52], [53], [79]), while others employ state-destroying
leakage control (e.g., [13], [20], [23]–[25], [29], [43], [70],
[80]–[86]). Some researchers have proposed techniques which

work with either of or both of state-preserving or state-
destroying leakage control mechanism [30], [41], [87], [88].
Li et al. [128] compare the effectiveness of state-preserving
and state-destroying techniques. They conclude that when
the cost of fetching a missed block is high, state-destroying
techniques incur a large penalty and thus, state-preserving
techniques show superior performance. However, when the
cost of fetching a missed block is not high, a state-destroying
technique can be superior to the state-preserving technique,
since a state-destroying technique completely turns off the
block, thus saving more energy.

The energy saving techniques turn off cache at the granu-
larity (unit) of certain cache space, such as a single way or
a single block at a time. Based on this granularity, leakage
energy saving techniques can be classified as way-level [20],
[52], [53], [56], [89]–[93], set-level (or bank-level) [43], [92],
hybrid (set and way) level [23], [81], [94], cache block-level
[13], [29], [31], [41], [42], [45], [78]–[80], [84], [88], cache
sub-block level [86], cache color level [24]–[26] or cache sub-
array level [82] etc.

To demonstrate the typical values of the different cache
parameters, we take the example of an 8-way set-associative
cache of 2MB size with 64B block size and 8-byte sub-block.
For computing number of cache colors, we assume that the
system page size is 4KB. Then, the number of cache blocks
is 32,768 and number of sub-blocks is 262144. The number
of cache ways is 8 and the number of cache colors is 64.
The number of sets is 4096, however, it is noteworthy that
the selective-sets approach allocates cache only at granularity
of power of two sets, such as 4096 or 2048 or 1024 sets
etc. The cache sub-array level allocation approach in [82]
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divides a 2MB cache into 6 heterogeneous parts (called sub-
caches), which have the size of 1MB, 512KB, 256KB, 128KB,
64KB and 64KB. Thus, different techniques work at different
granularities.

Reconfiguration at each of these levels of granularities pro-
vides its own advantages and disadvantages. Unlike selective-
sets and cache-coloring approachs, selective-way approach
does not require change in the set-decoding on cache recon-
figuration, which leads to smaller reconfiguration overhead
and easier implementation. However, selective-way approach
harms the associativity of the cache; for example, turning-off
all but one way of a last-level cache turns it into a direct-
mapped cache which leads to very high miss-rate and off-
chip accesses. Also, selective-way approach provides limited
granularity, which is at most equal to the number of ways.
To achieve high granularity with selective-ways approach
requires use of highly-associative caches, which also have high
access time and energy. Selective-sets approach can potentially
provide large granularity, however, in practice, it is observed
that reducing the cache size below 1/8 or 1/16 significantly
increases the miss-rate [23], [43]. Cache coloring can provide
better granularity and smaller reconfiguration overhead than
selective-sets approach (by using mapping-table [24], [25]),
however it also has higher implementation overhead. Hybrid
(selective-sets and selective-ways) approach aims to provide
higher granularity than either of the two approaches and
combine their benefits; however its implementation overhead
is higher than either of the selective-sets or selective-ways
approach alone. Cache block-level reconfiguration provides
much higher granularity than any of the above mentioned ap-
proaches and does not change set-decoding on reconfiguration.
This approach typically makes decision to turn-off each block
locally based on the access/miss characteristics of each block.
Cache sub-block level reconfiguration provides the highest
granularity, however, it incurs high implementation overhead.
Also note that with increasing granularity, the reconfiguration
decision logic generally becomes increasingly complex. More-
over, increased granularity does not necessarily provide higher
energy savings if the application does not benefit from it.

From the point of view of the time-interval at which recon-
figuration is done, the techniques can be classified1 based on
whether they use a fixed (static) configuration throughout the
execution (e.g., [89], [91], [93]) or use dynamic reconfigura-
tion (i.e., the configuration is dynamically changed during the
execution). Among techniques using dynamic reconfiguration,
some techniques switch cache blocks at the boundary of a
fixed, large interval size [13], [20], [23]–[25], [42], [43],
[52], [81], [82], [84], [92], [94]; some techniques use variable
interval size (time length) [29], [79], [80], some techniques
switch cache blocks throughout the execution (for example,
before or after cache accesses) [30], [31], [41], [45], [52],
[53], [78], [86], [87].

To achieve cache energy saving, different techniques uti-
lize different properties of the caches. Some techniques save
energy by exploiting inclusion property of cache hierarchies

1Some techniques have multiple variants with different characteristics and
hence, they are classified in multiple groups.

[30] while some other techniques exploit generational nature
or temporal locality property of caches [13], [29], [31], [41],
[42], [45], [48], [52], [79], [80], [84], [86]. A few other
techniques dynamically reconfigure the cache based on the
working set size2 size of applications and turnoff the rest of
the cache to save energy [23]–[26], [43], [81], [94], [95]. In
multicore systems, this approach extends to partitioning the
cache between different applications and turning off rest of
the cache for saving cache power [56].

Leakage energy saving techniques can also be classified
depending on whether they turnoff only data array or both
data and tag arrays. For example, a few techniques turnoff only
data arrays of unused sections and keep the tag arrays turned-
on to guide their algorithms [29], [80], [96], while most other
techniques afford to turnoff both data and tag arrays of unused
sections. For guiding their algorithms, some techniques require
offline profiling or compiler analysis for their function (e.g.,
[41], [43], [45], [81], [93], [94], [97]–[100]), while most others
use only runtime information for guiding their algorithms.

Since leakage energy varies exponentially with the temper-
ature, an increase in chip temperature increases the leakage
energy dissipation in caches, which, in turn, further increases
the chip temperature. To take chip temperature into account
while modeling and minimizing leakage energy, several tech-
niques have been proposed [88], [92], [93], [101], [102].
Such techniques are referred to as thermal-aware or thermal-
sensitive techniques. Also, while many of the above mentioned
techniques can be extended to multicore or multiprocessor
systems, several techniques have been especially designed
to address the issues arising in multicore or multiprocessor
systems [26], [27], [56], [70], [85], [87], [96], [99], [100],
[103]–[113].

To achieve additional amount of energy saving, cache en-
ergy saving techniques have been synergistically integrated
with some other approaches, such as DVFS (dynamic volt-
age/frequency scaling) [36], [90], [109], [114]–[116], data
compression [83], [106], [117], [118], prefetching [119], etc.
Further, cache leakage energy saving has also been discussed
in the context of QoS (quality-of-service) systems [24], [26],
real-time systems [98], [99], [120] and embedded multitasking
systems [97], [99], [121], [122] etc. Table III provides the
overview of leakage energy saving techniques.

B. Discussion

For both state-preserving and state-destroying leakage con-
trol, architectural techniques make use of some well-known
circuit-level mechanisms. Powell et al. [44] propose a circuit
design named ‘gated Vdd’, which facilitates state-destroying
leakage control. This technique adds an extra transistor in
the supply voltage path or ground path of the SRAM (static
random access memory) cell. For reducing the leakage energy
of the SRAM cell, this transistor is turned off and by stacking
effect of the transistor, the leakage current is reduced by
orders of magnitude. Similarly, Flautner et al. [48] discuss a

2Working set of an application is the number of unique cache lines accessed
during a given execution interval.
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circuit design named ‘drowsy-cache’, which facilitates state-
preserving leakage control. This technique uses two voltage
supplies to the cache, one of which is low voltage and the other
is high voltage. For reducing the leakage energy of the SRAM
cell, the cache controller switches the operating voltage of the
cell to low voltage, thus putting the cell in low-leakage mode.
When this line is accessed the next time, the supply voltage is
again switched to high, thus the cache-block consumes normal
power. Kim et al. [33] propose a “super-drowsy” circuit design
and Agarwal et al. [78] propose a gated-ground circuit design,
both of which behave similar to the drowsy cache, except that
they only require a single voltage supply. Similarly, another
state-preserving circuit design, named multithreshold CMOS
(MTCMOS), dynamically changes the threshold voltage of
the SRAM cell by modulating the backgate bias voltage to
transition the cell to low-leakage mode [129].

Several energy saving techniques are based on the genera-
tional nature of cache access, which implies that cache lines
have a period of frequent use when they are first brought into
the cache, and then have a period of “dead time” before they
are evicted. So, if a cache line has not been accessed for a
certain number of cycles (called ‘decay interval’ or ‘update
window’), it indicates that the line has become dead and it
can be put in low leakage mode for saving energy. Using
this principle, Flautner et al. [48] propose ‘drowsy-cache’
technique which puts the dead cache lines into low-power
state-preserving mode. Similarly, Kaxiras et al. [13] propose
‘decay cache’ technique which puts the dead cache lines into
low-power state-destroying mode.

Several researchers have proposed improvements to the
original decay-cache technique. Since the optimal value of
the decay interval varies with the applications, Zhou et al.
[80] propose a technique for dynamically adapting decay
interval for each application. Their technique only turns off
data and keeps tags alive. Using tags, their technique estimates
the hypothetical miss rate, which would be there if all the
data lines were active. Then, the aggressiveness of cache line
turning off is controlled to make the the actual miss rate
closely track the hypothetical miss rate. Abella et al. [29] keep
track of the interaccess time and the number of accesses for
each cache line and use this to compute suitable decay time
for each individual cache line.

Kadayif et al. [119] study the interaction of prefetching
and cache line turning-off. The prefetching mechanism is
used to improve the performance of the processor while
the leakage control mechanism is used to save energy in
caches of the processor. Thus, their work studies how these
two techniques interact and proposes methods to enable their
synergistic operation. Since normal cache lines and those
brought by prefetching have different usage patterns, their
technique works by using different decay intervals for both
kinds of cache lines.

Petit et al. [52] use recency information of the set-
associative structure of caches to keep either a single or two
MRU way(s) alive and switch rest of the ways to drowsy
mode. Since most accesses are likely to hit in MRU way(s),
this technique saves energy while also improving the number
of hits to alive (i.e., non-drowsy) cache lines. Bardine et al.

[20] use the ratio of hits to the MRU way and that to the
least recently used active way in all the sets to estimate the
degree of locality present in the memory access stream. A high
value of ratio indicates that most accesses hit near MRU way
and hence, if more than two ways are enabled, a single cache
way can be disabled using state-destroying leakage control
mechanism. Conversely, a low value of the ratio indicates that
cache hits are distributed over different ways and hence, a
single cache way is enabled.

Zhao et al. [79] adapt the interval of transitioning the cache-
blocks to drowsy mode by taking into account the reuse
distance of the caches. The reuse distance of a memory access
is defined as the number of distinct cache lines referenced
since the last reference to the requested line. The reuse
distance reflects the temporal locality of the access pattern.
A small reuse distance indicates that there exists a strong
likelihood of future reference and vice versa. Thus, instead
of using a fixed interval based on the number of cycles, their
technique transitions a cache block to drowsy mode after a
fixed N distinct references to the block. Thus, their technique
also improves the number of hits to the alive cache lines.

Mohyuddin et al. [53] propose a technique for saving
leakage energy by maintaining different ways of a cache at dif-
ferent state-preserving power saving modes depending on their
replacement priorities. Going from the MRU way to the LRU
way, cache lines are kept in increasingly aggressive power
saving mode which also have increasingly larger penalties of
cache line wakeup.

Chung and Skadron [31] adapt the drowsy cache technique
for instruction caches using branch predictor information. On
an access to the cache-block, the drowsy cache technique
incurs the wakeup penalty, which lies at the critical access
path. To hide this latency, Chung et al. propose using the
branch-predictor to identify the next cache-block which would
be accessed. Based on this, only the desired cache-block can
be woken up before the actual access. In the case of branch
mispredictions, the prediction of cache-block also becomes
wrong, however, in such cases, the extra wakeup time is hidden
due to the time taken in misprediction recovery. Zhang et al.
[45] propose a compiler technique for saving cache leakage
energy. This technique uses the compiler to perform program
data reuse analysis to determine the cache access pattern.
Using this information, all the cache lines are placed into state-
preserving low-leakage mode and a cache line is brought to
normal power-mode just before it is accessed.

Since different programs and even different phases of an ap-
plication have different cache requirement, several techniques
save cache energy by dynamically reconfiguring the cache for
each program or program phase and turning off the rest of the
cache. Using this idea, Albonesi [89] proposes selective-ways
approach where some of the ways of the cache are turned off
to save energy. Yang et al. [43] discuss selective-sets approach
where leakage energy is saved by turning off some of the sets
of the cache. Yang et al. [94] also discuss selective sets and
ways where both the number of sets and ways can be altered
to save leakage energy in data and instruction caches.

To dynamically reconfigure caches using the selective-ways
approach, program response for different number of cache
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ways needs to be estimated. For this purpose, researchers
generally utilize utility monitors based on Mattson stack
algorithm (e.g., [130], [131]). Similarly, for utilizing selective-
sets approach, researchers generally use set-sampling method
and multiple auxiliary tags for getting profiling information
(e.g., [23]). Mittal et al. [23] present a hybrid set and way
reconfiguration approach for leakage energy saving in last level
caches. Their technique uses dynamic profiling for predicting
cache usage and energy efficiency of the application under
multiple cache configurations. Using these estimates, at the
end of a fixed interval, the cache is reconfigured to the best
configuration.

Li et al. [30] discuss different techniques for saving cache
leakage energy by exploiting the data duplication across dif-
ferent levels of the cache hierarchy. Their technique works by
putting an L2 block in low leakage (either state-preserving
or state-destroying) mode, when the block also exists in the
L1 cache. Their technique essentially tries to make the cache
hierarchy non-inclusive for live cache lines.

Kotera et al. [56] use selective-ways technique in the context
of chip multiprocessors to achieve both cache partitioning
and energy saving. Their technique works by allocating just
suitable number of cache ways to different programs and
turning off the rest of the ways for saving cache energy.

Monchiero et al. [107] propose techniques to save leakage
energy in private snoopy L2 caches of chip multi-processors
(CMP) by selectively switching off the infrequently used lines.
One of their technique turns off cache blocks which have been
invalidated due to coherence protocol itself. The advantage of
this technique is that it does not induce extra misses and hence
does not incur a performance penalty. They also propose other
techniques which work by carefully choosing coherence-state
transitions, on which a block is decayed, so that the leakage
energy is saved with minimal performance loss.

Reddy and Petrov [97] present an energy saving approach
for embedded systems. They use an off-line algorithm to select
the best cache partitioning for different running applications
and use this information at runtime. They also show the
usefulness of their technique in reducing inter-task interference
in a preemptive multitasking environment. Similarly, Paul and
Petrov [122] propose an approach for partitioning instruction
cache for saving energy in embedded multitasking systems.

Since most energy saving techniques aim to aggressively
save cache energy, use of them may lead to large performance
degradation which may be unacceptable in QoS systems.
Mittal, Zhang and Cao [24] present a technique for saving
cache energy in QoS systems. Their technique allocates cache
at granularity of cache colors. Using auxiliary tag structure
for different cache configurations (having same number of
ways and different set counts), their technique predicts the
cache energy and program performance for multiple cache
configurations. Using this, in each interval, the cache is
dynamically reconfigured to a suitable cache size such that the
QoS target of the program can be met, while saving maximum
possible amount of energy.

Ku et al. [92] propose a thermal-aware leakage energy
saving technique, which works on the intuition that apart from
saving leakage energy in turned off cache lines, leakage energy

of active parts can also be saved by intelligently turning off
cache lines, such that chip temperature is reduced. Based on
this, for a same amount of turned off cache; instead of turning
off entire banks, their technique turns off alternating rows of
memory cells in the bank. For the same number of turned off
lines, compared to thermal-unaware schemes, their scheme
increases the distance between active blocks, and thus reduces
the chip temperature which also lowers the leakage energy
dissipation.

Compared to CPUs, GPUs (Graphics Processing Units)
typically use caches of smaller size, and hence, most of the
work on cache energy saving has targeted CPU architecture.
However, cache energy saving in GPUs has recently attracted
the attention of researchers. Wang et al. [132] discuss a
microarchitectural technique for saving energy in both L1 and
L2 caches in GPUs. They propose putting the L1 cache in
state-preserving, low-leakage mode when there are no threads
ready to be scheduled. Further, the L2 cache is put in low-
leakage mode when there is no memory request.

V. APPROACHES FOR SAVING BOTH DYNAMIC AND
LEAKAGE ENERGY

Several studies present reconfigurable cache architectures
which offer flexibility to change one or more parameters of
cache. By taking advantage of the flexibility offered by these
architectures, both dynamic and leakage energy can be saved.

C. Zhang et al. [91] propose a highly-configurable cache
architecture which contains four separate banks that can op-
erate as four separate ways. By concatenating these ways, the
associativity of the cache can be altered and/or some ways
can be shut down. Thus, the associativity of the cache can
be changed to either 1, 2 or 4. Similarly, by configuring the
fetch unit to fetch different size of cache lines, the cache line
size can also be altered. Wang and Mishra [98] and Rawlins
and Gordon-Ross [106] use this architecture for saving cache
energy. For example, Wang and Mishra profile several possible
configurations of L1 data cache, L1 instruction cache and
unified L2 cache in offline manner and at runtime, explore
different possible combinations of two-level cache hierarchy
to find the most energy efficient configuration. Similarly,
Rawlins and Gordon-Ross discuss their technique for saving
cache energy in heterogeneous dual-core systems by tuning L1
cache size, while addressing the issues presented by multicore
operation such as core-interactions, data coherence etc.

Abella and González [133] propose a ‘Heterogeneous Way-
size cache’ where the number of sets in each cache way
can be different. The only requirement is that the number
of sets in each way should be a power of two value. Note
that the conventional caches use same number of sets in each
cache way. By adapting the size of each way according to the
application requirement, their technique saves both dynamic
and leakage energy.

Benitez et al. [82] propose ‘Amorphous cache’ which uses
heterogeneous sub-caches that can be selectively powered-
off. Thus Amorphous cache allows changing the total cache
size and/or set-associativity, depending upon the program
requirement for saving both leakage and dynamic energy.
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Wong et al. [134] propose using different voltages for
different levels of cache. Unlike drowsy cache technique [48],
their technique does not dynamically change the voltage of
the cache block. Rather, throughout the execution, the cache
is operated at a fixed voltage, which is lower than the core-
voltage. Moreover, level two cache is operated at lower voltage
than the level one cache, which, in turn, can operate at lower
voltage than the core. At the interface between these two
components, voltage level converters are used. Since the cache
is operated at low voltage, both leakage and dynamic energy
of access are saved.

Jiang et al. [105] propose a technique for saving energy in
chip multiprocessors using asymmetric last-level caches. Their
approach works by allocating suitable amount of cache to each
application; however their approach differs from conventional
approaches based on cache reconfiguration or partition (such
as [43], [82] etc.) in that, asymmetric caches are physically
separated private caches of different sizes and to use them
for achieving energy efficiency requires smart scheduling
techniques. Thus, their technique uses OS scheduler to assign
applications with large working sets on large caches and those
with smaller working sets on smaller caches. Smaller caches
reduce access energy and operating voltage and larger caches
use cache line turnoff to save leakage energy.

Alves et al. [86] propose a technique for saving cache
leakage and dynamic energy. Their technique predicts the
usage pattern of the sub-blocks of a cache block, which
includes which sub-blocks of a cache line will be actually
used and how many times it will be used. This information is
used to bring only those sub-blocks in the cache which are
necessary and turns them off after they have been touched
the estimated number of times. Further, they augment the
cache replacement policy to preferentially evict those cache
blocks for which all sub-blocks have become dead. Note that
compared to other techniques which utilize cache liveliness
information (e.g., decay cache [13] or drowsy cache [48]) and
work on cache block level, the technique proposed by Alves
et al. works on cache sub-block level.

Several researchers have presented techniques for synergis-
tically using both leakage and dynamic energy saving tech-
niques. For example, Giorgi and Bennati [65] demonstrate that
using filter cache [63] reduces the number of accesses to L1
cache, which, in turn, enables effectively using leakage energy
saving techniques in L1 caches. Similarly, Keramidas et al.
[50] propose a way-selection based technique for additionally
saving dynamic energy in the caches which use decay-based
leakage energy management. Their technique works on the
observation that in a cache, using cache-decay mechanism
[13] for saving leakage energy, several cache-blocks may be
dead. Thus, by making an early determination of these dead
blocks, the accesses to these cache blocks can be avoided,
which leads to saving of dynamic energy of the cache. To
this end, their technique uses a decaying Bloom filter to track
liveliness information of each cache way of the cache sets. The
Bloom filter enables an early prediction of cache miss, and
thus, based on this information, only selected cache ways are
accessed, which leads to saving of dynamic energy of cache
access. Since way-selection mechanism, unlike way-prediction

mechanism, gives definite information about a cache miss, it
always leads to uniform cache hit latency.

VI. CACHE ENERGY SAVING IN REAL-WORLD CHIPS

In this section, we discuss a few commercial chips which
provide runtime power management features.

Malik et al. [135] discuss Motorola M Core M340 processor
which provides the flexibility of turning-off ways of L1 cache
for saving energy. Gerosa et al. [136] discuss the design
of a low-power Intel processor designed for Mobile Internet
Devices (MID) and Ultra-Mobile PCs. This chip uses energy
saving techniques both in L1 and L2 caches. The L2 cache
is 8-way, 512KB cache and for applications with low cache
demand, up to 6 ways can be turned off using power-gating
and sleep transistors, resulting in 10× reduction in leakage
power.

Chang et al. [137] discuss the design of 65-nm, 16 MB,
on-die L3 cache for dual core Intel Xeon 7100 chip. This
cache implements low-power techniques to save both leakage
and dynamic energy. To save leakage energy, state preserving
techniques are used in the SRAM array and peripherals
which reduce the cache leakage by more than 2X over an
unoptimized cache. To save dynamic energy, at each cache
access, only 0.8% of all array blocks are powered up. Similarly
Intel’s 45nm 8-core Enterprise Xeon processor [138] and 32nm
Westmere processor series [139] also implement several design
features for saving leakage and dynamic energy in caches.

Sakran et al. [140] discuss the architecture of 65nm dual-
core Intel Merom processor chip which has 4MB shared L2
cache. This chip uses sleep transistors (STs) in memory arrays,
decoders and write drivers. Using STs, the leakage is reduced
by 3 times while still preserving the data. Further, the chip
uses microarchitectural techniques to identify low usage of the
cache and then switches the STs of some parts of the cache
to shut-off mode which reduces the array leakage by 7 times.

Gammie et al. [3] discuss ‘SmartReflex’ power management
technology used by Texas Instruments mobile processors, such
as 90nm OMAP2420 processor [141], 65 nm OMAP3430
processor [142] and the 45 nm 3.5 G Baseband and Multi-
media Application Processor [143]. For saving both dynamic
and leakage energy in SRAM, these processors use techniques
such as state-preserving and state-destroying leakage control,
voltage scaling etc.

George et al. [144] discuss the architecture of Intel 45-
nm dual-core chip, codenamed Penryn, which has several
features for saving both leakage and dynamic energy. Penryn
is based on Core microarchitecture and has a unified, 24-way
L2 cache having a size of 6MB. The cache is organized in
1MB slices each containing 4,096 lines and 4-ways. Also, each
slice consists 32 data banks, each of which contains 2 sub-
arrays. For saving leakage energy, the hardware design allows
turning off cache at the granularity of a single slice (4 ways).
For saving dynamic energy, the cache controller activates only
half of the sub-array for any L2 access.

Branover et al. [145] discuss the architecture of AMD
Fusion APU (accelerated processing unit), named Llano which
is designed with 32-nm technology. The Llano APU consists
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of four x86 CPU cores each of which has a private 1MB
L2 cache. For leakage energy saving, Llano provisions power
gating each core and its associated L2 cache separately.

Zhang et al. [146] discuss the design of 65nm SRAM
which uses sleep transistors for saving leakage energy. This
SRAM can dynamically control sleep transistors to reduce
leakage energy of the cell by 3 to 5 times, while preserving its
information content. Several other SRAM designs implement
power management features, for example, [147]–[150].

VII. CONCLUDING REMARKS

Driven by continuous innovations in CMOS fabrication
technology, recent years have witnessed wide-spread use of
multicore processors and large sized on-chip caches for achiev-
ing high performance. However, due to this, total power
consumption of processors is rapidly approaching the “power-
wall” imposed by thermal limitations of cooling solutions and
power delivery. Thus, to be able to continue achieving higher
performance using technological scaling, managing the power
consumption of processors has become a vital necessity.

In this paper, we have reviewed several architectural tech-
niques proposed for managing dynamic and leakage power in
caches. We have also discussed examples of commercial chips,
which provide mechanisms to save cache power at runtime. We
believe that our survey will enable researchers and engineers to
understand the state-of-the-art in microarchitectural techniques
for improving cache energy efficiency and motivate them to
design novel solutions for addressing the challenges posed by
future trends of CMOS fabrication and processor design.
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