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Abstract. Stability of a learning algorithm with respect to small input pertur-
bations is an important property, as it implies the derived models to be robust
with respect to the presence of noisy features and/or data sample fluctuations. In
this paper we explore the effect of stability optimization in the standard feature
selection process for the continuous (PCA-based) k-means clustering problem.
Interestingly, we derive that stability maximization naturally introduces a trade-
off between cluster separation and variance, leading to the selection of features
that have a high cluster separation index that is not artificially inflated by the
feature’s variance. The proposed algorithmic setup is based on a Sparse PCA ap-
proach, that selects the features that maximize stability in a greedy fashion. In
our study, we also analyze several properties of Sparse PCA relevant to stabil-
ity that promote Sparse PCA as a viable feature selection mechanism for clus-
tering. The practical relevance of the proposed method is demonstrated in the
context of cancer research, where we consider the problem of detecting poten-
tial tumor biomarkers using microarray gene expression data. The application of
our method to a leukemia dataset shows that the tradeoff between cluster sepa-
ration and variance leads to the selection of features corresponding to important
biomarker genes. Some of them have relative low variance and are not detected
without the direct optimization of stability in Sparse PCA based k-means.

1 Introduction

The stability of a learning algorithm with respect to small input perturbations is gener-
ally considered a desired property of learning algorithms, as it ensures that the derived
models are robust and are not significantly affected by noisy features or data sample
fluctuations. Based on these motivations, the notion of stability has been employed by
several popular machine learning paradigms (such as Bagging) and it has been the cen-
tral theme in several studies that focus both on the theoretical study of stability and
the development of practical stability optimizing algorithms. Albeit the considerable
amount of research that has been devoted to the study of stability, the interplay between
clustering stability and feature selection has not been substantially investigated. This is
because most feature selection frameworks do not take into account the contribution of
the features to the variance of the derived models and solely evaluate the “relevance”
of each feature to the target class structure. This may result in suboptimal models since
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prediction error is, as illustrated by the bias-variance decomposition, affected by both
the relevance of each feature (bias) and its contribution to the stability (variance) of the
resulting data model. These considerations, that are also discussed in [13]] motivate the
study for practical feature selection algorithms that achieve the right balance between
the bias-variance tradeoff and optimize the predictive ability of the resulting models.

In the context of this work we undertake this challenge and explore the potentials
of performing feature selection with the general purpose of maximizing the stability
of the continuous (PCA-based) k-means clustering outpuﬂ. The proposed analysis is
performed at a theoretical, algorithmic and empirical level, which are summarized in the
sequel. From the theoretical point of view, we demonstrate that stability maximization,
naturally leads to a cluster separation vs. feature variance trade off that results in the
selection of features that have a high cluster separation index that is not artificially
inflated by the feature’s variance. This conceptual contribution brings new insights to
the theoretical properties of stability, provides practitioners with a clear understanding
as to when the stability maximizing objective is appropriate in a specific application
context and also allows for the effective interpretation of the success (or possible failure)
of the stability based feature selection process.

From the algorithmic point of view, we propose a Sparse PCA formulation for se-
lecting the relevant features that maximize the stability of the continuous clustering
solution. Sparse PCA presents a natural choice, since the continuous k-means solution
is derived by the principal components, i.e. the dominant eigenvectors of the feature
covariance matrix [5]. In our study of Stable Sparse PCA we derive several interesting
results that are related to the suitability of Sparse PCA for feature selection in cluster-
ing and also, to the stability of the Sparse PCA output. Specifically, we demonstrate
that Sparse PCA can be derived as a continuous relaxation to a feature selection prob-
lem that optimizes for a cluster separation index. Moreover, we show that double cen-
tering the data before the application of Sparse PCA, leads to a “two-way” stability
property. Le. the stability of the instance-clusters becomes equal to the stability of the
feature-clusters. This is an important observation that complements our work with data
mining algorithms that utilize the feature clusters in the data mining process. Finally,
we propose a novel “two-way” stable Sparse PCA algorithm that relies on a greedy
lower bound optimization. These results can be considered as side-contributions to our
understanding of Sparse PCA as a feature selection mechanism for clustering.

Empirically, we verify the proposed Stable Sparse PCA framework in the context
of Cancer Research. In our experiments we have employed four publicly available mi-
croarray datasets that are related to the identification of certain cancer types. The ex-
periments demonstrate that the proposed Stable Sparse PCA method is competitive and
often superior to state-of-the-art feature selection methods. In particular, we consider
the problem of detecting potential tumor biomarkers using microarray gene expres-
sion data. Application of our method to leukemia gene expression data shows that the
tradeoff between cluster separation and variance leads to the selection of features cor-
responding to important biomarker genes. Some of them have relative low variance and
are not detected without the direct optimization of stability.

! With the term continuous k-means clustering problem we refer to the continuous relaxation
approach for approximating k-means [5].
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2 Spectral k-means

K-means clustering is arguably the most popular clustering algorithm among data min-
ing practitioners, and albeit its introduction more than 50 years ago, it still constitutes an
active area of research. The goal of K-means is to find the clustering that minimizes the
sum of squared distances of the elements of each cluster to the cluster centers. Formally
this objective can be stated as: Jx = X | Yiec, Ixi — pl |> where we consider x; to be
the instance vectors, 1 the respective cluster centers and Cy, to denote the clusters.

The most popular heuristic for approximating Jx is the standard Lloyd’s algorithm,
that starts with a random initial guess of the cluster center and iteratively converges
using an EM-style iterative process to a local optima of the k-means objective. In the
context of this work, we focus on a different approximation scheme for the k-means
objective that is based on the continuous (spectral) relaxation of the discrete cluster
assignment vector[5]. The Spectral relaxation allows us to study the stability of the
clustering output using the advanced results of matrix perturbation theory [18]].

In order to illustrate spectral k-means, we recall from [5]] that the k-means problem
can be written in equivalent form as: Jx = Trace(X fTCX fc) — %JD where X, is the input
m x n feature-instance matrix, with centered features (rows), and Jp in the 2-cluster
case (clusters ¢; and ¢, with sizes n; and n,) is defined as:

_ niny zd(ChCZ) _ d(61;61> _ d(62;C2) (1)

n niny nj n;

Jp

with d(ck,c1) = Yiee,, jec, 1% — x;||*. Moreover, in [3] it is demonstrated that Jp =
2Trace(Q,7;_1XfTCXfCQK_1), where Qk_1 is an x (K — 1) matrix (n =#inst., K =#clust.)
that contains the discrete cluster labels (for the discrete cluster values of matrix Qg |
we refer to [3]]).

Based on the afore equations, the minimization of Jx is equivalent to the maximiza-
tion of Jp. By applying the continuous relaxation to Jp, the continuous solution is de-
rived by projecting the data to the k — 1 principal eigenvectors, i.e. the k — 1 dominant
eigenvectors of the Covariance matrix that correspond to the largest eigenvalues. Nat-
urally, the spectral solution will contain the continuous values and an extra step needs
to be applied to discretize the continuous cluster assignments with a popular heuristic
being the application of standard Lloyd’s k-means to the reduced principal eigenspace.

It can be noticed that the minimization of Jk is equivalent to the maximization of Jp
because Trace(X fTCX rc) is a constant that is equal to the (scaled) sum of variances of

the available featuresd. In a feature selection setup this term will not remain constant
since different features may have different variances, unless the data are appropriately
preprocessed such that they have equal variances.

The stability of Spectral k-means can be evaluated using Matrix Perturbation Theory
[L8]. The relevant theorems designate that the stability of the continuous Spectral k-
means solution depends on the size of the eigengap Ay — A between the k — 1 and the
k largest eigenvalues of the relevant matrix with a larger eigengap implying improved
stability. Thus, a stability optimizing algorithm should aim to maximize this eigengap.

? This is because Trace(X] X7.) = Trace(X;.X],).



424 D. Mavroeidis and E. Marchiori

3 Stable Sparse PCA

3.1 Stability Maximizing Objective and the Cluster Separation/Variance
Tradeoff

We will now move on to define the appropriate optimization objective for feature se-
lection that maximizes the stability of the Spectral k-means clustering output. The pro-
posed formulation is based on the Sparse PCA approach in [3], with the appropriate
modifications that account for stability maximization.

In order to optimize for stability, we incorporate a term that accounts for the dif-
ference between the two largest eigenvalues. Since the aim is to distinguish between
the two largest eigenvalues and not between A_; and Ay, our framework initially con-
siders the two-way clustering problem, and extends for k > 2-way clustering using a
deflation method analytically described in Section 4.3l In this manner, the proposed
framework can select a different subset of features at each sequential step (for each
eigenvector) thus possibly identifying different feature subsets for separating between
different
clusters.

For facilitating the optimization problem we consider the average difference between
the largest eigenvalue with the rest. Le. ! 37 | (A — ;) instead of A — A,. Although
this formulation will not directly optimize for the difference between the largest eigen-
values, the objective will have a stronger incentive for minimizing the eigenvalues that
are closer to A; since they will contribute more to the maximization of the average
difference. As we will illustrate in this section, the difference between the largest and
the consecutive eigenvalues gives rise to a tradeoff between maximizing the distance
between clusters and the feature variances. This balancing essentially imposes a vari-
ance based threshold on a cluster separation index and utterly selects the features that
optimize the harder separation objective.

Before we move on to define our objective function we will clarify the notation we
will use. We will denote X as our input m x n (feature-instance) matrix, G, = (I —
ene,{ /n), denotes the standard row (feature) centering matrix, u is a vector of length m,
with u(i) = 1 if feature i is retained in the final solution. diag(u«) is an m x m diagonal
matrix with vector  in its diagonal (i.e. u(i,i) = 0 if feature i is removed, otherwise it
is equal to 1), and card(u) is equal to the number of non-zero elements of u (i.e. the
number of features that are selected. It can be observed that the multiplication diag(u)X
essentially removes the features that correspond to u(i) = 0. Finally we will denote the
column (feature)-centered matrix as Xy, = XC, and also xfc(i) as a n x 1 vector that
contains the centered vector-representation of feature i (notice we represent x (i) as a
column vector although it corresponds to row i of matrix X¢).

Based on the afore notation, the covariance matrix after feature selection (omitting
term 1/n that does not affect our optimization problem) is defined as:

Cov = diag(u)XfCXchdiag(u)

We now define the stability maximizing objective as:
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Obj= max (3 (M(Cov)—Ai(Cov)))

ue{0,1}m
_ n—1 1 yn .
— L,e%?i(}m ( N Iy (COV) - Do X,(COV))) )
_ 1
= Jax (A1(Cov) — ! Trace(Cov))

Based on the ability to express the k-means objective using the clustering separation
index Jp (as analyzed in Section [2)), we can derive the afore objective as a continuous
relaxation to the following feature selection clustering objective:

mmy | ,d"(c1,c2) _d"(er,er) _d“(exe0) |

ue{0,1}" n niny n% n%

> ui-var(f;)  (3)
i=1

1

where d®(c;,c;) = 3 3 (x,i”) —xgu))2 and x() denotes the representation of an in-
kec; IGC.,'

stance after feature selection (i.e. only the selected features are taken into account when
computing the respective distances). Moreover, var(f;) denotes the variance of feature
i. Notice that the cluster separation index is essentially the Jp of formula[Il after feature
selection. The proof of the relationship between the Objectives is mostly based on
the derivations made within [5] and is omitted due to space limitations.

Based on the afore analysis, we have demonstrated that stability optimization leads
to the introduction of a cluster separation vs. variance tradeoff in the feature selection
process. In this manner the features that are selected will have high cluster separation
value and among features with equal cluster separation value the ones with the smaller
variance will be selected. The novelty of the proposed objective resides in the fact that
it explicitly penalizes high feature variance and it leads to the selection of the feature
subset that has high cluster separation index and low variance. Although this seems to
contradict a basic rule of thumb in feature selection that considers features with high
variance to be more helpful in separating between clusters (notably, the selection of
features with high variance is commonly used as a baseline in the empirical evaluation
of feature selection algorithms), our framework can be justified by the view of feature
selection as a variance reduction process (as done in [13]]). In this conceptual approach,
feature selection improves the quality of a learning algorithm when it achieves the re-
duction of variance without significantly increasing the algorithm’s bias. Interestingly,
under this paradigm the contribution of each feature to the bias-variance of the output
model is more important that the exact identification of the relevant/non-relevant fea-
tures (i.e. a relevant feature that contributes highly to the model’s variance may not be
desirable).

The Stable Sparse PCA objective formulation currently accounts only for the max-
imization of the stability of the instance-clustering output. We use the term‘“solely” as
we will demonstrate in the next section that this objective can be extended such that it
simultaneously optimizes the stability of both instance and feature clusters.

3.2 Two-Way Stability

Several data mining frameworks employ the clustering of the features as an important
component within the general data mining process. One such example is bi-clustering,
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or co-clustering [4] where one tries to cluster simultaneously the features and the
instances for identifying the clusters of features that can be used for describing the
instance clusters. In these application contexts the stability of the clustering of the fea-
tures is of central importance, since an unstable cluster structure could result in spurious
feature clusters that are sensitive to noise or data sample variations.

Based on these motivations, we will present here the necessary extensions that are
needed such that the proposed Stable Sparse PCA objective, optimizes concurrently
both for the stability of the instance and feature clusters. We will furtheron refer to this
type of concurrent stability optimization as “two-way” stability. As we illustrate in the
following lemma, two-way stability can be achieved by employing double-centering,
a popular data processing technique. Double centering essentially centers both rows
and the columns of the data matrix such that they have zero mean. Based on double-
centering the stability between the instance-clusters and feature clusters becomes equiv-
alent. This effect is demonstrated in the following lemma whose proof can be found in
the appendix.

Lemma 1. Let X be our input m X n feature-instance data matrix. If X is double-
centered, then the stability of spectral k-means applied on the instances is equivalent to
the stability of spectral k-means applied on the features.

Based on this observation we can extend the Stable Sparse PCA objective such that it
optimizes for two-way stability. In order to achieve this goal we will define the double
centered covariance matrix (omitting again the 1/n factor) as:

Cov = CiXseX/.Ch 4)

The notation is the same as in the previous section, with the addition of C;,, that is
a matrix that performs instance-centering after feature selection, i.e. it is defined as
Ct = diag(u)(I — canli<u) emel,)diag(u). It can be observed that if we consider the mul-
tiplication C;, X, the instances (columns) of matrix X are centered after the removal of
features that correspond to u(i) = 0. The two-way stability optimizing objective is now
defined simply by replacing the new Cov matrix in the optimization problem[2l Having
defined the two-way stable Sparse PCA objective, we will move on in the next section
for defining the appropriate efficient optimization framework for performing feature
selection.

4 Optimization Framework

4.1 Useful Bounds for Optimizing Stability

Sparse PCA problems are known to be computationally hard and several approximation
schemes have been developed for tackling them. In the context of this work we adopt the
general approach of performing a greedy forward search that optimizes a lower bound
of the stability maximizing objective. This general approach has been also adopted
by other Sparse PCA algorithms (such as [3]]). The derived bound is summarized in
Theorem[Il In the theorem statement we use the same notation as in Section[3.1} card
denotes the cardinality of a set, xy.(i) denotes the centered representation of a feature
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and C}; is a matrix that performs instance-centering after feature selection, i.e. it is
defined as C = diag(u)(I — car;(u) emel Ydiag(u). The bound is derived for the more
complex two-way stable objective. Based on the proof, a simpler bound for the one-way

stability case can also be obtained.

Theorem 1. Let I be a set of features and m a feature such that m does not belong to
set I. Moreover, let v denote the dominant eigenvector of matrix X fTCCj;,X fc as computed
using features in set 1. Then, the following lower bound can be derived:

Obj(IU{m}) > Obj(I) +B

where

B= (1= gl 107 g (m)? — tge(m) T xge(m)]

— ety (e VT (V) = (et (0)) e (om)]
errd([)(al,,d(])H) [(VT Yicl xfC(i))2 - ’11 (Xier xfC(i))T (Xier xfC(i))]

It can be observed that the computational cost of this bound is dominated by the cost of
computing the dominant eigenvector v of matrix X fTCC,L,gX ‘e The suitability of this bound
for selecting the feature subset that maximizes for two-way stability is illustrated in the
experiments section.

4.2 Greedy Solutions

In order to design efficient approximation schemes for the Stable Sparse PCA objective,
we turn to greedy approaches. The proposed greedy algorithm is essentially an adapta-
tion of the greedy strategies proposed in [3] that takes into account for the two distinct
elements of our framework (double-centering and two-way stability). Our greedy al-
gorithm also takes advantage of the lower bound derived in Theorem [1l and performs
the greedy search without explicitly computing the objective function for each candidate
feature.

The complexity of Algorithm 1 is O(np? + n?p? + nm?) where p is the number of
selected features and n the number of instances. This is because, at each step / (when
selecting the ['" feature) in order to compute the bound we must double center the
data matrix O(nl?> + n?l) (complexity of double centering an n x [ matrix) and then
compute the maximum eigenvalue of a matrix of size n x n which is O(n?) only once
per greedy step. The candidate feature is selected based on the maximum angle between
certain vector-pairs of sizes n x 1 that induce a computational cost of O(n(m —1)).
Since, double centering and the maximum eigenvalue is computed only once per greedy
step of the algorithm, the total complexity will be O(np? + n?p? + nm?).

It should be noted that because of double centering, the proposed algorithm is not
able to select the initial feature (all features would appear to have quality equal to zero),
thus the greedy algorithm is initialized with the feature that maximizes O1 component of
the objective (as defined within the proof of Theorem[)). It can be easily observed that
this will essentially be the feature that has maximum variance. The algorithm terminates
when the desired number of features p is selected.
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Algorithm 1. (X,p)
1: Initialize with index I, where iy = argmaxjc;O1{;}.
2: repeat
3:  Compute i = argmax,-gi;B(i,Ik).(B(i,Ik) is the lower bound of theorem[T})
4: Set I =IkU{ik}.
5: until card(f; ) = p.

4.3 Efficient Deflation for Multiple Clusters

In order to extend our framework for multiple clusters (k > 2), we consider the use of
deflation. Although deflation is a rather straight forward approach for extracting mul-
tiple eigenvectors in the full feature case, it presents certain challenges in the context
of sparse methods. These challenges are analytically illustrated in [11] where several
deflation methods and their properties were thoroughly analyzed. Based on [[L1]], one
could simply employ one of the proposed methods, such as the Schur complement de-
flation, for computing the sequential sparse eigenvectors of the Covariance matrix. One
issue with employing an “of-the-shelve” approach is that we would need to compute
the Cholesky decomposition of the covariance matrix, in order to derive the new cen-
tered feature representations that are consequently employed in the bound computations
(i.e. the x . (i) in Theorem[I)). This would affect the computational cost of the proposed
method as it would include a O(m?) term for the Cholesky decomposition. In order to
avoid this computational cost we propose a deflation process that is directly applied on
the centered feature matrix Xy, using the dominant eigenvector of matrix X fTCC,';X fe. As
we will demonstrate, the proposed deflation is essentially equivalent to Schur comple-
ment deflation.

X =xp =) 5)
Starting from ¢ = 0, the original input matrix of centered features, X C(})) is used for com-

puting Cov(®) and for deriving the subset of features (as encoded in u(r = 0) €{0,1}™)
that optimizes the Stable Sparse PCA objective. Based on the selected features, the dom-
inant eigenvector v of (X }?)TCZ(U)X J(c(c)) is derived. Consecutively, we can employ the
deflation formula for computing all the necessary eigenvectors. An interesting property
of the deflation process is that at each sequential step, a different feature subset may be
derived, thus giving the flexibility to the feature selection algorithm to select different
feature subsets for separating between different clusters.

In order to illustrate the appropriateness of the afore proposed deflation method, we
demonstrate that it is equivalent to a Schur complement deflation. The proof of this
theorem can be found in the appendix.

Theorem 2. The deflation procedure defined in equation[d is equivalent to a Schur
complement deflation on the feature covariance matrix.

5 Related Work

The proposed framework is conceptually related to the work [[13]] that attributes the suc-
cess of feature selection methods to the reduction of the data model variance. Under this
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approach, features should not be selected simply by assessing their relevance to the tar-
get class but by considering the contribution that the features have to the bias-variance
tradeoff of the learned model. That is, weakly relevant features that contribute much to
the variance of the model should be excluded, while borderline-relevant features with
low variance contribution can present good candidates for inclusion. In our study we
adopt this principle and derive a criterion that selects features based on their contri-
bution to cluster separation, weighted against their variance. Interestingly the cluster-
separation variance tradeoff is derived through a stability maximizing objective.

In the relevant data mining literature, the term “stability of feature selection” is em-
ployed in a different manner and commonly refers to the robustness of the feature pro-
cess itself, i.e. the ability of a feature selection algorithm to select the same feature
with respect to noise, or data sample variations. The intuitiveness of this requirement
has resulted in several works that study the stability of feature selection algorithms
[9U7U15010421]]. Our work is substantially different from these approaches, since it fo-
cuses on the effect of feature selection to the stability of the clustering output and not the
feature selection process itself. Albeit this important differentiation, the “two-way”” sta-
bility optimization framework can be employed in conjunction with the works [21110].
This is because these methods employ the clustering structure of the features and per-
form feature selection at the clustering level (i.e. they select the relevant/stable feature
clusters). In this context our approach can be employed as a preprocessing step that
stabilizes the feature clusters thus enhancing the robustness of these methods.

The idea of selecting the features that optimize for an eigengap of a certain input
matrix was also put forward in [20]. In this work the authors propose a continuous
feature weighting scheme that achieves sparsity in an indirect manner. As opposed to
[20] we conduct a detailed analysis on the properties of a stability maximizing objective
in the context of k-means clustering. Moreover, we explicitly formulate our algorithm
as a discrete feature selection and propose a novel Sparse PCA approach for selecting
the appropriate features.

In [12] the authors optimize for stability by removing the features that contribute
maximally to the variance of the derived model. This approach does not take into ac-
count the relevance of each feature and thus high quality features may be removed.
In contrast, our approach explicitly takes into account the cluster separation quality of
each feature that is weighted against the feature-variance.

In order to empirically validate our approach we compare our approach to the popular
Laplacian score [8] and the recently proposed MCFS algorithm [1]]. Although these
algorithms are not conceptually relevant to the proposed framework, they provide a
good basis for demonstrating that the proposed feature selection framework can achieve
comparable performance with state-of-the-art algorithms.

6 Experiments

In the context of the Cancer research application, we have experimented with four pub-
licly available microarray datasets that were obtained fromhttp://algorithmics.
molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm.
The employed datasets are summarized in the following table:


http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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Name Description #Instances #Features #Classes
Chen-2002 Liver Cancer 179 85 2
Golub-1999-v2 Leukemia 72 1877 3
Pomeroy-2002-v2 Central Nervous System Tumors 42 1379 5
Ramaswamy-2001 Multiple Cancer Types 190 1363 14

We compare our feature selection framework against Laplacian Score [8], the recently
proposed MCFS algorithm [1] and the simple heuristic of selecting the features that have
maximal variance. In order to conduct the comparison, we employ the selected feature
subsets in the context of a k-means clustering algorithm and compute the achieved clus-
ter quality using Normalized Mutual Information (NMI).

It should be noted that our method differs substantially from the Laplacian Score
and MCFS. The main difference is that our method is “faithful” to the k-means objec-
tive, while the methods we compare against construct a Laplacian matrix for measuring
the relevance of the features. It is evident that the construction of the Laplacian ma-
trix can substantially influence the results (i.e. by considering different similarity func-
tions, Gaussian vs. simple inner-product or different types of graphs, k-nn Graphs vs.
Full Graphs). Thus, a major factor that determines which method is more suitable for
different application contexts depends on the ability to construct/tune an appropriate
Laplacian matrix and also on the properties of the underlying clustering structure of the
data.

For constructing the Laplacian matrix for the MCFS and Laplacian Score we employ
the cosine similarity for computing the instance-similarity matrix W and then construct
a k-nearest neighbor graph with k = 5. These settings are similar to the ones recom-
mended in [1l]. Moreover, the number of Laplacian eigenvectors that were employed
within MCFS was set to be equal to the number of clusters.

Our method constructs the continuous cluster indicators using 2 sparse eigenvectors
in all datasets (instead of #Cluster-1). In three out of four dataset this is different than
the (#Cluster-1) that is recommended by the “pure” Spectral k-means approach. In two
cases (Pomeroy and Ramaswamy datasets) we have employed only two sparse eigen-
vectors in order to obtain comparable results for a small number of features. This is
because the proposed framework can select different features for each eigenvector, thus
even when selecting a small number of features for each sparse eigenvector, the total
number of features can be much larger. In the Chen-2002 dataset we employed 2 sparse
eigenvectors for performance reasons, since we observed that using only 1 eigenvector
did not suffice to obtain a good clustering performance. We should finally note that the
standard Lloyd’s k-means algorithms was used for discretizing the continuous results
and also that we have employed the “two-way” stable version of our objective.

In the experiments we have also explored the possibilities of introducing different
tradeoffs between cluster-separation and feature variance. More precisely we have ex-
perimented with three objectives: The standard cluster-separation vs. variance trade-
off that is derived by maximizing the average eigengap between the largest and the
consecutive eigenvalues. A;(Cov) — ! Trace(Cov) (denoted in the Figures as SSPCA),
a “pure” Sparse PCA approach that maximizes solely A;(Cov) (denoted in the Fig-
ures as SPCA), and a “low variance” approach that penalizes heavily variance us-

ing A;(Cov) —yTrace(Cov), where y = M(Covp)

Trace(Cov ) i.e. it is equal to the ratio of the
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Fig. 1. Comparative Study of Clustering Quality

maximum eigenvalue to the Trace of the original full-feature Covariance matrix, before
feature selection (denoted in the Figures as LV-SPCA).

In Figure 1 we can observe that the clustering quality is competitive and often su-
perior against the relevant feature selection methods. More precisely, in all Figures at
least one of the three Sparse PCA methods is superior with the exception of Figure 1(c),
where the Laplacian Score is better for small feature sizes. Moreover, we can observe
a mixed behavior with respect to the appropriate level of variance penalization, with
LV-SPCA demonstrating a very good performance in two out of four experiments.

Apart from the indirect evaluation of the accuracy of feature selection (through clus-
tering quality) we also investigate whether the selected features can provide insights
into the underlying problem under study. For this purpose we focus on the Golub-1999-
v2 dataset [6] that is related to Acute lymphoblastic leukemia (ALL), which is the most
common pediatric cancer, accounting for 30% of all pediatric malignancies.

Golub’s dataset [6] consists of bone marrow sample from acute leukemia patients,
involving myeloid leukemia (AML) and two sub-types of acute lymphoblastic leukemia
(ALL), B-cell and T-cell ALL. The analyzed Golub-1999-v2 dataset consists of 38
ALL-B, 9 ALL-T and 25 AML samples and 1877 genes.

We compared the top 5 features selected in the first and second eigenvector generated
using two different versions of the proposed algorithm SPCA (where solely A;(Cov) is
optimized with no variance correction) and LV-SPCA that employs a strong variance
correction threshold. Table 1 shows the list of genes. As perhaps one could expect, the
variance of the genes only selected using LV-SPCA is in general smaller than the one of
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those selected using SPCA. In order to investigate the relevance of the selected genes for
the disease under study, we performed a literature research on the three genes uniquely
identified by the proposed method with direct optimization of stability.

Genes Uniquely Selected by LV-SPCA. Gene number 458 has ID M21005 at and
corresponds to the S100 calcium binding protein A8 (calgranulin A). A very recent ex-
perimental investigation has been performed in [14] which suggests that the expression
of SI00AS in leukemic cells is a predictor of low survival. This gene was not found
among top 100 of MCFS, and was ranked by Laplacian Score as 66th. Furthermore,
this gene was also not predicted as relevant by other gene ranking methods (see http://
genomics10.bu.edu/yangsu/rankgene/compare-ALL-AML-all-top 100.html#ranks table).

Gene number 1614 has ID Y00787 s at and corresponds to the Interleukin-8 precur-
sor. In [[16]] it has been suggested that Interleukin-8 upregulation may play a role in the
pathogenesis of T-cell acute lymphoblastic leukemia.

Gene number 1613 has ID M28130 rnal s at and corresponds to the Interleukin 8
(IL8) gene. It has been suggested that IL-8 may function as a significant regulatory fac-
tor within the tumor microenvironment. Recently, IL-8 signaling has been implicated in
regulating the transcriptional activity of the androgen receptor, underpinning the transi-
tion to an androgen-independent proliferation of prostate cancer cells. In addition, stress
and drug-induced IL-8 signaling has been shown to confer chemotherapeutic resistance
in cancer cells. Therefore, inhibiting the effects of IL-8 signaling may be a significant
therapeutic intervention in targeting the tumor microenvironment [[19]]. Indeed, Inter-
leukin 8 (IL-8) is currently being applied in various subspecialties of medicine either
for the purpose of rapid diagnosis or as a predictor of prognosis: in [17] an overview of
current evidence is provided suggesting that Interleukin 8 (IL-8) may serve as a useful
biomarker.

Genes Uniquely Selected by SPCA. Gene number 607 has ID M91036 rnal at and
corresponds to the G-gamma globin gene. Gene number 1798 has ID U01317 cds4 at
and corresponds to the Delta-globin gene. We did not find strong evidence of a relation
of these two genes with the leukemia pathogenesis and pharmacology.

Gene number 493 has ID U10685 at and corresponds to the MAGE A10 gene. The
mammalian members of the MAGE (melanoma-associated antigen) gene family were
originally described as completely silent in normal adult tissues, with the exception
of male germ cells and, for some of them, placenta. By contrast, these genes were ex-
pressed in various kinds of tumors. However, other members of the family were recently

Table 1. Index of top 5 genes selected by the method in the first and second eigenvector for SPCA
and LV-SPCA. The number between brackets indicates the position of the gene in the list of gene
sorted in decreasing with respect to the variance.

Method Eigenvector Featl Feat2  Feat3 Feat4 Feat5
SPCA i=1 1623 (1) 1194 (5) 493 (2) 1106 (17) 672 (33)
SPCA i=2 607 (8) 1734 (9) 435 (15) 1798 (16) 1756 (27)

LV-SPCA i=1 1623 (1) 1194 (5) 458 (18) 672 (33) 1106 (17)

LV-SPCA i=2 1614 (4) 1734 (9) 1613 (23) 435 (15) 1756 (27)



A Novel Stability Based Feature Selection Framework for k-means Clustering 433

found to be expressed in normal cells, indicating that the family is larger and more dis-
parate than initially expected [2].

The above observations indicate the effectiveness of optimizing stability for unsu-
pervised feature selection with respect to the detection of features strongly related to
the pathogenesis and pharmacology of the disease under study.

7 Conclusions and Further Work

In conclusion, we have proposed a novel feature selection framework that maximizes
the stability of Spectral k-means. The semantics of the proposed framework are ana-
lyzed in detail and it is demonstrated that stability maximization naturally leads to a
cluster-separation vs. variance tradeoff. As a matter of further work, we aim in extend-
ing our framework to Kernel k-means and also to Spectral Clustering algorithms that
employ the Laplacian matrix.

Appendix

Proof (Proof of Lemmall). Based on [J3]], the continuous solution for the instance clus-
ters is derived by the k — 1 dominant eigenvectors of matrix X fTCX e, Where Xy is a
feature-instance matrix with the rows (features) being centered. Since X is double-
centered the sum of rows and columns of X will be equal to 0, i.e. ¥,; X;; = ; X;; = 0.
Thus, the continuous solution of Spectral k-means (for instance clustering) will be de-
rived by the k — 1 dominant eigenvectors of matrix X’ X.

Analogously, the continuous solution for the feature clusters is derived by the k — 1
dominant eigenvectors of matrix X;.X., where X, is a feature-instance matrix with the
columns (instances) being centered. Since X is double-centered, we will have that the
instance-centered matrix X;. will be equal to X, i.e. X;. = X. Thus, the continuous cluster
solution will be derived by the dominant eigenvectors of matrix XX 7.

Using basic linear algebra one can easily derive that the matrices XX” and X7 X have
exactly the same eigenvalues.

Thus A1 (XXT) = M (XXT) = M1 (XTX) — M(XTX), and the stability of the rele-
vant eigenspaces will be equivalent.

Proof (Proof of Theorem[l). We will start by decomposing the components A;(Cov)
and Trace(Cov).
For A1 (Cov) we have:

A1 (Cov) =\ (C;IEXfCXchC;Z)

=M (XfT.CC};XfC)

M (X iag ) (1~ gyra(, eme )i ()X )

max vT(XfTCdiag( u)(l— card ) EmEin T)diag(u)X . )v

Ivll=
= max v (XT diag(u)X . )v

M=
car(ll() ( Cdiag( )emeriag( )Xfc> )

i ; iV x7e(1))* = caraguy " 2 wixse(i))>?
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In the above derivations we have used the following, easily verifiable facts: A (AAT) =
M(ATA), C = (cv)T, C* = (C)? and diag(u) = (diag(u))>.
For Tr(Cov) we have:

Tr(Cov) = Tr(C XX}, Cpy)

Tr (X} CXrc)

Tr(Xycdiag(u) (I — canli(u)eme )diag(u)X.)
Tr( fcdlag u)Xse)

Tr(Xf diag(u)epne,, diag(u)X )

card(u)

In these derivations we have used the following properties of the matrix Trace:
Tr(AAT) = Tr(ATA), Tr(A + B) = Tr(A) + Tr(B) and Tr(BA) = BTr(A).
Now for Tr(X/ diag(u)Xs.) we have:
Tr(X/ diag(u)Xsc) = Tr(diag(u) XX} diag(u))

_ i wixse (i) xpe i)

Finally, for ., 4, Tr(X {diag(u)eye;,diag(u)Xs.) we have:

card

Tr(Xdelag( u)epel diag(u)Xs.) =
card(u)Tr( leag( )XfCXﬁdiag(u)em) =

a2, e (1) (3, wie()

card(u)

Based on the afore derivations we can write the objective function as:

1
0 — O 6
e lO1 card(u) O ©

Where
0, i 07 ege )~ g a7l

2 uixre(i 2 uix g (i 2 uixse(i

Based on the derivation of the objective function using O and O; and also the fact that
for all v such that ||v|| = 1 it holds that A; (A) > xT Ax, the lower bound can be derived.

Proof (Proof of Theorem[2). Recall that in Schur complement deflation, the deflation
step is performed as follows:

A_1xxl A,
A=A — t ;th, t—1
X A1

Now if we consider that A, = X }? (X }?)T and also that x; is the dominant eigenvector

of matrix Cov! ’l), we can write:
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T
A=A — At;f}i\ti]ﬁ;f} =
(1=1) (3 (=D\T T3 =1) (=D T
O T _ ) g Xpe  Kpe )Tl X (X )
Xpe(Xpe)” =Xpe (X ) Ty ) 7
XfC (Xfc )Tx,

Recall that x; is the dominant eigenvector of Cov"1) that can be written as Cov(~!) =

C,':,<t—1)X(tc_l>(X(Z_D)TC” =D (1 e. it is based on the selected feature subset u(r — 1)).
Since CovV isa double centered matrix (its rows and columns are centered through

the multiplication with Cm ) its dominant eigenvector will also be centered, i.e.

( u(t—1)

m )X = x;. Based on this property, we can write:

—1 -1 u(t—1 -1 1
xtTXJEtC >(Xj<ftc )) TCm(t >X]<‘tc )(X}c ))Tcm(t )x, ©
=T Covl ™V, = Al
Now, (X ;fc_l) )T x, can be written as:
(g ) = ()T en ™ = Ve, ©)

where v; is the dominant eigenvector of (X ( (= ]))TCH(I Dx }c D and k,(fu;]) is the domi-
nant eigenvector of Cov(' 1.
Based on equations [7l8ll9] we can write

Ar_1xexl A,
A=A, — t— 11X 1‘1:>
t t—1 erAt—]xt

X(t) (X(t))T :X(tfl)(X(tC*]))T 7X(17])V1VtT(X<~til))T =

c c c c fc

—1
XX
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