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SIFT 기반 카피-무브 위조 검출에 대한 타켓

카운터-포렌식 기법

Munkhbaatar Doyoddorj†⋅이 경 현††

요     약

Scale Invariant Feature Transform (SIFT)은 높은 매칭 능력과 회전이나 스케일 조정 시 안정성으로 인해 이미지 특징 매칭을 위해 많은 

응용에서 사용되어지고 있으며, 이러한 특성으로 인해 카피-무브 위조 검출을 위한 핵심 알고리즘으로 각광받고 있다. 하지만 SIFT 변환은 이

미지 조작의 증거를 감출 수 있는 안티포렌식의 가능성이 높음에도 불구하고 이에 대한 연구는 거의 없으므로, 본 논문에서는 의미론적으로 허

용될 수 있는 왜곡을 적용하여 SIFT 기반 카피-무브 위조 검출을 방해하기 위한 타켓 카운터-포렌식 기법을 제안한다. 제안 기법은 공격자가 

유사성 매칭 절차를 속일 수 있는 동시에 SIFT 키포인트의 변형을 통한 추적을 방해하여 이미지 조작의 증거를 숨길 수 있는 방안을 제공한

다. 또한 제안 기법은 의미론적 제약 하에서 가공된 이미지와 원본 이미지 간의 높은 충실도를 유지하는 특성을 가진다. 한편, 다양한 조건의 

테스트 이미지에 대한 실험을 통해 제안 기법의 효율성을 확인하였다.

키워드 : 카운터-포렌식, SIFT, 카피-무브 위조 검출, 추적 숨김
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ABSTRACT

The Scale Invariant Feature Transform (SIFT) has been widely used in a lot of applications for image feature matching. Such a 

transform allows us to strong matching ability, stability in rotation, and scaling with the variety of different scales. Recently, it has been 

made one of the most successful algorithms in the research areas of copy-move forgery detections. Though this transform is capable of 

identifying copy-move forgery, it does not widely address the possibility that counter-forensics operations may be designed and used to 

hide the evidence of image tampering. In this paper, we propose a targeted counter-forensics method for impeding SIFT-based copy-move 

forgery detection by applying a semantically admissible distortion in the processing tool. The proposed method allows the attacker to 

delude a similarity matching process and conceal the traces left by a modification of SIFT keypoints, while maintaining a high fidelity 

between the processed images and original ones under the semantic constraints. The efficiency of the proposed method is supported by 

several experiments on the test images with various parameter settings.
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1. Introduction1) 

Digital image has experienced tremendous growth in 

recent decades, and digital camera images have been used 
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for a growing number of applications. With such increasing 

popularity and the availability of low-cost image editing 

software, the integrity of digital image contents can no 

longer be taken for granted. Therefore, the research on 

digital image forensics and tamper detection has gained a 

great concern. The basic idea of image forensics is that a 

number of traces are remained in the media when a 

processing tool is applied to digital contents. Several 

methods have been proposed to leverage on these traces 
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and reach some conclusions on the past history of the 

object; there are techniques for integrity verification, 

source identification or classification, analysis of near- 

duplicates dependencies and many others[1].

However, every image forensics tool has assumed that 

the image forger has not taken any countering measure to 

remove its trace. In reality, likewise other information 

security fields, vulnerabilities in the existing forensic tools 

can be exploited, and the modified images can not only 

fool our eyes, but also pass safely through detection 

techniques. Thus there is an essential need to re-evaluate 

all existing forensics tools to take countering measure into 

account[2]. In the field of forensics sciences, countermeasures 

to the investigation activities are known under the name 

of counter-forensics or anti-forensics. The counter-forensics 

aims at concealing the traces introduced by processing 

tools when the user edits or tampers image contents. 

Harris[3] defined counter-forensics techniques as any 

attempt to compromise the availability or usefulness of 

evidence for the forensics process. Under this 

interpretation, the simple wiping-off of fingerprints on a 

crime scene can be considered as a counter-forensics act. 

In a similar way, multimedia counter-forensics involves all 

those means that allow covering traces of image 

manipulation, or, more precisely, to make manipulation 

invisible to the existing detection methods. Hence, the 

study of counter-forensics methods misled as forensics 

techniques by tamper hiding or concealing traces of 

manipulations, is becoming a hot research topic[4].

Most of the tamper hiding algorithms are came from 

steganalytic research [5]. Both of them try to achieve 

undetectability by preserving image properties as many as 

possible. Yet, steganography and tamper hiding differ in the 

amount and source of information to hide, and the extent to 

which an image can be altered. Most steganographic 

methods are designed to embed a given message by 

minimizing the number of changes to the cover (hence, 

keep its semantics) while tamper hiding merely conceals 

the information that larger parts of the original medium 

have been modified with the aim to change its semantics 

[6]. Nevertheless, counter-forensics techniques do not 

have the requirement to transmit a message, so the 

modification is more flexible.

The research on attacks against forensics techniques is 

important to investigate forensics detectors, as steganography 

for steganalysis and vice versa. Kirchner et al.[7] 

introduced the concept of fighting against image forensics. 

The distinction of this concept is between post-processing 

and integrated techniques, and between targeted and 

universal ones. A counter-forensics technique belongs to 

the post-processing class if it consists of two steps: first 

the attacker performs the tampering, thus obtaining a 

desired modified content, then he processes the content so 

to conceal or erase the detectable traces left during the 

first step. On the contrary, an integrated counter-forensics 

technique modifies the image so that it does not expose 

detectable traces. It is easy to guess that, developing 

integrated methods is much harder in most cases. The 

second distinction is related to the target of the 

counter-forensics method: if it aims at removing the trace 

searched for by a specific detector, then it belongs to the 

targeted family. A universal method, instead, attempts to 

maintain statistical properties as many as possible, so to 

make the processed image hard to be detected with tools 

unknown to the attacker.

One of the most common types of image forgeries is the 

copy-move forgery, where a region from one part of an 

image is copied and pasted onto another part in same 

image, thereby concealing the image content in the latter 

region. Copy-move is one of the easiest way to make a 

forged image, hence the attacker can actively use a 

copy-move technique for image forgery. The capability of 

SIFT to discover correspondences between similar visual 

content, in fact, allows the forensics analysis to detect even 

very accurate and realistic copy-move forgery[8, 10, 11].

The remainder of the paper is organized as follows: In 

section 2, we summarize previously published papers 

concerned with the topic of this paper. Impeding a 

SIFT-based copy-move forgery detection method is 

presented in Section 3. The experimental results are 

provided in Section 4. Conclusion is drawn in Section 5.

2. Related Work and Contribution

The literature on counter-forensics techniques is still 

very limited compared to the fast growth of publications 

on image forensics techniques. A SIFT is a powerful 

instrument to recognize and retrieve object, an analysis 

on SIFT security becomes very important also in the 

case of Content Based Image Retrieval (CBIR) systems in 
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order to assess if an attacker is able or not to succeed in 

deluding the image recognition process. 

For the region duplication detection, several recent 

methods have explored the use of matched image 

keypoints to identify duplicated regions. In Huang et al. 

[8], keypoints and features based on the scale invariant 

feature transform [9] are used to account for illumination 

changes in the detection of copy-move region duplication. 

However, the robustness of SIFT keypoints and features 

to image distortions is not fully exploited, which prevents 

this method from being extended to detect affine 

transformed duplicated regions. In Pan et al. [10], they 

describe an SIFT-matching-based detection method that 

can locate duplicated regions with rotation or scaling. 

Another recent work Amerni et al. [11] uses SIFT 

keypoint matching to estimate the parameters of the 

affine transform and recover matched keypoints.

As a countermeasure to the aforementioned SIFT- 

based solutions, an intuitive method is to remove original 

feature points or insert fake feature points in an image 

while maintaining certain visual quality. A paper by Hsu 

et al. [12], in which first the impact of simple attacks is 

analyzed and then a method to strengthen SIFT features 

(keypoints) is proposed. Following this work, Do et al. 

[13-14] focused on a SIFT-based CBIR scenario and 

devised a number of interesting attacks. The aim of the 

previous works is to modify the SIFT feature descriptor 

of a keypoint but they are not interested in the complete 

removal of the keypoints. A pioneer work on this has 

been presented in Cadelli et al. [15] where an attack 

based on local warping techniques derived from image 

watermarking was proposed. All these studies have 

demonstrated that devising methods to attack SIFT 

feature is not a trivial task.

The main contribution of our work is to demonstrate a 

counter-forensics research against image forgery detection 

based on the counter-forensics techniques by concealing 

manipulation traces. The actual reliability of such methods 

can only be estimated by considering what an attacker 

can try to do to invalidate detection techniques. The key 

insight of our work is investigated in this paper by 

analyzing countermeasure method against SIFT algorithm 

to recreate keypoints in a keypoints removed image while 

still avoiding keypoint matching for a copy-move forgery 

detection. The keypoint creation sometimes inevitably 

accompanies the keypoint removal. Additionally, keypoint 

removal and insertion are harmful to scale-space image 

feature extraction. Also, keypoint removal or creation 

mechanism is not suitable for image counter-forensics, 

because the forensic analyst can easily identify the traces 

of manipulation. In order to solve this problem, we 

propose an attack which is successful in deluding a 

SIFT-based copy-move forgery detection, that can 

simultaneously remove and create the keypoints in the 

image to conceal the traces by keeping with the same 

keypoints removal and creation rate.

To provide an experimental validation, we need to 

choose a specific scenario. This consists of selecting a 

detector for the forensics analyst and a processing tool 

for the adversary. During the whole procedure, the 

adversary can exploit the knowledge of the detector used 

by the forensics analyst since we are aiming at a 

targeted counter-forensics method. 

Basically, our attack aims at identifying the security 

weakness of the SIFT that employ scale-space keypoint 

detection mechanism and should not be interpreted as the 

conventional attacks (signal processing or geometric 

attacks) that are blind in destroying the keypoints. 

3. Impeding SIFT-Based Copy-Move Forgery 

Detection

The research community has recently started to 

approach SIFT-based copy-move forgery detection from 

the perspective of the attacker, whose goal is to hide the 

features causing similar blocks or keypoints to match. In 

this section, we describe an attack scenario to impede a 

SIFT-based copy-move forgery detection methods. Our 

activity is countermeasure against the exact detection of 

feature points in digital image. In presence of a 

copy-move manipulation the extracted SIFT keypoints 

from the copied and the original regions have similar 

descriptor vectors. Therefore, matching among SIFT 

features adopted to detect if an image has been tampered 

with and, subsequently, localize such forgery. In this 

sense, the investigation of the attacker is considered on 

the keypoints extraction of tampered image.

Lowe [9] has presented a powerful framework to recognize 

or retrieve objects. The SIFT approach can be viewed as a 

texture descriptor composed by four major stages:
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1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment 

4. Keypoint description

Our main intention is investigated in this paper by 

avoiding the local extrema in the scale-space extrema 

detection stage. At first, we introduce a scale-spaces for 

the extraction of SIFT descriptor, and then we present 

our proposed method. Our method modifies the selection 

of local extrema on DoG space by using semantically 

admissible distortion.

3.1 Scale-Spaces

1) Gaussian Scale-Space 

The SIFT detector and descriptor [9] are constructed 

from the Gaussian scale-space of the source image 

 , which is defined as a function  . This is 

produced from the convolution of   with a variable- 

scale Gaussian  :

 ∙ (1)

where ∙  is the convolution operation in   and  , and

Fig. 1. Scale-space representation. (a) Gaussian scale-space, 

(b) Scale-space extrema detection

 






 



(2)

where   is an isotropic Gaussian kernel of 

variance ,   and   are the spatial coordinate and   is 

the scale coordinate.

Since the scale-space   represents the same 

information (the image ) at different levels of scale, 

it is sampled in a particular way to reduce redundancy as 

shown in Fig. 1(a). The domain of the variable   is 

discretized in logarithmic steps arranged in   octaves. 

Each octave is further subdivided in   sub-levels. The 

distinction between octave and sub-level is important 

because at each successive octave the data is spatially 

downsampled by half. Octaves and sub-levels are 

identified by a discrete octave index   and sub-level 

index  , respectively. An example of Gaussian scale- 

space representation is illustrated in Fig. 1.

The octave index   and the sub-level index   are 

mapped to the corresponding scale   by the formula,

  


∈min  ∈ (3)

where ∈  is the base scale level, ∈  is the 
scale resolution. Note that it is possible to have octaves 

of negative index. The spatial coordinate   and   are 

sampled on a lattice with a resolution which is a function 

of the octave. We denote   and   the spatial index for 

octave ; this index is mapped to the coordinate   and 

  by 

     


∈  ∈  ∈ (4)

where   is the spatial resolution of octave .

Fig. 2. An example of a Gaussian scale-space representation

If   is the resolution of the base octave  , 

the resolution of the other octaves is obtained as

 ⌊⌋  ⌊⌋ (5)
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It will be useful to store some scale levels twice, 

across different octaves. We do this by allowing the 

parameter   to be negative or greater than  . Formally, 

we denote the range of   as min max . We also denote 
the range of the octave index   as min min , 
where ∈  is the total number of octaves. Table 1 for 
a summary of these symbols used in this paper.

2) Difference of Gaussian Scale-Space 

To efficiently detect stable keypoint locations in 

scale-space, the algorithm make use of another scale- 

space too, called difference of Gaussian (DoG), which is, 

coarsely speaking, the scale derivative of the Gaussian 

scale-space   along the scale coordinate  , as 

shown in Fig. 1(a). The difference of Gaussian pyramid is 

generated from a single input image. 

Table 1. Scale-space parameters

The output is a pyramid of several images, each being 

a unique difference of Gaussians. To generate the pyramid, 

the input image is repeatedly blurred; the difference 

between consecutive blur amounts is then output as one 

octave of the pyramid. One of the blurred images is 

downsampled by a factor of two in each direction, and 

the process occurs again with output in a different size. 

It is given by

  
∙

(6)

Lowe’s [9] implementation uses the following parameters:

     ∙
 min    

In order to compute the octave , the image is 

doubled by bilinear interpolation (for the enlarged image 

  . In order to detect extrema at all scales, the difference 

of Gaussian scale-space has ∈min max    . 
Since the difference of Gaussian scale-space is obtained by 

differentiating the Gaussian scale-space, the latter has 

∈min max    . The parameter   is set to 
cover all octaves (i.e. as big as possible).

The feature points are chosen from the local maxima or 

minima in the DoG space. Each point in   

will be compared with its 26 neighboringpixels, of which 8 

pixels located in current scale image and others located in 

the scale above and below. As shown in Fig. 1(b), the 

candidate pixel in black is compared with those other 26 

pixels in white. The candidate pixel will be considered to 

be a feature point and its coordinate pixel value is larger 

than all those 26 pixels values or smaller than them.

In order to impede the detection of local maxima or 

minima, we applied semantically admissible distortion on 

the DoG space. As a result, the detected keypoints are 

found on totally different positions by effect of the 

keypoint localization and the orientation assignment 

processes.

3.2 Review of Semantically Admissible Distortions

The random pre-warping must be strong enough to 

avoid that registration techniques can undo the warping 

and, in the meantime, it must guarantee the invisibility of 

the distortion. For this reason gathering information about 

the subset of semantically admissible geometric distortions 

is a vital requirement. In a general case of a geometric 

distortion can be seen as a transformation of the position 

of the pixels in the image. It is possible to distinguish 

between global and local geometric distortions.

A global transformation, in fact, is defined by a 

mapping analytic function that relates the points in the 

input image to the corresponding points in the output 

image. It is defined by a set of operational parameters 

and performed over all the image pixels.

Local distortions, in fact, refer to transformations 

affecting in different ways the position of the pixels of 

the same image or affecting only part of the image. A 

general model which comes to mind to do this is a 

distortion according to which each pixel of the image is 

assigned a random displacement vector 

∆  ∆ ∆ ,
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where ∆   and ∆  are i.i.d random variables 

uniformly distributed in the interval ∆max∆max . The 
main problem in a so defined transformation is that it does 

not take into account the way the Human Visual System 

(HVS) perceives geometrical distortions. In the following 

models to treat geometric transformations are sketched. 

The models are analyzed by means of visual inspection 

under semantic constraint.

3.3 Attacks or Local Distortions on DoG Space

Our goal is to take into account the HVS to find a 

perceptually admissible subset of the possible distortions 

that can be applied to the DoG space.

As explained above, a generic local distortion can be 

described, for example, by a permutation of the position 

of pixels on DoG space. Of course this kind of distortion 

introduces an annoying degradation. A way to overcome 

this problem could be to fix a maximum displacement of 

the position of pixels, i.e. to perform a block-based local 

permutation.

1) Block-Based Local Permutation (B-LP)

This model consists in partitioned the ×   blocks on 

DoG space and obtaining the distorted DoG space by 

allowing random permutations within each block. Here, 

the size of the partitioned block should be smaller, which 

provides a semantic constraint. Each spatial coordinates   

and   on DoG space (base ) is tiled by 

non-overlapping blocks a size of ×      pixels. 

Blocks are horizontally slid by b pixels rightwards 

starting with upper left corner and ending with the 

bottom right corner. The total number of non-overlapping 

blocks for each spatial coordinates of ×  pixels are 

  ×  ∈min .
Let   be a generic pixel of the distorted 

DoG space belonging to the B-th block in -th octave, then

←∙ (7)

where   is a random permutation of the indices 

belonging to the B-th block. Increasing the size of image 

allows to consider a larger number of transformations 

but, at the same time, affects the image quality leading 

to increasingly annoying artifacts.

Hence we permuted the element of the base levels on 

DoG space, the detection of the local maxima or minima 

is chosen in the different locations. Thus, the block-based 

local permutation allows to impede the detection of local 

invariant features with eliminating or creating a local 

features under lower rate value. This property provides 

the hiding traces left in an image counter-forensics area.

2) Cancellation-Based Local Permutation (C-LP) 

In this model, we add to the previous one the 

possibility of duplicating and canceling sample values so 

that it is also possible to model local expansions and 

shrinkings. Furthermore in this way we allow for a larger 

number of possible distortions. Let   is a 

generic pixel of the distorted DoG space, we have

←∆∆ (8)

where ∆  and ∆  are sequences of i.i.d integer 

random variables uniformly distributed in the interval 

∆max∆max .
Important property of invariant feature is measured by 

repeatability measure. The same feature can be found in 

several images despite geometric and photometric 

transformations. We test the B-LP and the C-LP 

distortions, respectively, in order to alter the detection of 

SIFT keypoints as shown in Fig. 3. As a results, the 

B-LP distortion can provide more stable and repeatability 

properties than the C-LP distortion during the increases 

of the size for divided blocks. From this results, we have 

chosen the B-LP distortion under semantic constraint to 

impede the detection of keypoints well.

4. Experimental Results

In this section, we extensively evaluate the proposed 

counter-forensics method in a realistic scenario, and show 

that it yields good results in hiding traces while retaining 

a high image quality for the attacked image.

We simulated our method under a PC with 3.2G Hz 

Core i5 CPU, 8G RAM, and Windows 8 platform. The 

simulation was carried out using Matlab version R2008a. 

We test our method on commonly used 8 gray-scale 

images of size 512×512 pixels for performance evaluation 

(Lena, Barbara,...,etc.) and Benchmark data for image 

copy-move detection dataset including 120 authentic and 
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Fig 3. The repeatability (a) and the perceptual quality (b) 

measures for the block-and the cancellation-based local permutations

124 forged color images of size 3888×2592 pixels with 

different outdoor scenes for copy-move forgery, as shown 

in Fig. 4. For Benchmark data, the authentic images were 

taken by different digital cameras. All tampered images in 

this dataset are generated from the authentic images by 

crop-and-paste operation using Adobe Photoshop CS3 

version 10.0.1 on Windows XP. The tampered regions are 

from the same authentic image. In the following tests, the 

keypoints have been computed by means of VLFeat, 

Vedaldi and Fulkerson’s implementation of SIFT [16]. 

(DoG peak and edge thresholds set to 4 and 10, 

respectively). The threshold for keypoint matching is 

fixed to 0.6, as suggested by Lowe in [9].

Fig. 4. Examples of Benchmark data (3888×2592)

4.1 Efficiency for Tamper Hiding and Impeding Keypoint 

Matching

In this section, we present an analysis on the efficiency 

of the proposed procedure for impeding keypoint matching. 

The experimental tests carried out to check the keypoint 

detection of the proposed method.

In Fig. 5, the number of original keypoints (blue) are 

detected by VLFeat algorithm, and the detected keypoints 

(green) after the proposed processing tool (adversary) are 

described on the Lena image.

During the procedures, the processing tool can eliminate 

some keypoints by an effect of semantically admissible 

Fig. 5. Results of keypoint detection. For Lena, PSNR=43.02dB. 

Size of block (3×3) on DoG space

distortion. However, similar keypoints are generated as 

such effect, also the removal percent is almost equal to 

the generation percent (around ±10%).

This means our method can provide tamper hiding 

scenario, that hiding traces left by processing tool. In 

other words, the forensics analist can detect forged 

image, that the processed keypoints by the keypoint 

removal or creation procedure. In our impeding method, 

the keypoints are eliminated while created, and rates of 

two procedures are almost equal to 1 (=Removed_ 

KP(%)/Created_KP(%)≈1).

4.2 Analysis for Copy-Move Forgery Detection 

In this section, we report some experimental results on 

images where a copy-move attack has been performed by 

taking into account the context.

1) Evaluation of the Detection Accuracy 

In Fig. 6, detection results are pictured by presenting 

on the tampered images for (a, c) a SIFT-based 

copy-move forgery detection method [17] and (b, d) the 

corresponding one, where matched keypoints and clusters, 

attacked by our processing tool, are highlighted. As a 

result, an interesting situation concerns that our method 

can impede the (similarity) keypoint matching process and 

to make false matching results.

In order to quantify the accuracy of detection, the true 

positive ratio (TPR) and the false positive ratio (FPR) are 
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Fig. 6. An examples of a SIFT-based copy-move forgery 

detection method [17] is pictured in (a,c), and corresponding 

detection results of our attacking is reported in (b,d)

employed, as follows:

 
∩∩



 
∪ ∪



(9)

where   and   are the original copied region and 

the detected copied region, while   and 
  are the 

forged region and the detected forged region, respectively.

Our goal is to minimize the TPR while maintaining a 

higher the FPR. The horizontal axis corresponds to the 

false positive rate (incorrectly labeling an image as 

altered) and the vertical axis corresponds to the true 

positive rate (correctly labeling an image as altered). We 

applied two different processing tools in order to avoid 

the detection accuracy of similarity matching for the 

copy-move forgery, such as the B-LP and the C-LP 

distortions on the DoG space, respectively. Fig. 7 shows 

the small sized B-LP can achieve higher the image 

quality while maintaining degraded the detection accuracy 

compared with non-countered method [17]. For example, 

with a false positive rate of 0.1, we achieve a true 

positive rate of 0.34. But, in the increased size of B-LP, 

the detection accuracy is reduced significantly. For the 

C-LP distortion, the detection accuracy is lower than 

other two cases, because, the cancellation is strongly 

affected to change the value of point on the DoG space, 

while also can decrease the image quality PSNR=22.31dB. 

As a result of the detection accuracy, the small sized 

B-LP approach is efficient to impede the similarity 

matching methods without higher rate of changes for the 

image quality. 

2) Efficiency for Tamper Hiding 

We calculated the removal and creation rates, 

respectively, which was conducted on each test image of 

Benchmark dataset (N = 124 images), as shown in Fig. 8. 

Each histograms of the removal and creation rates are 

concentrated on around a value of ±10%. For this case, 

our method can also successfully provide better the 

tamper hiding scenario on the number of images for 

Benchmark dataset.

Fig. 7. Results of the detection accuracy for copy-move forgery

Fig. 8. Efficiency of our method respect to the tamper hiding. 

Curves correspond to the envelopes of removal and creation 

rate histogram, obtained by analyzing the manipulated 

Benchmark data
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5. Conclusion

In this paper, we proposed a targeted counter-forensics 

method for SIFT-based copy-move forgery detection by 

applying semantically admissible distortions in processing 

tool. Our activity is a countermeasure against the exact 

detection of feature points in digital image. In the case of 

a copy-move manipulation, the extracted SIFT keypoints 

from the copied and the original regions have similar 

descriptor vectors. Therefore, the matching among SIFT 

features can be adopted to detect whether an image has 

been tampered or not and, subsequently, we can localize 

such a forgery. In this sense, the investigation of the 

attacker is considered as the keypoints extraction of the 

tampered image. Our proposed processing tool has 

considered on the DoG space of SIFT algorithm, where 

we applied the semantically admissible distortion in order 

to alter the detected keypoints under the semantic 

constraint. The proposed method allows the attacker to 

delude a similarity matching process and conceal the 

traces remained by the modification of SIFT keypoints, 

while maintaining a high fidelity between the processed 

and original images under the semantic constraint.
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