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Abstract. In this article, we report about the application of the Cadp
verification toolbox to check the correctness of an industrial protocol for
deploying and configuring transparently a large set of heterogeneous soft-
ware components over a set of distributed computers/devices. To cope
with the intrinsic complexity of this protocol, compositional verification
techniques have been used, including incremental minimization and pro-
jections over automatically generated interfaces as advocated by Graf &
Steffen and Krimm & Mounier. Starting from the Xml description of a
configuration of components to be deployed by the protocol, a transla-
tor produces a set of Lotos descriptions, µ-calculus formulas, and the
corresponding compositional verification scenario to be executed. The
approach is fully automated, as formal methods and tool invocations are
made invisible to the end-user, who only has to check the verification
results for the configuration under study. Due to the use of composi-
tional verification, the approach can scale to large configurations. So far,
Lotos descriptions of more than seventy concurrent processes have been
verified successfully.

1 Introduction

Formal verification methods are a key approach to establish the correctness of
complex and critical object-oriented systems. This is true for sequential systems,
and even more true for concurrent systems in which objects execute and interact
using several threads of control.

However, the complexity of a system grows fast as the number of objects
increases, so that attempts at verifying real-life systems are quickly confronted
to the state explosion problem. It is therefore of crucial interest to focus on
verification methods that scale up appropriately when applied to systems of
increasing complexity.

Compositional verification methods usually follow a divide and conquer ap-
proach. The system to be verified is decomposed in several components, which
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are analyzed separately; afterwards, the results of the separate analyses are com-
bined together to analyze the whole system. There are different approaches to
compositional verification, depending whether the system under analysis is se-
quential or concurrent, and in the latter case, depending on the semantics used to
model concurrency: linear-time or branching-time, state-based or action-based,
etc. There is an important corpus of literature on compositional verification; for
a survey, see for instance [19], [11, Section 1.1], [4, Sections 1.1 and 1.2], etc.

In spite of the many publications on compositional verification, the number
of real-life case-studies in which compositional techniques have been applied is
still low. This number is even lower if one considers the case of object-based
systems, since compositional verification has been so far mostly used for com-
munication protocols [20, 10, 14] or hardware protocols [3]. As for object-based
systems specifically, one can mention several lines of work. [2] uses compositional
proofs and refinement techniques to verify one-to-many negotiation processes for
load balancing of electricity use. [1] uses a compositional proof system to verify
correctness properties (expressed using the modal µ-calculus) for a set of applets
executing on open platforms.

The present article is different, as it relies on enumerative (a.k.a., explicit
state) model checking rather than proof techniques. It builds upon a prior ap-
plication of compositional verification [6] to a dynamic reconfiguration protocol
for a middleware agent-based platform. Using the Cadp [9] verification tool-
box, it was possible to establish the correctness of the reconfiguration protocol
for several finite configurations determined by the number of agents, execution
sites and protocol primitives. However, the approach did not scale well to larger
configurations, mainly because the architecture of the system was specified in a
centralized manner, all agents being connected to a central process modeling (an
abstraction of) the software bus provided by the middleware infrastructure. This
central process — more or less similar to a Fifo queue — prevented composi-
tional verification from scaling up, as it was not possible to generate its entire
state space in isolation from the remainder of the system. One key conclusion of
[6] was the need for a more decentralized architecture specification in order to
improve scalability.

Precisely, this research direction is addressed in the present article, still in the
framework of industrial middleware infrastructures although on a different case-
study than [6]. We consider here a deployment protocol for software components,
which is commercialized by the ScalAgent software company1, and which we
analyze using the compositional verification tools of Cadp.

The present article is organized as follows. Section 2 recalls the principles
of compositional verification techniques and explains how they are supported
within the Cadp toolbox. Section 3 describes the essential features of the
ScalAgent deployment protocol. Section 4 gives hints of the formal model-
ing of the deployment protocol and indicates how the modeling task was, to a
large extent, automated. Section 5 presents the main results of compositional
verification. Finally, Section 6 concludes the article.

1 http://www.scalagent.com
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2 Compositional Verification with CADP

In this section, we first present enumerative and compositional verification tech-
niques for systems composed of asynchronous processes, and we then detail how
these techniques are supported by the Cadp verification toolbox.

Given a formal specification (e.g., using the Iso formal description technique
Lotos [13]) of a concurrent system to be verified, enumerative verification relies
on the systematic exploration of (some or all) possible executions of the system.
The set of all possible executions can be represented as an Lts (Labeled Tran-
sition System), i.e., a graph (or state space) containing states and transitions
labeled with communication actions performed by concurrent processes. There
are two approaches to enumerative verification:

– In the first way, an explicit Lts is generated, i.e., states and transitions are
first enumerated and stored, then analyzed by verification algorithms.

– In the second way, an implicit Lts (consisting of an initial state and a func-
tion that computes the successors of a given state) is constructed and verified
at the same time, the construction being done on the fly depending on the
verification needs. This allows to detect errors before the Lts has been gen-
erated entirely.

For complex systems, both approaches are often limited by the state explosion
problem, which occurs when state spaces are too large for being enumerated. Two
abstraction mechanisms are of great help when attacking state explosion:

– Communication hiding permits to ignore communication actions that need
not be observed for verification purpose;

– Minimization (with respect to various equivalence relations, such as strong
bisimulation, branching bisimulation, etc.) allows to merge Lts states with
identical futures and (possibly) to collapse sequences of hidden communica-
tion actions.

A further step is compositional verification, which consists in generating the
Lts of each concurrent process separately, then minimizing and recombining
the minimized Ltss taking advantage of the congruence properties of parallel
composition. The joint use of hiding and minimization to reduce intermediate
state spaces enables to tackle large state spaces that could not be generated
directly.

Although this simple form of compositional verification has been applied
successfully to several complex systems (e.g., [3]), it may be counter-productive
in other cases: generating the Lts of each process separately might lead to state
explosion, whereas the generation of the whole system of concurrent processes
can succeed if processes constrain each other when composed in parallel.

This issue has been addressed in various refined compositional verification
approaches, which allow to generate the Lts of each separate process by tak-
ing into account interface constraints representing the behavioral restrictions
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imposed on each process by synchronization with its neighbor processes. Tak-
ing into account the environment of each process allows to eliminate states and
transitions that are not reachable in the Lts of the whole system.

Cadp2 (Construction and Analysis of Distributed Processes) is a widely
spread toolbox for protocol engineering, which offers a large range of function-
alities, including interactive simulation, formal verification, and testing. Cadp
was originally dedicated to Lotos, but its modular architecture makes it open
to other languages and formalisms. Cadp contains numerous tools for the com-
positional verification of complex specifications written in Lotos:

– As regards explicit Lts representation, Cadp provides a compact graph
format, Bcg (Binary Coded Graph) together with code libraries and tools
to create, explore, and visualize Bcg graphs, and to translate them from/to
many other graph formats.

– As regards implicit Lts representation, Cadp provides an extensible environ-
ment named Open/Cæsar [7]. Although independent from any particular
specification language, Open/Cæsar has compilers for several languages:
Lotos (Cæsar), explicit Ltss (Bcg Open), networks of communicating
Ltss (Exp.Open), etc.). The code generated by Open/Cæsar compilers
is used by on the fly algorithms to perform simulation, verification, test
generation, etc. on implicit Ltss.

– As regards Lts generation from Lotos descriptions, Cadp provides the
Cæsar and Cæsar.adt compilers, which can compile a Lotos specification
(or particular processes in this specification).

– As regards parallel composition of Ltss, Cadp provides the Exp.Open com-
piler for handling networks of communicating Ltss, connected using Lotos
parallel composition and communication hiding operators.

– As regards communication hiding, Cadp provides the Bcg Labels tool,
which allows to hide and/or rename the communication actions of an Lts.

– As regards Lts minimization, Cadp contains two tools: Bcg Min, which
performs strong and branching minimization of Ltss efficiently, and
Aldébaran, which implements additional equivalences (safety equivalence,
observational equivalence, and tau*.a equivalence) and Lts comparison al-
gorithms.

– As regards generation with interface constraints, Cadp provides the
Projector tool, which implements the refined compositional verification
approach of [12, 15]. Projector can be used to restrict Lotos processes,
explicit Ltss, as well as networks of communicating Ltss.

– As regards modeling of asynchronous communication media, we added a new
tool named Bcg Graph, which generates various classes of useful Ltss,
such as Fifo buffers and bags3. Distributed systems often contain many
occurrences of such buffers that differ only by a few parameters, such as size
and message names. Using Bcg Graph, very large buffers (several hundreds
thousands states) can be generated quickly, with a small memory footprint.

2 http://www.inrialpes.fr/vasy/cadp
3 A bag is a fully asynchronous buffer that does not preserve message ordering.



248 Frédéric Tronel, Frédéric Lang, and Hubert Garavel

– Finally, Cadp includes a scripting language named Svl [8, 16], which pro-
vides a high-level interface to all the aforementioned Cadp tools, thus en-
abling an easy description of complex compositional verification scenarios.
For instance, the scenario consisting in generating separately the Ltss of
three processes P, Q, and R contained in a file named "spec.lotos", mini-
mizing them for branching bisimulation, composing them in parallel, mini-
mizing the resulting network on the fly, and storing the resulting Lts in the
Bcg format in a file named "PQR.bcg", can be described by the simple Svl
script that follows:

% DEFAULT_LOTOS_FILE="spec.lotos"
"PQR.bcg" = root leaf branching reduction of P || Q || R;

The Svl compiler translated such an Svl script into a Bourne shell script
that, when executed, invokes Cadp tools in the appropriate order and stores
the results in intermediate files.
Svl has many additional features, namely operations to restrict a system
with respect to a given interface, to minimize systems with respect to sev-
eral other bisimulations and equivalences, to hide and rename communica-
tion actions, and statements to verify temporal logic formulas, to check for
deadlocks and livelocks, and to compare systems with respect to a given
equivalence or bisimulation. Svl scripts can also contain Bourne shell con-
structs, which enables to mix, e.g., conditionals, loops, and calls to Unix
commands with Svl statements.

3 The ScalAgent Deployment Protocol

The work presented in this article was funded in the scope of Parfums (Perva-
sive Agents for Reliable and Flexible Ups Management Services), an industrial
research project involving three companies (Mge-Ups, Silicomp Research Insti-
tute, and ScalAgent Distributed Technologies), and the Vasy research group
at Inria.

The goal of Parfums is to solve problems of Ups (Uninterruptible Power
Supply) management (installation, repair, and monitoring of remote equipments)
in the case of large scale sites, by embedding software within Upss. To master
the complexity induced by the distribution of applications, the project relies on
the ScalAgent platform for embedded systems, written in Java, to configure,
deploy, and reconfigure software. Our contribution is about the modeling of the
ScalAgent deployment protocol and its verification using the Cadp toolbox.

To ensure scalability, the ScalAgent deployment protocol relies on a tree-
like hierarchy of distributed agents communicating asynchronously by the mean
of events. The tree of agents is meant to reflect the geographical distribution of
software components to be deployed. The protocol uses two kinds of agents:

– Containers are located at the leaves of the tree hierarchy. They encapsulate
software components written in any language, and act as interfaces with the
rest of the protocol.
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– Controllers are located at higher nodes of the tree hierarchy and manage the
deployment. They only communicate with their parent and children agents,
which allows a significant reduction of communications.

Controllers are specified by a workflow of activities, themselves structured
as a tree. Activities fall into three categories, depending on the way they spawn
subactivities:

– Elementary activities are simple tasks that do not involve other subactivities.
An example of such an activity is the receipt of a particular event from a
container to signal its successful deployment, followed by an appropriate
reaction.

– Sequential activities can spawn a set of subactivities, each one being executed
after the previous one terminates.

– Parallel activities can spawn a set of simultaneous subactivities.

Beside activities, there exists a central referential process gathering information
sent by the elementary activities regarding the success or failure of the deploy-
ment. Given this data, the referential process decides whether deployment is
possible or not. The existence of communications between elementary activities
and the referential “slightly breaks” the tree structure of communications. This
is illustrated on Figure 1, the referential process being the white node in the
“tree” of activities.

To describe distributed configurations, the ScalAgent infrastructure relies
on the use of an Xml Dtd named Xolan. An Xolan configuration describes a
set of controllers and containers, their geographical distribution, as well as their
dependencies in terms of provided and required services, which rule the way the
deployment must be performed. Xolan is generic, that is, not specific to Ups
management. A graphical interface allows to specify a hierarchy of Upss and
software to be deployed and generates the corresponding Xolan configuration
automatically (see Figure 1).

Referential
process

describes

into

translates Workflow of actvities

Component

Controller

produces
Graphical
front-end

XML Xolan

Fig. 1. Different description levels for the deployment protocol.
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4 Automated Formal Modeling of Configurations

It would have been possible to model Xolan configurations using Lotos ab-
stract data types and to specify the deployment protocol as a Lotos process
parameterized by the configuration to be deployed. However, this would have re-
quired the dynamic creation of processes in function of the configuration, which
is not supported by mainstream enumerative verification tools.

Instead, we chose an automated approach by developing a translator (11, 000
lines of the object-oriented, functional language Ocaml [17]) that takes an
Xolan configuration, and produces both the Lotos specification correspond-
ing to this configuration and an Svl script to perform the verification. This
approach meets several requirements:

– Dynamic creation of processes is avoided, since the Ocaml translator can
statically determine the set of processes created by the protocol for a given
configuration.

– Xml parsing and Xolan data structure handling are delegated to the
Ocaml translator rather than being coded as Lotos abstract data types.

– Even for simple configurations, the corresponding Lotos specifications and
Svl scripts are complex, due to the large number of concurrent processes.
The existence of an automated translator allows to propagate changes in
the protocol modeling to each configuration under study so as to maintain
consistency.

To keep the formal verification of the protocol as intuitive as possible, each
activity in the specification is translated into a separate process in the gener-
ated Lotos code. This way, an incorrect behaviour in a given process can be
immediately tracked back to the corresponding activity.

The processes generated for all activities share a similar form shown on Fig-
ure 2. Each process communicates with other parts of the system using three
gates named SEND, RECV, and ERROR:

– “SEND !from !to !event” is used by the process whose identifier is stored
in variable “from”. It indicates that message “event” should be sent to the
process whose identifier is stored in variable “to”.

– “RECV ?from:PID !to ?event:EVENT” is used by the process whose identi-
fier is stored in variable “to”. Once the receipt is done, the variable “from”
of type PID will contain the identifier of the sending process and the variable
“event” of type EVENT will contain the received event.

– “ERROR !from !number” is used by the process whose identifier is stored
in variable “from” to indicate that the error referenced as “number” has
occurred.

Each process is recursive and stores its current state in a parameter “state”
of type STATE. Each computation step of a process consists of message receipt,
followed by some reaction depending on the identity of the message sender, the
event received, and the current process state (the Lotos construct “[...] ->
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...” reads as “if . . . then . . . ”). A reaction consists in sending zero or more
messages, followed by a state change, which is expressed by a recursive process
call with actualized state. Some combinations of sender, event, and state may
trigger an error message.

process P1 [SEND, RECV, ERROR] (state:STATE) : noexit :=
RECV ?from:PID !P1 ?event:EVENT ;
[from eq P3] -> (

[event eq E START] -> (
[state eq INIT] -> (

SEND !P1 !P4 !START ;
SEND !P1 !P6 !START ;
BehaviourP1 [SEND, RECV, ERROR] (RUN)

)
[]
[not (state eq INIT)] -> ERROR !P1 !E1

)
[]
[event eq E STOP] -> ( . . . )
[]
[not ((event eq E START) or (event eq E STOP))] -> ERROR !P1 !E2

)
[]
[from eq P5] -> ( . . . )
[]
[not ((from eq P3) or (from eq P5))] -> ERROR !P1 !E3

endproc

Fig. 2. A Lotos process following the asynchronous communicating process model.

The ScalAgent protocol specification is strongly object-oriented as it was
written to prepare the way for a Java implementation of the protocol. All activ-
ities belong to an abstract “activity” class, which is refined into three abstract
subclasses corresponding to elementary, sequential, and parallel activities re-
spectively. Each of these abstract subclasses has itself concrete subclasses (for
instance, deployment activities are a subclass of parallel activities).

The behaviour of an activity is a transition function obtained by combin-
ing the attributes specific to this activity (such as the number of subactivities
for sequential and parallel activities, a unique identifier of the activity, a list of
possible events, etc.) with the methods belonging to the activity class or transi-
tively inherited from superclasses. Inheritance has the effect of adding reactions
to new combinations of process parameters (events, states, process identifiers,
etc.). For a given configuration of the deployment protocol, inheritance can be
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solved at compile-time. Thus, the Lotos process corresponding to an activity
can be synthesized statically from the methods defined in the activity class and
superclasses. The use of an object-oriented language such as Ocaml avoids the
need for writing an inheritance resolution algorithm explicitly: by implementing
the activity class hierarchy with a similar Ocaml class hierarchy, the resolution
of inheritance is automatically performed by the Ocaml compiler.

5 Compositional Verification of the Protocol

Compositional verification consists in decomposing the system under verification
into smaller components that can be analyzed in isolation. There are often several
ways of modeling and decomposing a given protocol; the feasibility and efficiency
of compositional verification crucially relies on a thorough study of components
and their interactions. In this section, we explain our choices and their impact
on verification.

5.1 Centralized vs. Distributed Communication Media

By design, the ScalAgent deployment protocol ensures that communications
are pairwise between an activity and each of its subactivities, and that mes-
sages do not accumulate indefinitely in communication media (i.e., Fifo buffers
and bags). Therefore communication media can be described as finite processes
containing a bounded number of messages belonging to a finite set of possible
values.

The protocol specification leaves a degree of freedom in the implementation
of communication media: it does not specify whether communications are con-
veyed using one unique centralized communication medium or several distributed
communication media.

A system with a centralized medium is schematically depicted on Figure 3(a).
This was the approach followed in [6] to model a software bus between agents.
Unfortunately, this approach cannot be reused for the deployment protocol. As
the number of activities increases, the number of different messages that can be
exchanged increases as well. As more activities introduce more asynchrony in
the system, the number of messages that must be kept inside the medium also
increases. Consequently, the state space of the centralized medium holding these
messages may become too large for being generated separately.

In a refined approach, we split the centralized medium into one medium
for each pair of communicating activities, as schematized on Figure 3(b). Each
medium has to manage only a limited amount of communications, and is there-
fore less complex than the centralized medium.

This approach fits well with compositional verification, because the synchro-
nizations between communicating processes are taken into account earlier in the
verification process, leading to more constrained state spaces. Additionally, this
permits to hide communications earlier, which, combined with minimization,
gives greater opportunities to obtain reductions.
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(b) Activities communicating
through distributed media.

Fig. 3. Centralized vs. distributed media. Thick lines represent communications be-
tween activities and media, and thin lines represent the tree structure of activities.

As an example, the architecture of Figure 3(b), can be generated incremen-
tally by generating the state spaces of medium A, activity 1, and activity 2
first, then composing them together with appropriate synchronizations. Then,
the local communications between 1 and 2 (exchanged via medium A) can be
hidden, and the resulting Lts minimized for branching bisimulation. The result-
ing system is then composed with activity 3 and medium B, hiding appropriate
actions and minimizing the resulting Lts. This way, by incorporating media and
processes in the numbering order, the system can be generated up to the root of
the activity tree. The progressive application of hiding and minimization steps
allows to keep a state space of tractable size in spite of the complexity introduced
by parallel composition.

5.2 Communication Media Generation

In general, bounding the size of a communication medium may cause unexpected
deadlocks or lost behaviours because of buffer overflows.

We addressed the issue by first generating (using Bcg Graph) a medium of
limited size (say, N = 3 places), which is composed in parallel with its connected
activities. This parallel composition is then used as an interface to restrict (using
Projector) the behaviour of the medium itself. This produces a subset of
the state space corresponding to the medium, in which only the transitions
synchronized with the activities are kept.

We then check whether the N places of the medium have been used in the
composition with its related activities. This is done by checking (using the
Evaluator model checker) whether there exists a sequence of N successive
messages received by the medium. If not, no buffer overflow has occurred, which
means that the buffer size was bounded correctly. Otherwise, an overflow might
have occurred, and the experiment must be restarted after incrementing the
value of N .
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Figure 4 shows a fragment of Svl script implementing this technique. Svl
statements are intertwined with Bourne shell statements (starting with the %
character).

Although communication media could be expressed in Lotos and translated
to Ltss (as for the activities), the use of the dedicated Bcg Graph tool shortens
the medium generation time by a factor of 10 to 100. This has a great impact
on the overall verification time, since both the distributed media approach and
the above technique to determine buffer size incrementally, require a significant
number of media to be generated.

5.3 Additional Compositional Verification Tactics

More tactics have been used to make verification tractable:

– The referential process mentioned in Section 3 has been used as an interface
to restrict (using the Projector tool) the behaviour of elementary activities
communicating with this process. This divides by 2 the state space of some
elementary activities. The referential process has been also used to restrict
compositions of activities in several places.

– The state space of a process isolated from its context may explode if data
communications are broken off without caution. For instance, the state space
of the parallel composition of actions “G ?X : nat || G !1” has a single transi-
tion labeled “G !1”. However, the state space of “G ?X : nat” taken isolately
cannot be generated because infinitely many different natural numbers can
be received on gate G. For the deployment protocol, it is possible (though
not easy) to determine statically the values exchanged by a process on gates
SEND and RECV. We thus have improved the generated Lotos code by adding
communication guards (synthesized during a first phase of the translation)
to constrain the set of potentially received data.

5.4 Results of Compositional Verification

The study of the protocol allowed to clarify (in accordance with the ScalAgent
designers) several obscure points in the protocol specification. In particular, the
original specification was silent about the model of communications between
activities. Model checking verification revealed (by exhibiting an infinite loop
of error messages) that the protocol was not meant for handling asynchronous
messages between the inner activities of a controller, and would function prop-
erly only if communications inside a controller are implemented as local pro-
cedure calls (i.e., the calling activity gets suspended until the procedure call
returns). Consequently, communications within a controller can be modeled as
Fifo buffers instead of bags. However, bags are still needed to model communi-
cations between controllers, which can be geographically distributed.

Figure 5 summarizes the verification results for four configurations. All ex-
periments were done on a Linux workstation with 1Gb memory and 2.2 GHz
Pentium IV processor. We draw two main conclusions from these experiments:
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% N=3
(* we know empirically that many media have at least 2 places
* we start from N=3 (instead of N=1) to save time *)

% while true
% do

(* generation of a bag with $N places between processes 18 and 19 *)
% bcg_graph -bag $N LABELS_19_18.txt MEDIUM_19_18.bcg

"TMP.bcg" =
branching reduction of

gate hide all but RECV_19_18, SEND_19_18, RECV_18_19, SEND_18_19 in
generation of

(
"CLUSTER_19_13.bcg"
|[RECV_18_19, SEND_19_18]|
(

"MEDIUM_19_18.bcg"
|[RECV_19_18, SEND_18_19]|
"ACTIVITY_18.bcg"

)
);

"SUB_MEDIUM.bcg" =
abstraction "TMP.bcg" of "MEDIUM_19_18.bcg";

% echo -n "checking if a bag medium with $N places is large enough: "

(* using the Evaluator model-checker of CADP, we check if SUB_MEDIUM.bcg
* contains a sequence of $N consecutive "SEND_xx_yy" actions *)

% RES=‘bcg_open SUB_MEDIUM.bcg evaluator CHECK_$N.mcl | grep ’\<TRUE\>’‘
% if [ "$RES" = "" ]
% then
% echo "yes"
% break
% else
% echo "no! (retrying with a larger bag medium)"
% N=‘expr $N + 1‘
% fi

% done

Fig. 4. An excerpt of the generated SVL script.
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Number of controllers 1 1 1 2
Number of containers 1 2 3 2
Total number of agents 2 3 4 4
Number of activities 13 21 29 34
Minimal size of activities (states) 7 7 7 7
Mean size of activities (states) 42 57 82 68
Maximal size of activities (states) 104 225 481 195
Number of media 18 30 42 36
Minimal size of media (states) 2 2 2 2
Mean size of media (states) 57 60 61 58
Maximal size of media (states) 111 111 111 111
Number of concurrent processes 31 51 71 70
Size of potential state space (states) 2.1024 3.1041 4.1068 9.1068

Size of largest generated Lts (states) 1, 824 48, 819 410, 025 76, 399
Size of generated Lotos file (lines) 2, 597 4, 494 6, 391 7, 208
Size of generated Svl file (lines) 617 1, 013 1, 409 1, 635
Number of intermediate files 221 316 503 519
Verification time 4 min 09 9 min 52 19 min 43 12 min 10

Fig. 5. Collected data for several configurations of the deployment protocol.

– Although the high number of concurrent processes could lead to a potentially
huge state space (up to 9.1068 states if we estimate its size by multiplying
the numbers of states of the minimized Ltss corresponding to all activities
and media for a given configuration), compositional verification allows to
keep the state space to a tractable size (below 106 states).

– Given the large number of intermediate files (several hundreds), these experi-
ments would not have been possible without the Svl language and associated
compiler.

The correctness of each protocol configuration was determined by checking
in the corresponding global Lts the absence of ERROR messages (which denote
either protocol design errors or implementation errors in the Ocaml translator).
When the Lotos process corresponding to an activity is generated without its
environment, all possible ERROR messages can be observed. However, when the
process gets synchronized with all its children processes, there should not remain
any ERROR message tagged with this process identity. For each configuration, we
obtained the Lts of Figure 6, in which all communications are hidden but those
made by the root activity of a controller. This Lts summarizes the service pro-
vided by the protocol to the end-user. The initial state has number 0. The two
first transitions start the deployment by sending a start event and its acknowl-
edgement. Then, either the user indicates that the deployment is not ready for
activation, which will cause a failure notification from subactivities prevented
from deploying components, or the user activates the deployment and receives
either a notification that the deployment is successful or a failure indication.
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SEND !P1 !P2 !E_ACTIVATE

RECV !P5 !P1 !E_FAIL

RECV !P5 !P1 !E_FAIL

RECV !P5 !P1 !E_DONE

RECV !P5 !P1 !E_STARTACK

SEND !P1 !P2 !E_NOTREADY

SEND !P1 !P5 !E_START

Fig. 6. Service provided by the root controller, as an Lts obtained by compositional
verification using Cadp.

6 Conclusion

Considering the numerous publications dealing with compositional verification
and its expected benefits, it is high time to put this approach into practice
in real-life case studies. Object-based distributed systems are an ideal target
for this purpose, as they usually contain many components, either to model
physically distributed entities or to represent concurrent activities taking place
on a given execution site. This is the case with the ScalAgent deployment
protocol, whose architecture consists of a tree of distributed agents, each agent
being itself organized as a tree of concurrent activities.

From the verification activities undertaken in the Parfums project, we can
draw a number of conclusions.

The complexity of the ScalAgent deployment protocol grows quickly as
new components are added to the system. For instance, adding a new agent
to deploy may start not less than 20 additional concurrent processes. For this
reason, it seems that only compositional techniques have a chance to cope with
the corresponding state explosion.

Because the ScalAgent deployment protocol is implemented in Java,
we could have tried to apply a software model checker (such as the Java
PathFinder [21] or Bandera [5]) directly on the Java source code. We did
not choose such an approach because, to the best of our knowledge, these tools
can only analyze programs running on a single Java virtual machine (Jvm),
whereas the ScalAgent protocol is designed for multiple machines, each run-
ning a separate Jvm. We also felt that a process algebra such as Lotos, with its
built-in concurrency and abstraction primitives, would provide better support
for compositional modeling and verification. As a consequence, our verification
efforts mostly addressed the higher level design (i.e., the reference specification
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of the protocol) rather than the implementation (i.e., the Java code) although
an examination of the latter was sometimes needed.

Technically, the results of the verification effort are positive. Several ambi-
guities were found in the reference specification and the verification work ex-
hibited an undocumented assumption (synchrony of communications) of crucial
importance for a proper functioning of the protocol. The use of compositional
verification allowed to check significantly complex finite configurations within a
reasonable amount of time (at the moment, configurations with 70 concurrent
processes can be verified in less than 20 minutes).

In modeling the ScalAgent deployment protocol, we chose to introduce
many distributed buffers, instead of one central buffer. This avoids a bottleneck
problem, which might prevent compositional verification from being applied [6].
We also took advantage of the “doubly nested” tree-like structure of the ScalA-
gent deployment protocol. Originally designed to ensure the scalability of the
protocol when deploying software components on many machines, this tree-like
structure also forms the skeleton of our compositional verification scenarios, in
which Lts generation and minimization phases are incrementally performed from
the leaves to the root of the trees.

Last but not least, a complex system such as the ScalAgent deployment
protocol could not be analyzed in absence of mature verification tools. We found
the Cadp toolbox robust enough for this challenge, but had to extend it in sev-
eral ways. Two existing tools (Exp.Open and Projector) had to be entirely
rewritten for performance reasons. A new tool, Bcg Graph, was introduced
for fast, automatic generation of communication buffers. The SVL scripting lan-
guage was enriched to allow a wider form of parameterization. Interestingly,
Svl scripts, originally to be written by human experts, are now automatically
generated by the Ocaml translator. We observe here a situation in which new
software layers are continuously added on top of existing ones, an integration
trend that also occurs in other branches of computer science.

As regards future work, we foresee two directions. First, we are currently at-
tacking larger configurations (90 and more concurrent processes) so as to discover
the actual limits of compositional verification. Second, we seek to detect vari-
ous livelock situations automatically using the Evaluator 3.0 model checker
[18]; as the µ-calculus formulas needed to characterize livelocks may depend
on the set of components defined in the Xolan architectural description, the
Ocaml translator could be extended to generate these formulas automatically.
This would reduce the risk of error and keep the verification fully transparent
to the end-user.
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