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The system architecture for cognitive radar-communication (CRC) transceiver is proposed. A cognitive waveforms design
approach, which is suitable for simultaneously performing both data communication and target detection, is presented. This
approach aims at estimating target scattering coefficient (TSC) from the radar scene and facilitating high data rate communications.
In order to minimize the mean square error (MSE) of the TSC, a convex cost function is established. The peak to average power
ratio- (PAPR-) constrained optimal solution is achieved by applying the Kalman filtering-based strategy to design the set of ultra-
wideband (UWB) transmission pulses and embed into them the information data with the M-ary position phase shift keying
modulation technique. In addition to theoretical considerations, the simulation results show an improvement in target scattering
coefficient (TSC) estimation and target detection probability as the number of iterations increases, while still transmitting data rates
in the range of several Mbps with low bit error rates between CRC transceivers.

1. Introduction

The integration of multiple functions such as radar tasks and
communication applications has attracted substantial interest
in recent years and sparked a number of research initiatives
[1–4]. It is studied in [5] that the intelligent transportation sys-
tem (ITS) employs communications device to convey traffic
information and utilizes the radar device to sense the traffic
circumstance. The demand of ITS is the motive to develop
radar-communication integration system.

1.1. Background. The objective of the joint design is to in-
crease both energy efficiency and spectrum efficiency and to
reduce manufacturing cost. The design of integrated wave-
form can be classified into two main categories. One is
based on themultiplexing technique including space division
multiplexing (SDM) [6], time division multiplexing (TDM)
[7], and frequency divisionmultiplexing (FDM) [8], and code
division multiplexing (CDM) [9]. However, such a class has
the same drawback that radar and communication cannot
operate in some domain, simultaneously. For instance, the

radar and communication cannot operate at the same time
slot for the methods based on the TDM technique. The other
is based on waveform sharing and has two types. One is that
the communication information is hidden in the conven-
tional radar waveforms [10]; the other is that the commu-
nication waveforms generally employed are either slightly
changed or not [11].

The conventional orthogonal frequency division multi-
plexing (OFDM) waveform in communication is continuous
in general [12–14]. In contrast, it is noncontinuous for pulse
radar. Moreover, most of the employed OFDM waveforms
in radar consist of OFDM pulse train which is indispensable
for communication, and one pulse only contains one OFDM
symbol. If the integrated radar and communication system
employs the continuous OFDM waveform, the transmit and
receive antennas need to be well separated, which is difficult
to realize in practice, especially in those cases when either
transmit or receive antennas are close to each other. If the
integrated OFDM waveform is impulse, the transmit and
receive antennas can be shared and the number of antennas
will be reduced to half. Furthermore, the problem of isolation
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between transmit and receive antennas can be perfectly set-
tled. For the communication applications, however, the data
rate will decrease because the radar duty ratio is 10% in some
cases; that is, the operation time of communication becomes
10% of what it was.

These works have adopted OFDM techniques fused with
ultra-wideband (UWB) technologies to realize the communi-
cation-radar integration. However, these designs create other
implementation issues, such as excessive demand of signal
processing power, high-speed analog-to-digital circuitry, and
agile radio frequency front end for multimode operation.
Furthermore, systems employing UWB-OFDM for localiza-
tion [13, 14] utilize the same waveform family for design-
ing joint communication-radar signals. Consequently, these
methods share a common drawback due to the fact that the
autocorrelation of UWB-OFDM signals depend on both the
location of the notch and the OFDM signal bandwidth.
Hence, although the radar target range estimation is unaf-
fected by the presence of anOFDMsignal, its range resolution
depends on the notch bandwidth into which the OFDM sig-
nal is embedded. Literature [15] presents the system employ-
ing UWB pulse position modulation (PPM) for designing
joint communication-radar signals. Compared to the con-
ventional OFDM system, the system bit error rate (BER) per-
formance is poor relatively [16, 17].

Cognitive radar (CR) system can adjust its transmit wave-
form and receive filter adaptively based on the prior knowl-
edge of targets and the environment and thus has great poten-
tial in enhancing the detection and recognition performance
for extended targets [18]. In CR [19], cognition plays a critical
role in the feedback loop, which includes long-termmemory,
for example, geographicmap and elevationmodel, and short-
term memory developed by the receiver online. By using
prior information, the work mode, transmit waveform, and
signal processing approach of CR can be optimized to yield
better performance.

Thewideband cognitive radar is not sensitive to active and
passive interference [20]. It is very important in intelligent
transmitting. In the wideband cognitive radar system, the
extended target has a complex target impulse response (TIR)
[21], which is the target scattering coefficient (TSC) in the
frequency domain [22].The estimation of TSC has gotten lots
of attention in the recent research of radar system [23–25].
Literature [23] models the extended target as TIR function
unchanged in the waveform design. Reference [26] models
the extended target as a wide sense stationary-uncorrelated
scattering TIR model, considering the change of target view
angle and the strong correlation of TSC during the pluses
interval. The interference might be comprised of clutter and
noise. Clutter, such as unwanted ground returns and environ-
ment clutter, is assumed to be signal dependent and noise is
signal independent too [27]. The radar reflection character-
istics of the surrounding environment are regarded as time
invariant.

Constant-envelope in cognitive waveform design is dis-
cussed to get high power efficiency. Literature [28] presents
OFDM optimization waveform design method under the
constant-envelope constraint. But constant-envelope condi-
tion is too strict in OFDM waveform design. Peak to average

power ratio (PAPR) is presented as relaxation form, and the
OFDM radar system under the PAPR constraint has been
sufficiently studied [12]. If transmitted signal power is very
small, the estimation precision may degrade violently and
the power spectral density (PSD) of the target TIR cannot be
estimated. This is the primary reason why the algorithms in
[29] cannot be used directly in CR waveform design. In order
to solve this problem, the performance of the TSC estimation
should be considered in the CR transmission waveform.
A new CR waveform design algorithm for both estimation
and detection is studied. In a relative long time, the prior
knowledge of the clutter is presented inwaveformdesign [30].
In a pulse duration time, it can be approximately regarded as
time invariant in [31]. However, the TIR varies gradually in
practice. TSC is varying with the relative motion between the
radar and the target. So the TSC estimation update is needed
as a feedback.

An iteration approach based on the Kalman filtering (KF)
is proposed by Dai et al. in [32] to estimate the TIR for single
target. And the transmitted waveform is optimized in order
to improve the estimation performances [33]. However, the
direct optimization problem of waveform design in the tem-
poral correlated cognitive radar system (CRS) is nonconvex
and cannot be solved efficiently. Considering multiple target
scenarios, [34, 35] presented a multiple-waveform design
algorithm that is based on maximizing a weighted sum of
mutual information measures corresponding to the active
targets and radar waveforms employed. The related work on
designing estimation waveforms for multiple input multiple
output (MIMO) radar systems is proposed in [36–38] which
discuss the equivalence between maximizing mutual infor-
mation and minimizing the mean square estimation error
(MSE). Therefore, to our best knowledge, only an indirect
approach based on the water-filling method is expressed to
optimize the PSD of transmitted waveform for single target
[13]. No existing work has considered the direct waveform
optimization for multiple extended targets in the temporal
correlation CRS.

1.2. Contributions. In this paper, we combine the temporal
correlated cognitive algorithm presented in [22] and M-
ary position phase shift keying (MPPSK) technique [26] to
obtain an optimizationwaveform,which offers superior radar
performance and high data rate communication capability
between cognitive radar-communication (CRC) transceivers.
With this method, the radar and communication signals
can coexist by sharing the same frequency band. Hence,
the target parameter estimation is not affected by the com-
munication signal design parameters. The UWB-MPPSK
waveforms would not only benefit from a KF approach for
target estimation and detection but also establish ad hoc
communication links. The main contributions of this paper
are summarized as follows:

(1) We present a novelMPPSK-based radar-communica-
tion waveform design scheme.

(2) We propose a cognitive radar probing strategy based
on Kalman filtering between successive backscatter
pulses for TSC estimation.
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(3) We provide performance analysis of the CRCnetwork
in terms of the TSC estimation and communication
BER between CRC transceivers.

The organization of this paper is as follows. In Section 2,
the CRC transceiver network and the node system architec-
ture are described. In Section 3, we analyze the performance
of the communication link achieved through the MPPSK-
based waveform.The Kalman filtering-based cognitive wave-
form optimization approaches are presented in Section 4.
The simulation results illustrating the proposed methods are
provided in Section 5, and conclusions are given in Section 6.

Throughout this paper, the following notations will be
used. Vectors are denoted by boldface lowercase letters and
matrices by boldface uppercase letters. 𝐻 and Re( ) denote
transpose conjugate operation and the real part of a variable,
respectively. The 𝑙2 norm is denoted as ‖ ‖2, linear convolu-
tion operator as ∗, expectation operator as 𝐸{ }, and variance
operator as Var{⋅}.
2. Channel Model

2.1. Target Channel Model. The received echo can be rep-
resented as the convolution of the TIR 𝑞(𝑡) with the trans-
mission waveform 𝑓(𝑡), the additive white Gaussian noise
(AWGN) 𝑛(𝑡), which can be written as

𝑟 (𝑡) = 𝑞 (𝑡) ∗ 𝑓 (𝑡) + 𝑛 (𝑡) . (1)

A model in radar transmission waveform optimization is
shown in Figure 1.

During the 𝑘th pulse, the TIR between the transmit
antennas and the receive antenna is defined as q𝑘. We denote
the cognitive radar waveform that will be emitted from the
transmitter as f𝑘 ≜ [𝑓𝑘(1), 𝑓𝑘(2), . . . , 𝑓𝑘(𝑁)]𝑇, where 𝑁 is
the sample number of cognitive radar waveform. The total
transmission energy is (1/𝑁)∑𝑁𝑛=1 |𝑓𝑘(𝑛)|2 = 𝐸𝑓. A denotes
channel attenuation factor. Let n ∼ C𝑁(0,R𝑁) represent the
AWGN.R𝑁 denotes the covariancematrix of noise. If a target
exists, the received scattered signal can be described as

r𝑘 = A diag {q𝑘} f𝑘 + n

= AQ𝑘f𝑘 + n. (2)

It is difficult to optimize the transmitted waveform with the
convolution operation in the time domain.The complexity of
waveformdesign is increased and cannot be solved efficiently.
The echo waveforms in the CRS will be processed in the
frequency domain. The received signal vector y𝑘 can be
represented as

y𝑘 ≜ Γr𝑘, (3)

where Γ is the matrix of the Fourier transform. The echo
waveform in the frequency domain can be described as

y𝑘 = AZ𝑘g𝑘 + w. (4)

The transmitted waveform is given by a diagonal matrix
Z𝑘 ≜ diag{z𝑘} and the waveform in the frequency domain

is z𝑘 ≜ Γf𝑘. g𝑇𝑘 ≜ Γh𝑇𝑘 denotes the TSC. g𝑘 ∼ C𝑁(0,R𝑇),
w𝑘 ∼ C𝑁(0,R𝑁) denotes AWGN. R𝑇 and R𝑁 denote the
covariance matrix of target and noise, respectively.

Multiple-pulse samples for the TIR estimation are taken
into consideration. From the literature, if these fluctuations
are temporally correlated during the pulse repetition interval
(PRI), this type of the extended target is closely related to
the target radar cross section (RCS) and can be described
by a wide sense stationary-uncorrelated scattering (WSSUS)
model. The TIR during the kth pulse sample is

q𝑘 = 𝑒−𝑇/𝜏q𝑘−1 + u𝑘−1, (5)

where u𝑘−1 ∼ N{0, (1 − 𝑒2𝑇/𝜏)R𝑁} is the zero mean Gaussian
vector, 𝑘 is the index of radar pulses, 𝑇 denotes the radar
pulses interval, and 𝜏 describes the temporal correlation
of TIR during the pulses interval. The frequency domain
characterization of the extended target can be derived by
the Wiener-Khintchine theorem [27]. TSC model can be
expressed in the frequency domain

g𝑘 = 𝑒−𝑇/𝜏g𝑘−1 + k𝑘−1, (6)

where k𝑘−1 ∼ N{0, (1 − 𝑒2𝑇/𝜏)R𝑁} is the zero mean Gaussian
vector.

3. Waveform Design

3.1. UWB-MPPSK Waveforms. Each normalized second
derivative Gaussian UWB waveform can be represented as

𝑢 (𝑡) = 𝐼∑
𝑖=1

𝑎𝑖 [1 − 4𝜋(𝑡 − 𝛼𝑖𝑇𝑇𝑝 )2]

⋅ exp{−2𝜋(𝑡 − 𝛼𝑖𝑇𝑇𝑃 )2} cos (𝜃𝑖) ,
(7)

where 𝐼 is the number of second derivative Gaussian mono-
cycles within the UWB waveform and 𝑇𝑃 is the pulse width
of the single UWB pulse and is assumed to be 0.2 ns, which
is a value commonly used in UWB ranging applications. 𝛼𝑖
represents the normalized amplitude of the 𝑖th monocycle,
which is uniformly distributed, 𝛼𝑖𝑇 is the uniformly dis-
tributed random pulse repetition time between [0, 𝑇], and 𝜃𝑖
represents the phase of the 𝑖th pulse.The phase 𝜃𝑖 is chosen as
0 or 𝜋 in accordance with a pseudorandom binary sequence.
MPPSK modulated waveforms are defined as follows:

𝑔0 (𝑡) = sin 2𝜋𝑓𝑐𝑡, 0 ≤ 𝑡 < 𝑁𝑇𝑐,

𝑔1 (𝑡) =
{{{{{{{{{

sin (2𝜋𝑓𝑐𝑡) 0 ≤ 𝑡 ≤ (𝑘 − 1)𝐾𝑇𝑐,
− sin (2𝜋𝑓𝑐𝑡) (𝑘 − 1)𝐾𝑇𝑐 < 𝑡 < 𝑘𝐾𝑇𝑐,
sin (2𝜋𝑓𝑐𝑡) 𝐾𝑇𝑐 ≤ 𝑡 < 𝑁𝑇𝑐;

1 ≤ 𝑘 ≤ 𝑀 − 1

(8)

with 𝑔0(𝑡) and 𝑔1(𝑡) being modulation waveforms of symbol
“0” and “𝑚(𝑚 > 0)” and 𝑓𝑐 and 𝑇𝑐 represent the carrier
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Figure 1: The system model of the temporal correlated cognitive transceiver.

frequency and the carrier period, respectively. 𝐾 and 𝑁
stand for the number of the carrier period in each time
slot and the number of the carrier period in each symbol,
respectively. 𝑁/𝐾 means the slot number in each symbol,𝑚 (𝑚 = 0, 1, . . . ,𝑀 − 1) is M-ary (𝑀 ≥ 2) source symbol.
Hence, increased 𝑀 leads to higher data rate as more time
slots are utilized. The waveforms of 4-PPSK modulation are
illustrated as in Figure 2. The coefficient for the 𝑥-axis is the
index of a certain sample point. Set𝑀 = 4; 𝐾 = 2;𝑁 = 20.

Themodulation waveform for symbol “0” is sinusoidal as
shown in Figure 2(a); Figure 2(b) illustrates the modulation
waveform for symbol “1” with the phase hopping during the
first two carrier period (from 0 to 20), the next (from 20 to
40) is for symbol “2” in Figure 2(c), and last (from 40 to 60)
is for symbol “3” in Figure 2(d).

The MPPSK modulated signal has the capability of high
precise ranging measurement. The time hopping scheme for
MPPSK waveform has been analyzed in the literature [39].
The UWB-MPPSK pulse waveforms are defined by

𝑓0 (𝑡) = 𝑔0 (𝑡) 𝑢 (𝑡) ,
0 ≤ 𝑡 < 𝑁𝑇, 0 ≤ 𝑡 ≤ (𝑚 − 1)𝐾𝑇𝑐,

𝑓1 (𝑡) = 𝑔1 (𝑡) 𝑢 (𝑡) ,
(𝑚 − 1)𝐾𝑇𝑐 < 𝑡 < 𝑚𝐾𝑇𝑐, 𝐾𝑇𝑐 ≤ 𝑡 < 𝑁𝑇𝑐;

1 ≤ 𝑚 ≤ 𝑀 − 1

(9)

with 𝑓0(𝑡) and𝑓1(𝑡) being modulation waveforms of symbols
“0” and “1.” UWB-MPPSK waveform communications offer
high data rates for communications and good immunity
against multipath fading over short ranges. According to the
literature [39], the BER for such a UWB-MPPSK waveform is
given as

𝑃𝑒 = 12 [1 + 𝑄1 (𝐴0𝛿 , 𝑢𝑇𝛿 ) − 𝑄2 ((1 + 𝑘)𝐴0𝛿 , 𝑢𝑇𝛿 )] , (10)

where 𝐴0 denotes the amplitude of transmitted signal.𝑄1(𝑎, 𝑏) is Marcum’s function, which can be defined as fol-
lows:

𝑄1 (𝑎, 𝑏) = 𝑒−(𝑎2+𝑏2)/2 ∞∑
𝑘=0

(𝑎𝑏)
𝑘𝐼𝑘 (𝑎𝑏) . (11)

3.2. System Architecture and CRC Waveform Design. We
design the CRC waveforms by introducing UWB-MPPSK
waveform for communication and radar functionalities in
this paper. The proposed phase-coded waveform is transmit-
ted to detect target and send the data to other receivers. The
received signal includes the radar echoes reflected from target
and the communication information from other receivers.
The received signal is passed on to a matched filter bank.
Communication data is extracted by MPPSK demodulation.
And the radar echo is sent to the target parameter estimation
for target detection. The system architecture of the CRC
transceiver is described in Figure 3.

UWB-MPPSK waveform design feedback loop is shown
in Figure 4.

The waveform ensemble consists of individual MPPSK-
based UWB waveforms in which the PRI, amplitude, and
phase are dictated by uniformly distributed randomvariables.
It is also assumed that the receiver has full knowledge of
the transmitted waveform. A generalized likelihood ratio test
(GLRT) is adopted to detect the presence of the target in a
particular range-Doppler bin. The TSC estimation in the fre-
quency domain based on the KF is proposed to exploit this
temporal correlation at the receiver. The waveform optimiza-
tion is modeled to minimize the MSE at the transmitter.

The proposed cognitive waveform design feedback loop
is summarized as follows:

(1) TheCRC transceiver updates TSCby successivemeas-
urements of the radar scene.
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(2) The CRC transceiver adapts its UWB-MPPSK wave-
form and selects a suitable UWB-MPPSK waveform
in the next time instant.

(3) The cognitive waveform design feedback loop from
the receiver to the transmitter allows the delivery of
TSC to the transmitter. Transmitter utilizes theTSC to

select the optimal waveform based on Kalman filter-
ing for transmission.

(4) The process is repeated iteratively.

4. KF-Based Waveform Optimization

4.1. TSC Estimation Based on MAP Criterion. In the wide-
band cognitive radar system, the extended target has a
complex target impulse response (TIR), which is the target
scattering coefficient (TSC) in the frequency domain. Ref-
erence [13, 14] model the extended target as a wide sense
stationary-uncorrelated scattering TIR model, considering
the change of target view angle and the strong correlation
of TSC during the pluses interval. The target scattering is
modeled as a linear system. By the Bayesian rule, the TSC
estimation algorithm based onmaximum a posteriori (MAP)
in AWGN channel can be written as

ĝ𝑘 = argmax
g𝑘

𝑝 (g𝑘 | y𝑘) = argmax
g𝑘

𝑝 (y𝑘 | g𝑘) 𝑝 (g𝑘)𝑝 (y𝑘) , (12)



6 Journal of Advanced Transportation

where

𝑝 (y𝑘 | g𝑘) = 1
(2𝜋)𝑀/2 󵄨󵄨󵄨󵄨R𝑁󵄨󵄨󵄨󵄨1/2

⋅ exp (−12 (y𝑘 − A𝑘Z𝑘g𝑘)𝐻R−1𝑁 (y𝑘 − A𝑘Z𝑘g𝑘)) ,

𝑝 (g𝑘) = 1
(2𝜋)𝑀/2 󵄨󵄨󵄨󵄨R𝑇󵄨󵄨󵄨󵄨1/2 exp (−

12 (g𝑘)𝐻R−1𝑇 g𝑘) ,
𝑝 (y𝑘) = ∫𝑝 (y𝑘 | g𝑘) 𝑝 (g𝑘) 𝑑g𝑘.

(13)

We can obtain the posterior probability

𝑝 (g𝑘 | y𝑘) = 𝑝 (y𝑘 | g𝑘) 𝑝 (g𝑘)𝑝 (y𝑘)
= exp ((1/𝜎2𝑛) (A𝑘Z𝑘g𝑘)𝑇 y𝑘 − (1/2𝜎2𝑛) (A𝑘Z𝑘g𝑘)𝑇A𝑘Z𝑘g𝑘 − (1/2) (g𝑘)𝑇R−1𝑇 (g𝑘))
exp((1/2) ((A𝑘Z𝑘)𝑇 y𝑘/𝜎2𝑛)𝑇 ((1/𝜎2𝑛) (A𝑘Z𝑘)𝑇A𝑘Z𝑘 + R−1𝑇 )−𝑇 ((A𝑘Z𝑘)𝑇 y𝑘/𝜎2𝑛))√󵄨󵄨󵄨󵄨󵄨󵄨󵄨2𝜋 ((1/𝜎2𝑛) (A𝑘Z𝑘)𝑇A𝑘Z𝑘 + R−1𝑇 )−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (14)

The receivedwaveform y𝑘 followsGaussian distribution given
y𝑘 | g𝑘 ∼ C𝑁(A𝑘Z𝑘g𝑘,R𝑁) and 𝑝(g𝑘 | y𝑘) is the probability
distribution of TSC during the 𝑘th pulse. So the estimation of
TSC in the frequency domain with MAP estimation is

ĝ𝑘 = argmax
g𝑘

{−12g𝑇𝑘 ( 1𝜎2𝑛 (A𝑘Z𝑘)
𝑇A𝑘Z𝑘 + R−1𝑁) g𝑘

+ 1𝜎2𝑛 (A𝑘Z𝑘g𝑘)
𝑇 y𝑘} = ((A𝑘Z𝑘)𝑇A𝑘Z𝑘

+ 𝜎2𝑛R−1𝑁 )−1 (A𝑘Z𝑘)𝑇 y𝑘.

(15)

The receiver filter can be denoted as the matrix form Q𝑘:

Q𝑘 = ((A𝑘Z𝑘)𝑇A𝑘Z𝑘 + 𝜎2𝑛R−1𝑁 )−1 (A𝑘Z𝑘)𝑇 . (16)

We have ĝ𝑘 = Q𝑘y𝑘. Now let the transmitted waveforms be
S𝑘 = A𝑘Z𝑘. Thus, the mean square error (MSE) of MAP
estimation can be obtained by

𝑒𝑘 = 𝐸 {󵄩󵄩󵄩󵄩ĝ𝑘 − g𝑘
󵄩󵄩󵄩󵄩22} = E {(Q𝑘y𝑘 − g𝑘) (Q𝑘y𝑘 − g𝑘)𝐻}

= Q𝑘 (S𝑘R𝑇S𝐻𝑘 + R𝑁)Q𝐻𝑘 −Q𝑘S𝑘R𝑇 − R𝑇S
𝐻
𝑘 Q
𝐻
𝑘

+ R𝑇.
(17)

4.2. Waveform Optimization. Since the time correlation of
the TSC, a KF-based estimation method is proposed to
estimate TSC when the GLRT detection shows the presence
of target in this paper. The TSC estimation performance
can be improved by taking the advantage of prediction and
estimation at the same time.The iteration process is described
in Appendix (Algorithm 1).

Considering transmitted power 𝐸𝑓, PAPR 𝜎, and target
detection probability 𝜀 constraints, the multiple-pulse sam-
ples of wideband radar waveform based on Kalman filtering
are designed by minimizing the MSE of estimation TSC.The

optimization waveform design problem can be preliminary
described as follows:

f = argmin
f
{tr (P𝑘|𝑘)}

s.t.
𝐾∑
𝑘=1

𝑃𝑞 (𝜔𝑘) 𝑃𝑓 (𝜔𝑘) − 𝐾∑
𝑘=1

𝑃𝑛 (𝜔𝑘) ≥ 0
f𝐻f ≤ 𝐸𝑓
PAPR ≤ 𝜁
𝑃𝐷 ≥ 𝜀.

(18)

The objective function is the MSE of estimation TSC based
on Kalman filtering, which can be simplified as follows:

P𝑘|𝑘 = ((P𝑘|𝑘−1)−1

+ (Q𝑘A𝑘Z𝑘)𝐻 (Q𝑘R𝑁 (Q𝑘)𝐻)−1Q𝑘A𝑘Z𝑘)−1

= ((P𝑘|𝑘−1)−1 + (A𝑘Z𝑘)𝐻 (R𝑁)−1 A𝑘Z𝑘)−1 .
(19)

From literature (18), (19) can be rewritten as

z = argmin
z
{tr(((P𝑘|𝑘−1)−1 + (A𝑘Z𝑘)𝐻R−1𝑁A𝑘Z𝑘)−1)}

s.t.
𝐾∑
𝑘=1

𝑃𝑞 (𝜔𝑘) 𝑃𝑓 (𝜔𝑘) − 𝐾∑
𝑘=1

𝑃𝑛 (𝜔𝑘) ≥ 0
z𝐻z ≤ 𝐸𝑓
√𝜎𝐸𝑓I − diag {f} ≥ 0
√𝜎𝐸𝑓I + diag {f} ≥ 0
z𝐻Q̂𝑘

𝐻R−1𝑁 Q̂𝑘z ≥ 𝜀󸀠.

(20)

Thefixed value is obtained if ẑ is the eigenvector of Q̂𝑘
𝐻R−1𝑁 Q̂𝑘

with themaximum eigenvalue [28].Thenwe havemax𝑝(z) =
𝜆max𝐸𝑓. 𝜆max is the maximum eigenvalue of Q̂𝑘

𝐻R−1𝑁 Q̂𝑘.
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Step 1. Set iteration index as 𝑘 = 1, and the initial MSE matrix of estimation TSC
Step 2. Utilizing the temporal correlation of TSC, we can get the prediction of TSC

ĝ𝑘|𝑘−1 = 𝑒−𝑇/𝜏ĝ𝑘−1|𝑘−1
Step 3. According to the prediction of TSC, the estimation MSE matrix is

P𝑘|𝑘−1 = 𝑒−2𝑇/𝜏P𝑘−1|𝑘−1 + (1 − 𝑒−2𝑇/𝜏)R𝑇
Step 4. Define the Kalman gain matrix as

Φ𝑘 = P𝑘|𝑘−1(Q𝑘A𝑘Z𝑘)𝐻[(Q𝑘A𝑘Z𝑘)P𝑘|𝑘−1(Q𝑘A𝑘Z𝑘)𝐻 +Q𝑘R𝑁(Q𝑘)𝐻]−1
Step 5. The estimation of TSC is

ĝ𝑘|𝑘 = ĝ𝑘|𝑘−1 +Φ𝑘(ĝ𝑘 −Q𝑘A𝑘Z𝑘ĝ𝑘|𝑘−1)
ĝ𝑘 = Q𝑘y𝑘

where ĝ𝑘 is the estimated values based on the MAP estimation
Step 6. The MSE matrix is

P𝑘|𝑘 = P𝑘|𝑘−1 −Φ𝑘Q𝑘A𝑘Z𝑘P𝑘|𝑘−1
If 𝑘 = 𝐾max end; Otherwise, iterate Step 2 to Step 6.

Algorithm 1: Kalman filtering for TSC estimation in CRC system.

This optimization problem is convex satisfying the condition𝜆max𝐸𝑓 ≥ 𝜀󸀠. If rank(ff𝐻) = 1, f0 is the optimal radar wave-
form. According to [30], the optimal signal waveform with
rank(ff𝐻) > 1 can be obtained viaCVX toolbox. In each itera-
tion, determining whether the feasible set is empty can be
evaluated by solving a feasibility problem using the CVX
toolbox.

The MPPSK modulated CR waveform design algorithm
can be summarized as follows:

(1) The MPPSK modulated CR waveform embedded the
communication data is transmitted.

(2) The radar echoes y𝑘 are used to estimate the MSE
matrix of the TSC P𝑘|𝑘, which are updated using the
current radar echoes and are relayed back to the Kal-
man filtering.

(3) The received communication signals are passed
through a matched filter bank, which demodulates
MPPSK modulated waveform.

5. Simulation Results and Discussion

Firstly, we set theMPPSKmodulation parameter𝑀 ≤ 3;𝑁 =10; 𝐾 = 5 make sure that the cross-correlation coefficient
between the transmission waveforms Δ ≤ 0.4. In this way,
we can obtain an acceptable BER for communications [39].
As described in the previous sections, the orthogonality
between CRC transmission waveforms is maintained for
radar waveform optimization purposes.

Next, the received signal is matched filtered to estimate
the propagation delay. The communication data are demod-
ulated and the radar signal processing is carried out by the
TSC estimation module, separately. The MSE matrix of the
TSC is estimated by using Kalman filtering in the subsequent
time interval. We use the normalized MSE to defining the
estimation performance.

𝑛MSE = 󵄩󵄩󵄩󵄩ĝ − g󵄩󵄩󵄩󵄩22󵄩󵄩󵄩󵄩g󵄩󵄩󵄩󵄩22 , (21)

Table 1: Simulation parameters 2.

𝐸𝑠 Transmitted power 1
ASNR Average signal noise ratio 8 dB𝜏 Temporal correlation 0.1 s𝑀𝑡 Pulse interval 1ms𝑝fa False alarm probability 0.05𝑝𝑑 Detection probability 0.95
PAPR Peak to average power ratio 3 dB𝑓𝑠 The sampling frequency 10GHz𝑓𝑐 Center frequency of UWB 3GHz

where ĝ and g denote the estimation TSC and the real mea-
surement data, respectively. The simulation parameters are
shown in Table 1.

Figure 5 shows the detection probability based on the
Neyman-Pearson criterion for false alarm probability 𝑝fa =5%. For a stationary radar scene, 800 simulations have been
run for each SNR.The next CRC waveform is chosen accord-
ing to the Kalman filtering algorithm, and the process is
repeated for 20 iterations. As seen from Figure 4, the pro-
posed algorithm converges after 10 iterations, yielding a
detection probability of 0.9 at SNR = 6 dB as compared to
SNR= 15 dB at the first iteration.However, the detection prob-
ability does not show further improvement after 15 iterations.

In Figure 6, we compare the detection probability for
optimization waveforms selected by the proposed algorithm
to the probability for waveform based on MI minimization
and compare this result with the random waveform in
multipath environments. As the proposed algorithm utilizes
the temporal correlation of TIR during the pulses interval, the
CRC transceiver adapts its radar signal better than waveform
based MI minimization to the fluctuating target RCS. On the
other hand, random waveform is unable to match the time-
varying TSC after multiple iterations. Hence, the detection
probability is suboptimal in this case.

In Figure 7, under the constraint of transmitted power
and ASNR, we compare the TSC estimation performance
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Figure 5: Detection probability for various iterations of the Kalman
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Figure 6: Detection probability for optimization waveforms based
on Kalman filtering approach and random waveform.

based on the Kalman filtering algorithm andMAP estimation
criterion in multipath environments. As seen from Figure 7,
the normalizedMSE of TSC estimation based on the Kalman
filtering algorithm is smaller than that using the MAP
criterion. Similarly, the normalized MSE of TSC estimation
regarding clutter based on Kalman filtering is smaller than
that regardless clutter. In Figure 8, under the constraints of
transmitted power, PAPR, ASNR, and detection probability,
we also compare the normalized MSE of TSC estimation
based on the Kalman filtering algorithm andMAP estimation
criterion. The TSC estimation performances of optimization

Random signal based on MAP estimation
Random signal based on Kalman Filtering
Optimal signal regardless clutter based on Kalman filtering
Optimal signal regarding clutter based on Kalman filtering
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Figure 7: The MSE of TSC estimation under power and SNR.
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Figure 8: The MSE of TSC estimation under power, SNR, PAPR,
and detection constraint.

waveform and random waveform are compared, to verify the
efficiency of optimizing waveform at each Kalman filtering
iteration step.

We discuss the performance of the UWB-MPPSK wave-
form from a communications perspective in this subsection.
Figure 9 illustrates the BER for the UWB-MPPSK waveforms
and UWB-OFDM waveforms.

As seen from Figure 9, the SNR performance of Binary
UWB-MPPSK signal may be improved by approximately
1 dB, 4 dB, and 8 dB as compared with Binary UWB-PPM,
4-ary UWB-MPPSK, and 16-ary UWB-MPPSK, respectively.
OFDM signals offer better bit error performance. However,
the MPPSK design performs comparably to OFDM schemes
when no data redundancy bit for error control is added.

From (9), the data rate ofMPPSK signal is proportional to
carrier frequency andmodulation parameter𝑀, but inversely
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proportional to modulation parameter 𝑁. Setting modula-
tion parameter 𝑁 = 10;𝑀 = 4, down-conversion IF =
100MHz, and duty cycle of the pulse signal 𝑇 = 1/10, pulse
width is 𝜏 = 20 𝜇s.We can obtain burst transmission data rate2 ∗ 100/10 ∗ 1/10 = 2Mbps.

Figure 10 presents the throughput result for the proposed
waveform as compared to OFDM waveform. 4-ary PPSK
waveform offers a burst transmission data rate of about
1.8Mbps at a distance of 15m,which is better than that offered
by the four-carrier OFDM. UWB communications achieve
high data rate over short distances, as the distance between
the transceivers increases the throughput falls. According to
the relational expression:

Data volume of a beam

= Bit rate × Pulse width × Pulse number. (22)

Since the MPPSK-based CRC transceiver transmits 20
pulses within a radar beam, we can obtain burst transmission
data volume 20 ∗ 4000/10 = 8 kB. However, as modulation
parameter𝑀 is increased, the sidelobes in the autocorrelation
plot become more prominent. This distorts the orthogonal-
ity of the MPPSK waveform and in turn may deteriorate
the target detection performance. So we choose reasonable
MPPSK modulation parameters results in a tradeoff between
communication and radar signal design requirements.

6. Conclusion

In this paper, a waveform design concept for a CRC tran-
sceiver system has been studied that allow for simultane-
ous wireless communications and radar operation. A new
UWB-MPPSKmodulation scheme is proposed for integrated

30 600 5010 20 40
Distance (m)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Th
ro

ug
hp

ut
 (M

bp
s)

4-ary PPSK
Binary PPSK
OFDM

Figure 10: Comparative throughput performance of UWB-OFDM,
Binary UWB-MPPSK, and 4-ary UWB-MPPSK.

waveformdesign.TheKalmanfiltering-basedwaveformopti-
mization approach is addressed for improving the target esti-
mation performance. The proposed approach is based upon
learning about the detection environment and adjusting the
transmission waveform characteristics to suit the dynamic
target scene. The implementation has been shown to offer
many advantages regarding the performance of the radar
application, in particular, better TSC estimation performance
and independence from the transmitted user data. The
proposed method also facilitates high data rate performance
for the communications application.The discussedwaveform
design concepts offer interesting perspectives for the real-
ization of future sensor devices in intelligent transportation
system.

Appendix

Kalman Filtering for TSC Estimation in
CRC System

The KF-based TSC estimation in the frequency domain has
been discussed. The estimation performance is improved by
exploiting the temporal correlation of TSC. Compared with
the convolution operation in the time domain, the complexity
of waveform design for TSC estimation in the frequency is
reduced (see Algorithm 1).
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