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Abstract

Occupancy  is  an  important  factor  driving  building  performance.  Static  and  homogeneous

occupant schedules, commonly used in building performance simulation, contribute to issues

such as performance gaps between simulated and measured energy use in buildings. Stochastic

occupancy models have been recently developed and applied to better represent spatial and

temporal diversity of occupants in buildings. However, there is very limited evaluation of the

usability and accuracy of these models. This study used measured occupancy data from a real

office building to evaluate the performance of an agent-based occupancy simulation model: the

Occupancy Simulator. The occupancy patterns of various occupant types were first derived from

the measured occupant schedule data using statistical analysis. Then the performance of the

simulation model was evaluated and verified based on (1) whether the distribution of observed

occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator,

and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results

demonstrated  the  feasibility  of  applying  the  Occupancy  Simulator  to  simulate  a  range  of

occupancy presence and movement behaviors for regular types of occupants in office buildings,

and to generate stochastic occupant schedules at the room and individual occupant levels for

building performance simulation.  For  future  work,  model  validation is  recommended,  which

includes collecting and using detailed interval occupancy data of all spaces in an office building

to validate the simulated occupant schedules from the Occupancy Simulator.

Keywords: Occupancy simulation; occupancy pattern; model performance evaluation; 
verification; occupant presence and movement; occupant behavior
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1. Introduction 

Occupancy is an important factor driving building performance, and occupants’ presence and

movement patterns are fundamental to building energy simulation [1,2]. Traditionally, in building

performance simulation (BPS), occupancy schedule inputs are static and homogeneous, leading

to a lower accuracy in predicting building energy performance [3]. The real occupancy pattern of

occupants  in  buildings  may  differ  significantly  from  each  other  [4].  Furthermore,  the

indeterminacy of occupant behavior in building performance simulation is a leading source of

uncertainty in predicting building energy use [5]. To model the influence of human behaviors on

building energy consumption and the indoor environment accurately, the occupancy schedule

inputs should provide realistic information on the presence and absence status, the number of

occupants  in  rooms,  and  the diversity  of  occupant  behavior  patterns.  This  issue of  realistic

representation of  occupancy schedules  used in  building  performance simulation has  been a

recent topic of study and discussion.

Compared to the conventional static schedules, stochastic occupancy simulation models, which

better  represent  the  random  nature  of  occupant  presence  and  movement  behavior,  are

recommended for  application in  BPS  programs  [6].  The most  common way  of  generating  a

stochastic  occupant  schedule is  to  reproduce an occupancy pattern using selected occupant

profiles  and then apply  statistical  models  representing the occupant  behavior  processes  [7].

Page,  et  al.  proposed  a  probabilistic  model  to  predict  and  simulate  occupancy  in  single-

occupancy offices,  which generalizes  a  stochastic  model  for  the occupancy simulation using

weekly  presence  probability  statistics  and  a  mobility  parameter  regarding  state  change  of

presence and absence  [8].  By  considering  occupant  presence as  an inhomogeneous  Markov

chain, interrupted by occasional periods of long absence, the model generates a time series of

the state  of  presence (absent  or  present)  of  each occupant  in  each room inside a building.

Stoppel,  et  al.  also  presented  a  probabilistic  occupancy  model  for  occupants’  long  vacancy

activities, which could be further integrated with BPS models [9]. In their simulation results, long

vacancy activities such as training, vacation, and other building underutilization are reported in

the daily occupancy rates of rooms and buildings.

Incorporating the concept of using occupant profiles and selected properties of occupants to

generate  corresponding  occupancy  schedule  output,  an  agent-based  building  occupancy

simulation model based on the homogeneous Markov chain model was introduced to simulate



the stochastic  movement  of  occupants  [10].  With  detailed  building  and occupant  profile  as

inputs, the model can be integrated in simulation tools to generate time series location for each

occupant and the occupancy of each space in the building [11]. This agent-based algorithm was

adopted  in  a  web-based  occupancy  simulation tool  named the Occupancy  Simulator,  which

simulates the stochastic occupant presence and movement in buildings, capturing the spatial

and temporal occupancy diversity [12]. 

However,  these  simulation  models  are  usually  based  on  theoretical  assumptions  and

mathematical  simplification  of  occupancy-related  behaviors.  In  the  real  world,  occupancy

patterns are diverse and complex  [2], and it is important that the building energy model can

effectively  represent  the  features  of  various  occupants’  behavior  in  real  [13].  Therefore,  to

generate applicable occupant schedule inputs for BPS, the stochastic occupancy model should

be evaluated according to realistic occupancy properties of a variety of typical occupant types.

Moreover,  it  is necessary to verify  whether the implementation of the agent-based model is

suitable for modeling different simulation scenarios, and to verify if the model satisfies a range

of accuracy consistent with the intended applications. 

Existing studies adopted a large number of evaluation metrics to assess the performance of the

occupancy  simulation  models  to  determine  the  accuracy  of  simulation results  compared  to

observed  ground  truth  data.  A  study  by  Tahmasebi  &  Mahdavi  validated  the  stochastic

realization  of  occupant  profiles  as  a  representation  of  occupants’  presence  patterns  by

comparing the occupancy model outputs with the actual occupancy levels at the building level

[14]. To conduct a quantitative evaluation, three statistical metrics are considered, namely mean

error,  root  mean  squared  error  (RMSE),  and  Jensen–Shannon  distance  [15].  Similarly,  in

Mahdavi’s research regarding occupancy pattern analysis, a set of specific evaluation statistics

was  deployed  for  the  comparison  of  the  model  performance—such  as  the  cumulative

distribution of first arrival time errors, departure time errors, and number of transitions errors

[16,17]. 

The Occupancy Simulator, developed by Lawrence Berkeley National Laboratory and made freely

available for public at occupancysimulator.lbl.gov, is a web-based application running on multiple

platforms and devices to simulate occupant presence and movement in buildings. It generates

hourly or sub-hourly occupant schedules for each space and for individual occupants in CSV files

and EnergyPlus  IDF  files  for  building  performance simulation  [18].  Object-oriented  design  is



adopted in the Occupancy Simulator, which represents the objects of building, space, occupant,

and  their  movment  behavior  in  a  hierarchical  structure  (Figure  1).  Each  object  is  modeled

mathematically with its properties and behaviors. For example, the movement behavior object is

modeled  as  an aggregation of  occupancy-related events.  Under  the structure,  the simulator

performs  an  agent-based  simulation for  each  occupant  to  produce  individual  occupancy  by

generating a time series of occupant locations that renders occupancy-related events such as

arrivals, departures, and random movement from one space to another inside the building. 

Figure 1 Object structure of the Occupancy Simulator

As the model input, the Occupancy Simulator adopts a set of descriptive occupant profiles to

reproduce the occupancy patterns for each type of occupant in buildings using the movement

behavior  simulation model.  The profile  is  formatted based on obXML,  an XML schema that

standardizes  the  representation  and  exchange  of  occupant  behavior  models  for  building

performance simulation [19]. In the profile, each Space is assigned a SpaceType, which defines

the occupancy density, occupancy composition and meeting events in the space.  Similarly, each

Occupant has an  OccupantType, which is defined by the MovementBehavior of the occupants.

For  occupant  movement  behaviors  simulation,  the  MovementBehavior object  includes  the

detailed description of regular occupancy-related events and their properties, such as arrival and

departure events, and the percentage of their presence time in each space category (Figure 2).

The profile serves as the model input for the simulation. 

The current  implementation of  the  simulation  model  aims  to  generate  the regular  working

schedules in office buildings, considering the stochastic nature of the occurrence of occupancy

related events. The space- and building-level occupancy schedules are generated by simulating

each occupant separately as an agent and then aggregating the produced patterns of presence.

Users can choose an individual space or the whole building to visualize or export the simulated



occupancy  results.  Currently,  the  model  simulates  regular  work  days,  while  handling  public

holidays at the building level. It does not yet consider individual long-term absences (e.g. sick

leaves, vacations, work from home, business trips, etc.). 

Figure 2 Mathematical models for movement behavior simulation in the Occupancy Simulator

This study aims to evaluate and verify the algorithms incorporated in the Occupancy Simulator

for  occupant  presence and  movement  simulation.  As  illustrated  in  Figure  2,  the Occupancy

Simulator represents the movement behavior with two kinds of events: the status transition

events  and  the  random  movement  events.  The  status  transition  events  contain  events

determining  the  binary  occupancy  status  in  the  building,  such  as  occupants’  arrival  and

departure. The random movement events describe occupant location transition in the building

for a certain period of time, such as going to the restroom or going to other people’s offices. In

the simulator,  the status  transition  events  are  generated  by  the ‘‘inverse  function method’’

(IFM), which generates a sample of events in a time series from a given probability distribution

function (PDF), as suggested by Reinhart and Page, et al.  [8,20]. Between these two types of

events,  random  movement  in  the  building  is  simulated  using  the  first-order  homogeneous

Markov  chain  technique,  which  simplifies  the  movement  behavior  to  a  Markov  process,

assuming the status at  the current time step only depends on the state of presence at  the

previous time step [10]. 



2. Methodology

The key to evaluating the performance of the Occupancy Simulator is to evaluate the feasibility

of using the tool to reproduce the occupancy-related behavioral patterns. Specifically, the main

objective of the model evaluation is to test the hypotheses incorporated in the simulation model

including:  (1)  the  occurrences  of  the  observed  occupancy-related  events  follow  a  certain

distribution that can be modeled in a statistical way, and (2) for a specific type of occupants, the

occupancy pattern can be reproduced based on selected descriptive properties.

Figure 3 Procedure of model performance evaluation and verification

Figure 3 illustrates the procedure to conduct the model performance evaluation and verification,

step by step. To understand the various occupancy patterns of different types of occupants, real

occupancy  data  is  collected  and  categorized  based  on  occupancy  type.  With  the  patterns

obtained, the theoretical model is evaluated based on whether the model is able to reproduce

the statistical  features  of  the observed  occupancy  patterns. The evaluation is  performed by

testing the fitness of the theoretical and observed distributions of the selected properties.  If

passing the hypothesis test, the proposed simulation model is implemented in the Occupancy

Simulator. Then the model implementation is verified to check whether the selected properties

of the occupant profiles are successfully reproduced in the Simulator.



2.1 Data collection

To obtain real  occupancy data for  occupancy pattern analysis  in regular office buildings,  the

office  area  of  the  Hillman  and  Gates’  Center  building  (6th to  9th floor)  at  Carnegie  Mellon

University  was  observed.  Categorized  by  occupation,  a  total  number  of  25  researchers,  25

professors, and 16 administrators were monitored by occupancy sensors in each room in the

whole  studied building area.  Generally,  the data  were collected from private  offices,  so  the

occupancy  sensor  records  can  be  used  to  determine  the  individual  absence  and  presence

schedule in an office. 

The field  experiment  lasted  three  months  from Oct  1st to  Dec  31st 2015. Binary  occupancy

records in 10-minute intervals were obtained, through the building management system, using

the wireless ceiling-mounted passive infrared (PIR) occupancy sensor installed in each monitored

office room. Figure 4 shows a sample area plan and location of monitored rooms. Considering

that  the simulation model  aims to generalize the regular  occupancy patterns with statistical

models, it is suggested that less representative events, such as long-term absence or vacation,

be eliminated in the analysis process. Specifically, in this case, days without a regular working

pattern were eliminated from the analysis, including weekends, holidays and days with special

events. During data processing, days were not considered in the analysis when the daily room

occupancy rate is less than 10% (when the working hour is less than 2.4 hours). On average for

all observed occupants, 67% of the observed days are considered as the regular working days,

and are used in regular occupancy pattern analysis.



Figure 4 Plan view of a sampled area of observed offices in the GHC building

2.2 Metrics for evaluation

Properties  describing  the  occupancy  patterns  of  different  occupant  types  serve  as  model

performance indicators during the model evaluation and verification process. For the studied

agent-based occupancy simulation model, occupancy-related events are reproduced based on

the probability distribution of the event occurrence time and duration, while random movement

between the events is simulated with the homogenous Markov chain model according to space

occupancy and one-time stay duration. The model is evaluated in two procedures:  statistical

models evaluation and model implementation verification.

Statistical models evaluation

The model is firstly evaluated by if the statistical distributions of the four occupancy traits fit the

theoretical  distributions  implemented  in  the  Occupancy  Simulator,  as  listed  in  Table  1.  For

occupant behavior model evaluation, previous studies adopted evaluation metrics such as the

distribution of prediction errors for observed behavioral properties, distance of observation and

predictions, and relative deviation of predicted actions from observed behavior [14-17]. In this

study, the feasibility of adopting the theoretical model for simulation is evaluated by the fitness

of the observed distributions of the selected properties and their mathematical simplification.



Table 1 Event pattern properties for statistical models evaluation

Observed behavior Occupancy pattern property Evaluation metrics
Arrival First arrival time (FA) Fitness of distribution
Random  movement
in the building

Average one-time stay duration (SD) Fitness of distribution
Average one-time leaving duration (TD) Fitness of distribution

Departure Average last departure time (LD) Fitness of distribution

Specifically, as labeled in Figure 5, the first arrival time (FA) is defined as the first time in a day an

occupant arrives at his or her office, and the last departure time (LD) is defined as the last time

in a day an occupant leaves the office. One-time stay duration (SD) represents the period of

staying at  the office without  leaving it,  while one-time leaving duration (TD)  represents  the

period of absence before coming back to the office again. 

Figure 5 Descriptive properties for occupancy related events in a typical office day

For  model  evaluation,  taking FA  as  an  example,  the procedure of  the  hypothesis  test  is  to

compare the observed distribution of the arrival time with several mathematical distributions

adopted  in  the  agent-based  simulation  model,  such  as  the  normal  distribution,  Geometric

distribution. If a pattern exists and matches a certain distribution, the simulation model can be

used  to  reproduce  the  corresponding  behavioral  pattern  of  a  certain  group  of  occupants.

Otherwise, we reject the hypothesis. Also, to draw representative occupancy properties from the

raw occupancy data, outliers are excluded in the behavior feature analysis. Specifically, for the

four observed behaviors listed in  Table 1, their statistical metrics are calculated and any data

point  more  than  1.5  interquartile  ranges  (IQRs)  below  the  first  quartile  or  above  the  third

quartile are eliminated.

The Kolmogorov-Smirnov (KS) test is adopted to test the fitness of distributions of the assumed

and observed patterns. The KS test is a non-parametric statistical test technique commonly used

to compare two distributions and assess their fit [21]. It is particularly indicated when one of the



distributions is the theoretical distribution that the observations are estimated to follow and the

other is the actual empirical distribution computed. 

Model implementation verification

To verify the overall performance and accuracy of the implementation of the simulation model,

the model is further evaluated by  whether the Occupancy simulation generation can maintain

the original occupancy patterns. The six evaluation metrics used in this study are listed in Table

2.  For  each  measured  feature,  the  verification  criterion  is  whether  the  simulation  results

successfully  reproduce  the  occupancy  pattern  based  on  model  inputs  evaluated  by  the

corresponding metrics.

Table 2 Event pattern properties for model implementation verification

Simulated
behavior

Occupancy pattern properties (Model inputs) Evaluation metrics

Arrival First arrival (FA) Fitness of distribution
Random
movement 
in the building

Average one-time stay duration Error rate
Average one-time absence duration Error rate
Percentage of time stay in own office Error rate
Percentage of time of transient absence Error rate

Departure Average last departure time (LD) Fitness of distribution

3. Results

3.1 Statistical model performance evaluation

Properties of occupant event patterns used for the statistical model evaluation are processed

and analyzed. As shown in Figure 6, the observed FA and LD for the three occupant types fall into

different probability distributions with multiple centers and ranges, while the observed SD and

TD fall into similar probability distributions with minor differences. In particular, since the raw

occupancy data are recorded in a 10-minute interval, arrival and departure times are rounded to

the nearest interval, and the transient absences of less than 10 minutes are neglected.



Figure 6 Probability distributions of the observed event pattern properties (The brown area is the overlapped area of
the three types of occupants)

To  further  demonstrate  this,  one  sample  KS  hypothesis  test  at  a  rejection  level  of  1%  is

conducted, and cumulative distribution function (CDF) plots are used to further analyze whether

the actual pattern matches with or deviates from the theoretical distribution. 

Figure  7 shows  the  CDF  plots  of  the  FA  and  LD  of  three  groups  of  occupants,  professors,

researchers,  and  administrators,  with  the  comparison  of  the  observed  distribution  of  the

collected data and the normal distribution. For the professors and researchers, the first arrival

time primarily falls into a normal distribution with a center from 9:00 am to 10:00 am and a

range from 6:00 am to 14:00 pm. When tested with the one-sample KS test with the normal

distribution, it fails to reject the null-hypothesis at the level of 1%, indicating that the empirical

distribution matches with the proposed normal one. This confirms that the FA and LD for these

two groups of occupants can be reproduced with a normal distribution. However, the CDFs of

the FA and LD of administrators both deviate from the normal distribution, and they reject the

null-hypothesis.  Considering this,  for  reproducing the arrival  and departure event  of  various

groups  of  occupants,  various  statistical  distributions  may  need  to  be  incorporated  in  the

simulation model.  Particularly for this case, results of the study suggest  that the customized

probability model be applied to simulate the occupancy pattern of the administrator group.



Figure 7 Cumulative distribution functions of the observed FA and LD times

Further, in the proposed homogeneous Markov chain model, it is assumed that the duration of

the one-time stay and the one-time absence in a space is geometrically distributed. In this case,

the collected data allows the parameter of the average one-time stay and absence from the

office  room  to  be  determined  and  the  fitness  of  their  distributions  with  the  proposed

distribution in the simulation model to be tested. The hypothesis tests fail  to reject the null-

hypothesis  at  the level  of  1% for  the SD for  professors  and researchers,  indicating that  the

distribution matches the geometric distribution. However, tests for the TD distribution and SD

distribution for the administrator group are rejected.



Figure 8 Cumulative distribution functions of the observed SD and TD durations

As illustrated in Figure 8, the results of the one-time stay duration primarily fall into the expected

theoretical distribution, while the distribution curves of the one-time absence duration tend to

deviate from the proposed distribution due to a higher probability of short absence when less

than 60 minutes is observed. However, in the simulation model, the input of the one-time stay

duration in each space would mutually affect the results. The one-time stay duration regulates

the percentage of time occupants stays in the domain space, such as occupants’ own offices. In

the simulation, the occupancy rate of the domain spaces is of more concern, performing as the

domain constraints in the simulation model. Since the homogeneous Markov chain sucessfully

reproduces the observed behaviors in the domain spaces, it is a feasible and appropriate model

to be used for the random movement events.

In general, occupancy pattern analysis results show that the occupancy simulation model should

be built to be adaptable to various cases of different types of occupants in office buildings. For

the  status  transition  events  such  as  arrival  and  departure,  a  variety  of  probabilistic  models

should be incorporated and applied according to  different  simulation cases.  For  the random

movement behavior of occupants after arrival and before departure, the homogeneous Markov

chain model is acceptable for modeling the stochastic nature of occupant movement.



3.2 Simulation model verification

The occupancy simulation tool is also verified to ensure its appropriate applications in various

simulation cases. A case study was conducted to demonstrate the simulation performance of the

Occupancy Simulator. A small one-story office building with 44 m (144.4 ft) (L) × 20 m (65.6 ft)

(W)  ×  3.5  m (114.8  ft)  (H)  was  selected  for  the  case  study.  The  building  has  a  total  of  13

occupants, among them eight are researchers, two are professors, and three are administrators.

The occupant profiles were constructed based on observed data for the three occupant types.

The simulation was run for a year; overall occupancy patterns on workdays for each occupancy

group were derived from the results based on the above-mentioned metrics. 

For  the  status  transition  events,  three  calculation  methods—namely  the  normal  probability

model, the geometric probability model, and the customized probability model—were tested for

modeling  the  occurrence  of  an  arrival  event.  As  shown  in  Figure  9,  the  results  verify  the

feasibility of using a variety of probability models for event occurrence calculation. This allows

the  users  of  the  simulator  to  capture  behavior  pattern  features  of  the  specific  groups  of

occupants in a more flexible way.

Figure 9 Verification of event occurrence time distribution

In the simulation model, random movement events are calculated with the constraints defined

by the average one-time stay duration and the average transient leaving duration. In order to

verify whether the simulator can correctly reproduce the input features, the model is tested with

a range of inputs for each constraint feature.  Table 3 summarizes the input duration and the

yearly average of output simulation results, indicating that the statistics match with the input

when the input ranges from 60 minutes to 150 minutes. The output deviates from the expected

values when the input duration is too short or too long, resulting from two main reasons. On the

one hand, the simulation is discrete and the time step in the test cases is 10 minutes, which

means that the minimum sojourn time at a location is at least 10 minutes. On the other, the

behavior  of  staying  in  one  space  would  be  interrupted  by  other  events  such  as  lunch  and



meetings, so it is very unlikely that the one-time stay duration can be longer than three hours

(180 minutes).

Table 3 Verification of the one-time stay duration simulation results

Case a b c d e f
Input duration (minutes) 30 60 90 120 150 180
Output the average duration (minutes) 24 56 87 105 124 146
Error rate 20.0% 6.7% 3.3% 12.5% 17.3% 18.9%

Similarly, a range of one-time leaving durations from 20 minutes to 60 minutes are also applied

to test the feasibility of the model to simulate a variety of cases. The test results are listed in

Table 4, and the cases  a-f represent the different simulation scenarios with different one-time

stay duration as the model input. The results also indicate that the simulator is suitable to model

regular cases when the average one-time leaving duration is less than 45 minutes. 

Table 4 Verification of the one-time leaving duration simulation results

Case a b c d
Input duration (minutes) 20 30 45 60
Output the average duration (minutes) 17 24 39 46
Error rate 15% 20% 13.3% 23.3%

For regular types of occupants in an office building, observed occupancy data reveals that the

typical average one-time stay duration in one’s own office is around 80 – 120 minutes, and the

one-time absence around 30 minutes (Table 5). The cases a-d represent the different simulation

scenarios with different one-time leaving duration as the model input, and all cases lie in the

acceptable ranges of the simulation input as tested. 

Table 5 Statistical features of the SD and LD durations

Variable One-time stay duration (minutes) One-time leaving duration
(minutes)

Q1 Median Q3 Q1 Median Q3
Professor 30 78 132 18 30 66
Researcher 48 102 156 12 30 84
Administrator 60 126 216 12 30 102

Occupancy percentage in an occupant’s domain space serves as the constraint condition for the

random movement behavior simulation. For verification, we also examined the yearly average of

occupancy percentage that each occupant stays in his or her own office. Although this metric

may be affected by other daily events and may vary from day to day, in a statistical view, the



output shows a high accuracy. Therefore, model implementation is acceptable for simulating

regular cases of the random movement events in office buildings.

Table 6 Verification of the occupancy percentage time in own offices
Occupant type Input Output Error 

rate
Mon Tue Wed Thu Fri Workdays average

Professor 74.0% 74.0% 70.4% 69.8% 71.0% 76.4% 72.6% 1.9%
Researcher 79.3% 78.0% 78.3% 75.3% 74.2% 74.0% 76.5% 3.5%
Administrator 83.2% 76.0% 77.8% 78.8% 79.7% 76.0% 78.6% 5.5%

4. Discussion

This  study revealed,  for  different types of occupants  with different occupation and behavior

preference,  that  occupancy  behavior  patterns  can  vary  one  from  another.  Due  to  limited

available  measured  occupancy  data,  the  study  focuses  on  performance  analysis  as  well  as

verification of modeling regular occupancy behavior patterns in office buildings. If more data are

obtained  in  the  future,  the  performance  evaluation  of  the  simulation  could  be  expanded

following the similar  procedure suggested  in  this  study.  To  ensure that  the model  be more

generalized to reproduce a range of occupancy patterns properly for a larger scope of occupant

types and building types, a variety of mathematical models should be considered and integrated

into  the  simulator  to  simulate  the  occupancy  presence  and  movement  behaviors  in  office

buildings. Moreover, the study focuses on the evaluation and verification of the presence and

movement behavior model at the occupant level. With sufficient data collected and analyzed, it

is also suggested that group events at the room level, such as meetings, be analyzed in a similar

way.  Further,  the  current  model  implementation  does  not  consider  individual  long-term

absences (e.g. sick leaves, vacations, work from home, business trips, etc.), since the behavior of

an occupant taking a long-term absence is not fully observed in the study. A new category of

personal absent workdays can be added to the occupant profile in future work.

As the probabilistic and stochastic simulations are based on random number generators, which

depend on the seeds that can vary between simulation runs, the simulated occupant schedules

will be different in each simulation run. It is suggested that reasonable repetition be taken into

consideration in  simulation for  analyzing  occupancy  behavior,  especially  when analyzing  the

impact of occupant behavior on building energy consumption [22]. Therefore, the generality of

the evaluation and verification demonstrated in this study remains to be further tested with

long-term observation of occupancy patterns. 



It should be noted that occupancy models derived from data mining and machine learning can

be incorporated in the occupancy simulation model with similar approaches as suggested in this

study.  Considering  the  variety  and  indeterminacy  of  occupant  behaviors  in  buildings,  using

measured occupancy behaviors and activities is recommended to derive the occupancy models

with data mining and machine learning methods, rather than purely by theoretical assumptions

and mathematical simplifications. Extrapolation of patterns from big data streams is a powerful

analysis technique for this kind of study  [23] . Further investigations are suggested to deploy

more robust models to reproduce patterns of human movement and actions into behavioral

models and to uncover the impact of typical occupancy patterns on the energy performance of

buildings.

5. Conclusions

This study recommends that for status transition events such as occupant arrival and departure,

a  variety  of  probabilistic  models  should  be  incorporated  and  applied  according  to  different

simulation cases. To simulate various types of occupants in different types of office buildings, a

variety set of probability distribution functions should be adopted in the model. Currently three

distribution functions, the geometric, the normal and the user-custom, were implemenetd in the

Occupancy simulation model, which can be chosen by users depending on their applications. The

study also recommends that the homogeneous Markov chain model is acceptable for modeling

the  stochastic  nature  of  occupant  movement  after  daily  arrival  and  before  daily  departure.

Result  of  this  verification  of  the  statistics  of  the  simulation  occupancy  results  against  the

simulation  inputs  show  that  the  Occupancy  Simulator  is  capable  of  simulating  a  range  of

occupancy patterns and behavioral preference in office buildings.

This study shows that the Occupancy Simulator does accurately simulate occupant presence and

movement in office buildings and that the generated occupant schedules accurately represent

the temporal and spatial diversity of real occupancy. 

Future  work is  recommended that  uses  detailed measured  interval  occupancy data  from all

spaces of an office building to validate the simulated occupant schedules from the Occupancy

Simulator,  and  to  further  identify  potential  limitations  and  enhancements  that  need  to  be

addressed for Occupancy Simulator’s practical applications.
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