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Marc-André Webere, Stuart Croziera

aSchool of Information Technology and Electrical Engineering, University of Queensland,
Australia

bThe Australian E-Health Research Centre, CSIRO Digital Productivity, Australia
cSchool of Human Movement Studies, University of Queensland, Australia
dDepartment of Neuroradiology, University Hospital Heidelberg, Germany

eDepartment of Diagnostic and Interventional Radiology, University Hospital Heidelberg,
Germany

Abstract

Many medical image processing techniques rely on accurate shape mod-
eling of anatomical features. The presence of shape abnormalities challenges
traditional processing algorithms based on strong morphological priors. In
this work, a sparse shape reconstruction from a statistical shape model is
presented. It combines the advantages of traditional statistical shape mod-
els (defining a ’normal’ shape space) and previously presented sparse shape
composition (providing localized descriptors of anomalies). The algorithm
was incorporated into our image segmentation and classification software.
Evaluation was performed on simulated and clinical MRI data from 22 sci-
atica patients with intervertebral disc herniation, containing 35 herniated
and 97 normal discs. Moderate to high correlation (R = 0.73) was achieved
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between simulated and detected herniations. The sparse reconstruction pro-
vided novel quantitative features describing the herniation morphology and
MRI signal appearance in three dimensions (3D). The proposed descriptors of
local disc morphology resulted to the 3D segmentation accuracy of 1.07±1.00
mm (mean absolute vertex-to-vertex mesh distance over the posterior disc re-
gion), and improved the intervertebral disc classification from 0.888 to 0.931
(area under receiver operating curve). The results show that the sparse shape
reconstruction may improve computer-aided diagnosis of pathological condi-
tions presenting local morphological alterations, as seen in intervertebral disc
herniation.

Keywords:
Statistical shape model, sparse optimization, computer-aided diagnosis,
segmentation, intervertebral disc, herniation, magnetic resonance imaging

1. Introduction

Prior shape modeling of human organs plays a distinctive role in many
medical image processing algorithms, including image registration, segmenta-
tion, surgical planning or computer-aided diagnosis (CAD) [1, 2]. Statistical
shape models (SSM) of Cootes et al. [3] have become one of the most widely
used algorithms for defining anatomical shape spaces and shape similarities
[1]. The standard formulation of the SSM using principle component analysis
(PCA) captures general anatomical variation by defining a space of plausible
shapes (within certain standard deviations from the mean shape). If nor-
mal (i.e. healthy) shapes were used in the training, this shape space can
be attributed to represent ’normal’ instances. On the other hand, the SSMs
cannot model local shape deformations that are not statistically significant
in the training dataset. Many pathological conditions, such as intervertebral
disc (IVD) herniation, locally affect the anatomical morphology and chal-
lenge automated processing techniques (e.g. segmentation, CAD) that rely
on strong prior shape assumptions.

Modeling relevant local information has been attempted with hierarchi-
cal shape modeling [4], sparse PCA [5] or medial shape representations [6].
However, these techniques still require the presence of similar shape instances
in the training set. Focused shape models of Chandra et al. [7] enable
to increase shape modeling sensitivity by targeting specific anatomical sub-
regions. This strategy should hypothetically help to improve the modeling of
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’common’ anomalous (e.g. herniated) areas but is unlikely to capture larger
pathological deformations (e.g. migrations of disc material) in absence of
specific training data.

Sparse optimization techniques have become a popular choice in computer
visions and medical image processing applications dealing with modeling of
local anomalies. A sparse optimization was used to robustly recognize facial
expressions from large training datasets in the presence of occlusions and
corrupted data [8]. Sparse representation shape models of Li et al. [9] define
the shape space as a convex hull of sparse linear representations of training
data which considerably improves accuracy of face localization in images.
Sparse shape composition of Zhang et al. [10] represents a test shape in-
stance as a sparse linear combination of training data and defines regions of
specific local deformations. It has been successfully applied in several chal-
lenging medical image segmentation problems, such as lung localization and
liver segmentation [10, 11] or cardiac motion analysis [12], where modeling
of previously unseen local shape deformations is required. Further improve-
ments in medical image segmentation were achieved by combining sparse
reconstructions of shape subregions [13, 14] and by sparse modeling of the
signal intensity appearance in the form of active appearance models [14]. The
sparse shape composition and its alternatives have been shown to improve
deformable model segmentation of anatomical features with pathologies that
substantially alter the shape morphology. However, because the sparse shape
composition uses prior information in the form of a linear combination of a
subset of training shapes, it is not clear how to anatomically interpret the
detected sparse anomalous differences. Unlike the SSMs, the definition of a
’normal’ shape space and a shape distance metric is not available with the
sparse shape composition. While it does not hinder the application to image
segmentation, these notions are important for quantification of the pathology
and for designing a CAD system.

The aim of this work is to combine the advantages of sparse optimiza-
tion and SSMs in order to deliver quantitative descriptors suitable for shape
comparisons and classifications. The presented method of sparse reconstruc-
tion will be applied to the clinical case of IVD herniation. The hypothesis
of this research is that the proposed sparse shape reconstruction can deliver
sensible CAD of IVD herniation with the potential to provide novel quan-
titative descriptors of the lesions. The method will preserve the benefits of
strong prior knowledge in the form of SSM while being able to automati-
cally identify, quantify and classify areas of local shape abnormalities that

3



Page 4 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

cannot be modeled a priori (as is the case with the IVD herniation). As
a result, quantitative descriptors of the morphological characteristics of the
herniation that can serve as a basis for efficient radiological diagnosis will be
readily available.

1.1. Clinical background

The clinical application presented in this study, the IVD herniation, fig-
ure among the most common causes of low back pain. The term herniation
encompasses a range of acute or chronic IVD pathologies (e.g. IVD bulge,
protrusion, extrusion or sequestered disc) [15] and the references often differ
in the reporting nomenclature and classification of the radiological findings
[16]. Accurate and precise descriptions of normal and pathologic conditions
of lumbar discs are therefore highly desirable. CAD systems capable to effi-
ciently deliver quantitative information and consistent classification can have
a significant impact on clinical diagnostic and therapeutic decision making.

Previous CAD approaches for IVD herniation utilized a variety of al-
gorithmical strategies. Herniation detection has been performed using fea-
tures derived from the appearance of the IVD in magnetic resonance imaging
(MRI) (e.g. raw intensity [17], mean intensities of IVD subregions [18], tex-
tural features [18, 17]) and morphological features describing the IVD shape
in a two-dimensional (2D) cross-section (major and minor axis [19, 18], sta-
tistical models of global shape variations [20], geodesic distance to a healthy
shape space [21]). The presented output of the classification is usually a bi-
nary decision about the normality of the IVD. To the best of our knowledge,
computer-based reporting of quantitative characteristics of the herniation or
sub-classification of the herniation to one of the clinically used nomenclatures
has not been previously presented. Moreover, previous methods of comput-
erized assessment of IVD herniation from MRI have been based on analyses
of one (typically the mid-sagittal) 2D slice. However, IVD herniation is a
three-dimensional (3D) pathology that affects the IVD in diverse locations
in various forms and shapes. An evidence of improving CAD by 3D analysis
of IVD volumes has been previously presented for the case of the degenerative
disc disease [22] but not applied for CAD of IVD herniation.

Classification of IVD herniation has been based on features extracted from
pre-segmented IVDs. MRI segmentation of IVDs relies on signal intensity
appearance cues and strong shape priors that in combination increase the
segmentation performance. Several studies generated and employed prior
probabilistic atlases of the spine shape in the segmentation [23, 24], or created
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parametric models of the IVD anatomical structure [25, 26]. The SSMs have
also been a popular approach to modeling the prior shape constraints in the
lumbar spine. They have been employed in the MRI segmentation of IVDs
[27, 28, 20], vertebræ [29, 28] and other musculoskeletal structures [7, 30, 31]
but their use in CAD of IVD herniation remain largely unexplored.

2. Methods

The sparse reconstruction algorithm is presented in section 2.1. The re-
construction was first evaluated using simulated data (section 2.2). Valida-
tion on real data is presented in section 2.3 where the sparse reconstruction
was incorporated into an image segmentation algorithm (section 2.3.2) and
into a herniation classification pipeline (section 2.3.3).

2.1. Sparse reconstruction

The proposed method supposed that a dataset of training shapes is avail-
able in the form of a SSM. For the purpose of this study, explicit shape
representations by 3D mesh coordinates were used. Point-wise correspond-
ing representations of the training shapes were obtained using the method
of optimization of description length according to Davies et al. [32, 33] us-
ing generalized Procrustes alignment [34]. The training dataset consisted of
K = 69 3D meshes xk ∈ R3N (the 3D coordinates are concatenated into one
vector) with N = 4098 vertices vi ∈ R3, i = 1, . . . , N and M = 8192 facets
fj ∈ Z3, j = 1, . . . ,M .

The SSM method [3] finds modes of shape variation in the training data
(matrix P ∈ R3N×K), and allows generating instances similar to training
shapes as x̄ + Pb, where x̄ ∈ R3N is the mean training shape, and b ∈
RK are weights of the modes of variation, also called shape parameters.
Reconstruction of an existing shape y is usually done by optimizing the
shape parameters to minimize the reconstruction error e:

min
b
‖e‖22, e = y′ − x̄−Pb, (1)

where y′ is the input shape y after spatial alignment to the mean shape x̄
(e.g. using generalized Procrustes alignment [34]). This formulation with `2

norm represents a quadratic optimization problem with smooth and convex
cost function that can be efficiently solved for global minima. However, this
reconstruction does not allow capturing local shape deformations that are
not statistically significant in the training dataset.
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Reconstruction with specific local deformations can be achieved by in-
cluding the error vector e in the reconstruction optimization, as suggested
by Zhang et al. [10]. This vector will represent local shape deformation from
what would be a ’normal’ shape. As such, it should only allow a subset of
vertices to deviate from the shape inferred by the SSM, i.e. be sparse. In ad-
dition, this deviation should be spatially consistent, i.e. somewhat ’smooth’.
For this purpose, the reconstruction error vector was modeled as e = Sd,
where d ∈ R3N is a sparse vector of displacement of mesh vertices, and
S ∈ R3N×3N is a smoothing matrix. The reconstruction is reformulated as:

min
b,d
‖y′ − x̄−Pb− Sd‖22, subject to ‖d‖0 ≤ k, (2)

where k is a sparsity constant.
Previous work in sparsity theories and sparse optimization has shown that

for a sparse enough solution, the following reformulation (convex relaxation)
is an accurate analogy to Eq. 2 that also leads to the sparsest of all solutions,
while avoiding the non-convex `0 norm [35, 36]:

min
b,d
‖y′ − x̄−Pb− Sd‖22 + λ‖d‖1. (3)

Without any additional constraint on the shape parameters b, large varia-
tions can be inferred to the reconstructed shape, which can result in anatom-
ically non-plausible shape instances. During traditional SSM reconstruction
(Eq. 1), the shape parameters b are usually restricted to lie within 2 or 3
standard deviations of each mode of variation.

The final reconstruction that is proposed in this work has therefore the
following formulation:

min
b,d
‖y′ − x̄−Pb− Sd‖22 + λ1‖b‖22 + λ2‖d‖1. (4)

Adding the `2 norm condition for b in Eq. 4 will enable to control the
tradeoff between SSM inference and specific local deformations d. Increasing
the parameter λ1 will limit the amount of shape variations explained by the
SSM and hence allows more deformation information to be captured in the
sparse component d. On the other hand decreasing the parameter λ1 will
enlarge the space of allowed variation inferred by the SSM and hence limits
the amount of sparse local deformation in d. This formulation allows a
balance between the global variation component b (by changing λ1) and the
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local sparse deformation component d (by changing λ2) to be determined for
different applications. The influence of the parameters in our experiments is
illustrated in section 2.4.

Although the cost function in Eq. 4 is not smooth or quadratic, it is
continuous and convex which allows the use of efficient optimization algo-
rithm for finding the optimal solution. There is a variety of modern sparse
optimization techniques solving computationally expensive problems in sig-
nal and image processing [37, 38, 39, 40, 41]. Two optimisation techniques
were evaluated and compared in this study. The chosen algorithms were: the
Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [42] (similarly to
Zhang et al. [10]), and the Homotopy-based optimization [43] thanks to their
computational efficiency. The comparison is presented in section 2.4.

The technique chosen for this study was, similarly to Zhang et al. [10],
the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [42] due to its
computational efficiency.

2.2. Validation on simulated data

Experimental quantitative descriptors of IVD herniation were proposed
and tested on simulated IVD herniation data (section 2.2). Artificial defor-
mation was applied to a randomly chosen healthy IVD (Fig. 1a) from the
SSM training shapes in the following fashion. A mesh vertex in the posterior
disc area was selected as the center point and a smooth deformation was ap-
plied to a region surrounding the center point (Fig. 1b). The amount of local
deformation was chosen randomly from pre-defined ranges (region diameter
between 10− 40 mm, maximal displacement between 3− 5 mm).

Regions of abnormal deformation were subsequently detected (Fig. 1c)
using the proposed reconstruction algorithm and the following quantitative
measures were computed: a) average displacement per mesh vertex from a
’normal’ shape (defined by the SSM), and b) the central point of the detected
region (mesh point minimizing the distance from all points in the region).

This experiment was repeated 200 times. For each repetition, the distance
between the center of the detected region and the center of the simulated
region was computed. The simulated and detected average displacements
were compared and the Pearson’s correlation coefficient was determined.

2.3. Validation on real data

Evaluation on real MRI data was performed as a binary classification
problem, aiming to detect herniated IVDs. The input MRI images were first
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(a) (b) (c)

Figure 1: Example of a simulated herniation. (a) A ’normal’ IVD is randomly generated
from a SSM, (b) the herniation is simulated by adding artificial displacements to vertices
in the posterior region, (c) sparse reconstruction of the simulated disc with a detected
region of anomalous deformations (color-coded in mm). l-left, s-superior, p-posterior.

segmented using a combination of established techniques with the sparse re-
construction, and then classified based on features describing the morphology
and MRI signal intensity.

2.3.1. Imaging dataset

Sagittal T2-weighted turbo spin echo scans were acquired from 22 patients
presenting to the University Hospital of Heidelberg, Germany, for MRI inves-
tigation of symptomatic conditions of the lumbar spine. T2-weighted sagittal
images (11-21 slices) were acquired with in-plane resolution 0.71× 0.71 mm
(image matrix 448 × 448), slice thickness 3 mm and slice spacing 3.3 mm.
MRI scans from of all patients imaged 6 lumbar IVDs (T12/L1 - L5/S1)
and the combined database of 132 IVDs was used in the segmentation and
classification experiments.

The radiological assessment was performed by DS (under supervision of
MW) and the findings included: a bulging disc (N=13), focal protrusion or
extrusion (N=20), and broad-based protrusion or extrusion (N=15). At least
one herniated IVD was identified in every patient.

Manual segmentations of a subset of lumbar discs (N = 49, including all
discs with a herniation) were obtained by an experienced radiographer (Dr.
Mark W Strudwick, University of Queensland).

2.3.2. Image segmentation

The MRI images were pre-processed using a bias field correction algo-
rithm [44], smoothed by anisotropic diffusion (20 iterations with a time step

8
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Figure 2: Definition of the posterior IVD region: sagittal (left), coronal (middle), and
axial (right) view. Local mesh weights were used to define the posterior IVD region where
the clinically relevant herniations occur.

0.01 and conductance 1.0) and reformatted using B-Spline image interpola-
tion to an isotropic resolution of 0.71 mm. Previously presented volumetric
segmentation algorithm was applied to extract 3D shapes of IVDs and ver-
tebral bodies [28]. The algorithm was manually initialized by identifying
centers of visualized vertebral bodies in the mid-sagittal cross-section (one
click per vertebra). All subsequent processing presented in this study was
fully automated. This manual step could potentially be replaced with one of
several recently proposed automated labeling techniques [45, 46, 47], hence
providing a fully automated pipeline. Nevertheless, choosing and validating
an appropriate automated localization method was beyond the scope of the
current study.

The segmentation algorithm [28] was based on Active Shape Models
(ASMs) had been previously validated on cases with degenerative disc dis-
ease [22]. For the purpose of this study, a SSM of healthy lumbar IVDs was
constructed using 62 manual segmentations from the previous study [28] (7
degenerative IVDs were removed from the previously used SSM consisting
of 69 shapes [28]). This allows to better define a space of ’normal’ shapes
that can be used to obtain quantitative descriptors. Therefore the test data
(herniated IVDs) often lie outside of the ’normal’ shape space. Constraining
the deformations using a global IVD shape morphology would limit the accu-
racy on abnormal IVDs with local deformations. To minimize this, a focused
shape models of the posterior IVD region were used to improve the segmenta-
tion performance [7]. The region of focus was defined to encompass the area
where the clinically most relevant herniation lesions occur (Fig. 2). These
segmentation results were then locally relaxed to the local gradient extrema,

9
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(a) (b) (c)

Figure 3: Classification features. (a) A line (in red) connecting posterior corners of adja-
cent vertebral bodies that is used to compute features in group 4, (b) difference between
SSM segmentation (left) and final segmentation (right) is used as classification features of
group 5, (c) detected sparse displacements are used as classification features in group 6.

after which the sparse shape reconstruction (section 2.1) was applied.
The segmentation algorithm was evaluated at four stages: initial seg-

mentation [28], focused shape model segmentation, gradient relaxation, and
after sparse reconstruction. The Dice Similarity Coefficient (DSC) [48] on
the entire IVD volume, and the Mean Absolute Vertex-to-vertex mesh Dis-
tance (MAVD) on the posterior IVD region (Fig. 2 with threshold of 0.5)
were used as evaluation metrics. The segmentation accuracy between focused
shape model segmentation and sparse reconstruction results was evaluated
for statistical significant using paired Student’s t-test.

2.3.3. Herniation classification

There are currently no established quantitative descriptors of IVD hernia-
tion used in clinical practice. The pertinence of quantitative features derived
from the sparse reconstruction was evaluated using qualitative classification
of real MRI data after IVD segmentation (section 2.3.2). The input dataset
of 132 IVDs was split based on radiological reports into two classes. The first
class contained healthy IVDs and IVDs with minor bulges (N = 97). The
second class contained IVD with identified protrusions, extrusions or other
type of pathological herniations (N = 35).

The classification features were comprised in the following groups:

1. Global geometrical features (N = 3)
The geometrical features included volume (number of voxels), surface
area (number of edge voxels, assuming a 6-connected neighborhood),
and the number of edge regions (assuming a 6-connected neighbor-
hood).

10
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2. SSM shape parameters (N = 6)
Shape parameters corresponding to the first 6 modes of variation were
used as global shape descriptors in the classification.

3. Focused shape model parameters (N = 6)
Similarly to SSM, shape parameters corresponding to the first 6 modes
of the focused shape model were used to describe variation in the pos-
terior disc region.

4. Descriptive statistics of the posterior IVD region (N = 6)
In each sagittal slice, a line linearly connecting corners of adjacent ver-
tebral bodies was defined (see [49] for more details). The IVD material
posteriorly overpassing this line was quantified by its volume (absolute
and relative to the whole IVD) and the distribution among sagittal
slices (mean, variance, skewness and kurtosis) (Fig. 3a).

5. Difference between ASM segmentation and final segmentation (N = 4)
The per-vertex differences in the segmentation of the posterior IVD re-
gion between the initial (ASM) and final (after sparse reconstruction)
stage of the algorithm were computed. The differences were quanti-
fied by the distribution over the posterior IVD region (mean, variance,
skewness and kurtosis) (Fig. 3b).

6. Deformations detected by sparse reconstruction (N = 7)
Displacements detected during the sparse reconstruction (vector d in
Eq. 4, Fig. 3c) were quantified by the per-vertex distribution (mean,
variance, skewness, kurtosis). Moreover, an empirical threshold of 0.5
mm was used and 3 additional quantities were computed over the ver-
tices with displacement values above the threshold (number of vertices,
mean and variance of the displacements).

7. Raw MRI signal intensity (N = 6)
Features were derived from the descriptive statistics of MRI signal in-
tensities within the segmented IVD (mean, median, standard deviation,
minimum, maximum, 25th percentile)

8. MRI signal intensity gradient (N = 10)
Gradient based features were computed as descriptive statistics of gra-
dient norms using both `1 and `2 norms (sum, mean, standard devia-
tion, minimum, maximum).

9. Gray-Level Co-occurrence Matrix (GLCM) (N = 8)
The GLCM textural features consisted of the mean and standard de-
viation of contrast, correlation, energy and homogeneity [50].
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Linear discriminant analysis (LDA) was used as classification algorithm.
Repeated (300 times) stratified (keeping the same ratio of positive and nega-
tive samples in each class) 2-fold cross-validation was performed, using 60%
of samples for training and 40% for cross-validation. Feature selection by
backward elimination was employed, using Area Under receiver operating
Curve (AUC) as the primary metric for evaluation of the classification per-
formance.

Initially, the classification was evaluated separately on each group of fea-
tures. Next, the feature groups were combined into sets of global morpho-
logical, local morphological and MRI signal features. Further, the features
were combined all together. To specifically assess the importance of the local
morphological features available via the sparse reconstruction, the features
related to the reconstruction (groups 4,5,6) were removed from the combined
set of all features in the next experiment. Lastly, the classification was per-
formed using all features except for the sparse displacement features (group
6). These features can constitute basis for novel quantitative descriptors
and this experiment aimed to confirm their importance in gaining maximal
classification performance.

2.4. Implementation details

The smoothing matrix S in Eq. 4 was computed from the mesh con-
nectivity matrix. Smoothing of vertex scalar values was based on Gaussian-
weighted (with variance σ2) averaging of the scalar values over a local mesh
neighbourhood Ni with radius r. The matrix S is therefore determined
by the mesh of the statistical shape model and the two smoothing pa-
rameters r and σ. Several values of parameters r (r ∈ {1, 2, 3, 4}) and σ
(σ ∈ {1mm, 2mm, 5mm, 10mm}) were evaluated in phantom experiments.
The effect of different smoothing matrices on the final reconstruction was
minimal. This can be explained by the fact that the smoothed vector Sd
with this implementation is also sparse and therefore substituting the dis-
placement vector for d′ = Sd will reach the same results. The matrix was
therefore set to identity for all experiments in this study. Other designs of
the smoothing matrix S that would not result in sparse vector Sd would fit
to the proposed framework and can be considered in other studies.

Two optimization techniques (FISTA and Homotopy) were evaluated on
simulated data. The correlation coefficient between the simulated displace-
ments and the displacements detected by each method was used as a measure
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(a) (b)

(c)

Figure 4: Comparison of sparse optimization techniques and reconstruction parameters.
(a) Homotopy based optimization, (b) FISTA algorithm, (c) evaluation of reconstruction
parameters with the FISTA optimization.

of quality of reconstruction (Fig. 4). The FISTA algorithm was found to de-
liver better results and was used in all experiments on real data in this study.

A range of parameters λ1 and λ2 (Eq. 4) were evaluated in simulated
experiments: λ1, λ2 ∈ {0.0001, 0.001, 0.01}. The correlation coefficient be-
tween the simulated displacements and the displacements detected by the
FISTA algorithm with different parameters was used as a measure of quality
of reconstruction (Fig. 4c). The final values were empirically set according

13
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Figure 5: The histogram of errors in herniation center localization on simulated data.

to Fig. 4c to λ1 = λ2 = 0.001 and kept constant for all experiments on real
data in this study.

The reconstruction was spatially restrained to focus on the posterior IVD
region (Fig. 2) using the methods of weighted PCA and focused shape models
[7].

Parameters of the segmentation algorithm were kept the same as in the
previous study [28]. The focused shape model segmentation was run for
50 iterations. Subsequently, 1 relaxation iteration to the local gradient ex-
trema was applied before the sparse reconstruction. The FISTA optimization
during sparse reconstruction was run for k = 50 iterations (global rate of
convergence is O(1/k2)). The average reconstruction time in the simulated
experiments was 15 seconds (a single thread on an Intel 2.83 GHz Dual Core
PC with 8 GB RAM).

3. Results and Discussion

3.1. Simulated data

Histogram of distances between simulated and detected center points of
the herniation are presented in Fig. 5. Correlation between the simulated
and detected mean displacements per vertex of the herniated region was
R = 0.73 (Fig. 4b).

The majority of center points of the detected herniated regions were
within 15 mm of the original center points (Fig. 5). For comparison, the
average transversal diameter of the cartilage end-plates have been reported

14
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Figure 6: Quantitative evaluation of the segmentation results at four stages (N=49). The
DSC was evaluated over the full IVD volume, the MAVD over posterior IVD region (Fig.
2).

between 36.3 − 44.6 mm in lumbar IVDs [51]. This indicates that in most
cases, it is possible to approximately identify whether the herniation occurred
in the left, central or right posterior IVD region. Similar identification of lat-
eral regions of herniation occurrence is currently performed in radiological
practice.

The current results on simulated herniation data suggest that the sparse
reconstruction have the potential to deliver novel and sensible quantitative
measures. Further work is however needed to identify most relevant mor-
phological descriptors of the herniation, and to clinically validate proposed
surrogate measures, such as the average per-vertex displacement (Fig. 4).
Strengthening validation of the quantitative descriptors will require precise
annotations of the herniated disc material and proper definitions of the re-
quired measurements. The quantitative features proposed here serve as a
proof of concept of the sparse reconstruction and motivation for future work
into this area.

3.2. Real data

3.2.1. Image segmentation

Quantitative evaluation of the segmentation algorithm using 49 manually
segmented IVDs is presented in Fig. 6. The mean DSC over the entire IVD
volume was 0.815±0.048, 0.844±0.048, 0.866±0.044 and 0.862±0.044, after
ASM segmentation, focused shape model segmentation, gradient relaxation
and after sparse reconstruction respectively. The mean MAVD evaluated at
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the posterior IVD region was 1.22 ± 0.27 mm, 1.23 ± 0.28 mm, 1.08 ± 0.33
mm and 1.07± 0.30 mm at each stage respectively.

Local gradient relaxation improves accuracy of the segmentation of her-
niated IVDs. This is true both for the entire IVD volume (as measured by
DSC) as well as for the posterior IVD region where the herniations occur
(as measured by MAVD). No considerable improvement of the segmentation
accuracy was expected after the sparse reconstruction since the reconstruc-
tion is not driven by the MRI signal intensity. However, the reconstruction
acts as a regularization filter removing noisy displacements due to unreliable
appearance cues. Furthermore, it detects regions of anomalous deformations
and enables quantification of the abnormality. The improvements between
focused shape model segmentation and sparse shape reconstruction were nev-
ertheless statistically significant for both quantitative metrics (p < 0.001 for
DSC, and p < 0.001 for MAVD). This results further illustrates the im-
portance of the sparse modelling of the local deformations that cannot be
captured by statistical shape models, even when focused on the posterior
region.

The presented quantitative measures indicate good segmentation perfor-
mance on herniated IVDs in comparison with the literature. Previous seg-
mentation approaches for herniated IVDs have been presented for 2D slices
only, achieving varying ranges of mean DSC values (0.84 [52], 0.9235±0.0160
[53]). Similar DSC values have been obtained for segmentation of 2D MRI
data acquired from patients with degenerative disc disease (0.89 [23]) or sco-
liosis (0.85 [54]). Although comparison between 2D and 3D techniques that
were validated on diverse datasets is complicated, the presented segmenta-
tion results are comparable to those presented in recent literature. Further-
more, recently presented validation studies showed a good reproducibility and
validity of automated measurements obtained with the same segmentation
techniques [22, 49]. Most importantly, the automated measures were equiv-
alent to manual measures in detecting acute morphological IVD changes in
response to exercise [49]. Finally, obtaining accurate location, size and scor-
ing in a CAD (the goal of the present study) does not necessarily require
’perfect’ morphological segmentations. If the system is able to detect where
the herniation occurs and describe the type of present pathology (bulge, pro-
trusion or extrusion, focal or broad-based), it would help the radiological
assessment even without full segmentation of the pathology.
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Table 1: Classification results using LDA classifier. The best classification results for each
metric are highlighted in bold.

Features AUC Accuracy Sensitivity Specificity
Group 1 0.703 0.723 0.497 0.802
Group 2 0.811 0.766 0.684 0.795
Group 3 0.733 0.671 0.699 0.662
Group 4 0.861 0.803 0.719 0.834
Group 5 0.786 0.701 0.689 0.706
Group 6 0.753 0.697 0.616 0.726
Group 7 0.859 0.769 0.924 0.713
Group 8 0.826 0.740 0.844 0.702
Group 9 0.826 0.777 0.776 0.778

Global morphological (1-3) 0.836 0.766 0.722 0.783
Local morphological (4-6) 0.904 0.848 0.751 0.884
All morphological (1-6) 0.912 0.850 0.780 0.877

MRI signal (7-9) 0.889 0.811 0.864 0.793
All (1-9) 0.931 0.865 0.823 0.881

Table 2: Classification results using LDA classifier. The best classification results for each
metric are highlighted in bold.

Features AUC Accuracy Sensitivity Specificity
All (groups 1-9) 0.931 0.865 0.823 0.881

Without groups 4,5,6 0.888 0.822 0.812 0.827
Without group 6 0.916 0.850 0.806 0.868

3.2.2. Herniation classification

The classification results are summarized in Table 1. It can be seen that
features derived from MRI signal intensity (groups 7,8,9) achieve the best
detection sensitivity. The highest sensitivity of 0.924 was achieved when us-
ing raw intensity features (group 7). Descriptive statistics of the posterior
IVD region (group 4) performed the best in terms of AUC (0.861), accuracy
(0.803) and specificity (0.834). Combination of feature groups into sets of
global (groups 1-3) and local (groups 4-6) morphological descriptors (pro-
vided by the sparse reconstruction), and MRI signal features (groups 7-9)
lead to improvements of most classification metrics. The best AUC (0.904),
accuracy (0.850) and specificity (0.884) were obtained with morphological
features (local or combined), while the highest sensitivity was achieved with

17



Page 18 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

MRI signal features (0.864). Finally, combination of all features together
lead to further increase in AUC (0.931), accuracy (0.865). The specificity
(0.881) was comparable to that of local morphological features (0.884). The
sensitivity value (0.813) however did not reach the value of 0.924 that was
achieved with raw intensity features only.

The high sensitivity of the raw intensity features can be related to degen-
erative changes (reflected as alteration of IVD appearance in T2-weighted
MRI scans) that are associated with the herniation. On the other hand,
many degenerative discs do not present a herniation, which explains why the
MRI signal features present a higher number of false positives. The results
confirm the importance of proposed local morphological features from the
sparse reconstruction. They are able to decrease the number of false positive
samples and improve the AUC, specificity and accuracy. The importance of
the local morphological features (groups 4,5,6), including the sparse displace-
ments (group 6) is confirmed by the results presented in Table 2. The AUC
drops from 0.931 to 0.888 after removing local morphological features, and
to 0.916 when the sparse anomalous displacements (group 6) are removed,
and the same trend is observed for the remaining metrics. These results
suggest that the local morphological features contain important information
about the herniation and motivate future clinical validation of quantitative
descriptors based on the sparse reconstruction.

Comparison with other classification studies needs to be exercised with
caution. The validation datasets considerably differ in size, imaging param-
eters and validation strategies. The main goal of this study is to present
innovative features that are easily interpretable and can consequently lead to
introduction of novel quantitative descriptors to clinical practice [55]. Previ-
ous works focusing on maximizing classification performances have achieved
sensitivity and specificity of 0.864 and 0.966 [19], 0.94 and 0.91 [56], 0.925
and 0.959 [18] on similar datasets. However, the analyses were performed
on one (mid-sagittal) 2D slice, which did not allow assessment of lateral her-
niations, and generally did not provide means to quantify the extent of the
herniation.

3.3. Strengths, limitations and future work

The proposed sparse technique is capable to identify regions of anomalous
deformations and, more importantly, to quantify the difference of a shape
instance from what would be considered a ’normal’ shape according to a
training database. Quantification of shape abnormality is a crucial task in
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designing CAD systems and can have a large impact in detection of many
pathologies. The potential impact was indicated on the example of IVD
herniation by proposing novel quantitative features with positive effect on
automated herniation classification.

This sparse reconstruction method develops on the sparse shape compo-
sition of Zhang et al. [10] by incorporating the following two modifications.
First, the data fitting employs a SSM, rather than a linear combination of
training shapes. The linear shape combination has many advantages but the
SSM represents a compact representation of the training data and as such,
has the ability to define a ’normal’ shape. It is not clear how this definition
can be formulated with the sparse shape composition. Second, the SSM for-
mulation (Eq. 4) allows certain control on how much of the deformations
should be captured by the sparse displacements and how much should be
explained by the SSM (parameters λ1 and λ2 in Eq. 4), or equivocally, how
much ’normality’ should be imposed. This results in better flexibility and
customizability to various CAD tasks.

The results showed the positive impact that the novel quantitative fea-
ture had on the classification performance. On the other hand, the analyses
showed in some cases a contradictory trend for the sensitivity when combin-
ing different feature groups. Future work will be required to optimize the
classification design in order to obtain the highest sensitivity and specificity
at the same time. This can be achieved by combination of multiple ad-
vanced classification techniques, such as Bayesian classifiers, support vector
machines or random forests.

Although the present study motivates the use of sparse reconstruction in
automated IVD assessment, future work will be required to design and val-
idate more clinically relevant measures. This will be explored together with
further sub-classification into different types of herniation (broad-based or
focal, protrusion, extrusion or sequestered disc) in future work. Overcoming
the requirement for manual initialization will be investigated in the future as
it will fully automated the pipeline.

4. Conclusion

Anatomical features with local pathological deformations challenge ex-
isting shape modeling techniques based on strong shape priors. This study
introduced a sparse reconstruction method that is capable to overcome this
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limitation. It employs prior morphological knowledge in the form of sta-
tistical shape models and detects local anomalous deformations with sparse
optimization. It can infer shape instances globally similar to training data,
while allowing to quantify specific local deformations, supposedly present due
to pathology. Effectiveness of this method was evaluated using phantom and
real MRI data presenting IVD herniations. Results on simulated data en-
courage the search for novel quantitative descriptors of IVD herniation with
the proposed technique. Experiments on patient MRI data show the advan-
tages of using the proposed quantitative descriptors in CAD systems. Future
work will focus on identifying quantitative features allowing differentiating
and annotating different types of IVD herniation.
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