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Abstract We consider a convex relaxation of sparse principal component analysis
proposed by d’Aspremont et al. (SIAM Rev. 49:434–448, 2007). This convex relax-
ation is a nonsmooth semidefinite programming problem in which the �1 norm of the
desired matrix is imposed in either the objective function or the constraint to improve
the sparsity of the resulting matrix. The sparse principal component is obtained by a
rank-one decomposition of the resulting sparse matrix. We propose an alternating di-
rection method based on a variable-splitting technique and an augmented Lagrangian
framework for solving this nonsmooth semidefinite programming problem. In con-
trast to the first-order method proposed in d’Aspremont et al. (SIAM Rev. 49:434–
448, 2007), which solves approximately the dual problem of the original semidefinite
programming problem, our method deals with the primal problem directly and solves
it exactly, which guarantees that the resulting matrix is a sparse matrix. A global
convergence result is established for the proposed method. Numerical results on both
synthetic problems and the real applications from classification of text data and senate
voting data are reported to demonstrate the efficacy of our method.

Keywords Sparse PCA · Semidefinite programming · Alternating direction
method · Augmented Lagrangian method · Deflation · Projection onto the simplex
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1 Introduction

Principal component analysis (PCA) plays an important role in applications arising
from data analysis, dimension reduction and bioinformatics etc. PCA finds a few
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linear combinations of the original variables. These linear combinations, which are
called principal components (PCs), are orthogonal to each other and explain most of
the variance of the data. Specifically, let ξ = (ξ1, · · · , ξp) be a p-dimensional random
vector. Then for a given data matrix M ∈ R

p×n, which consists of n samples of
the p variables, PCA corresponds to a singular value decomposition (SVD) of M

or an eigenvalue decomposition of a sample covariance matrix Σ . Without loss of
generality, assuming M is centered, i.e., the means of the rows of X are all zeros,
then a commonly used sample covariance matrix is Σ = MM�/(n− 1). Assume the
eigenvalue decomposition of Σ is given by Σ = V ΛV �, then the columns of ξV are
the PCs and the columns of V are called loading vectors of the corresponding PCs.
Thus, finding the PC that explains the largest variance of the variables corresponds to
the following eigenvalue problem:

x∗ := arg maxx�Σx, s.t. ‖x‖2 � 1, (1.1)

where ‖x‖2 is the Euclidean norm of vector x. Problem (1.1) actually gives the eigen-
vector that corresponds to the largest eigenvalue of Σ . However, the loading vector
x∗ is not expected to have many zero coefficients. This makes it hard to explain the
PC. For example, in the text classification problem, we are given a binary data matrix
M ∈ R

p×n that records the occurrences of p words in n postings. That is, Mij = 1 if
the ith word appears in the j th posting and Mij = 0 if the ith word does not appear in
the j th posting. The standard PCA cannot tell which words contribute most to the ex-
plained variance since the loadings are linear combinations of all the variables. Thus,
sparse PCs are needed because it is easier to analyze which variables contribute most
to the explained variance.

Many techniques were proposed to extract sparse PCs from given sample covari-
ance matrix Σ or sample data matrix M . One natural thought is to impose a cardinal-
ity constraint to (1.1), which leads to the following formulation for sparse PCA:

x∗ := arg maxx�Σx, s.t. ‖x‖2 � 1, ‖x‖0 � K, (1.2)

where ‖x‖0 (the �0 norm of x) counts the number of nonzeros of x and the integer
K controls the sparsity of the solution. Note that the cardinality constraint ‖x‖0 � K

makes the problem nonconvex, which is usually numerically challenging to solve.
Some other nonconvex models and algorithms for solving them are also considered
in [8, 21, 23, 24, 42]. It should be pointed out that although these algorithms are quite
efficient, the convergence results are usually not very strong. Especially, there is no
result for global convergence as the models are nonconvex.

In this paper, we will focus on a convex relaxation of (1.2) that was proposed by
d’Aspremont et al. in [9]. The convex relaxation in [9] is a semidefinite programming
(SDP) problem based on the lifting and projection technique, which is a standard
technique in using SDP to approximate combinatorial optimization problems (see
e.g., [1, 3, 34]). Note that if we denote X = xx�, then (1.2) can be rewritten as

max
X∈Rp×p

{〈Σ,X〉, s.t. Tr(X) = 1,‖X‖0 � K2,X � 0, rank(X) = 1
}
, (1.3)

where Tr(X) denotes the trace of matrix X. The rank constraint is then dropped
and the cardinality constraint is replaced by �1 norm constraint, and this leads to the
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following convex problem, which is an SDP.

max
X∈Rp×p

{〈Σ,X〉, s.t. Tr(X) = 1,‖X‖1 � K,X � 0
}
, (1.4)

where the �1 norm of X is defined as ‖X‖1 := ∑
ij |Xij | and ‖X‖1 � K is imposed

to promote the sparsity of the solution. This is inspired by the recent emergence of
compressed sensing (see e.g., [5, 10]). Note that ‖X‖1 � K is used in (1.4) instead
of ‖X‖1 � K2. This is due to the fact that, when X = xx� and Tr(X) = 1, we have
‖X‖F = 1, and also that if ‖X‖0 � K2, then ‖X‖1 � K‖X‖F . After the optimal
solution X∗ to (1.4) is obtained, the vector x̂ from the rank-one decomposition of X∗,
i.e., X∗ = x̂x̂� is used as an approximation of the solution of (1.2). This is the whole
procedure of the lifting and projection technique. Although some standard methods
such as interior point methods can be used to solve the SDP (1.4) (see e.g., [1, 3, 34]),
it is not wise to do so because (1.4) is a nonsmooth problem, and transforming it to a
standard SDP increases the size of the problem dramatically.

It is known that (1.4) is equivalent to the following problem with an appropriately
chosen parameter ρ > 0:

max
X∈Rp×p

{〈Σ,X〉 − ρ‖X‖1 s.t. Tr(X) = 1,X � 0
}
. (1.5)

Note that (1.5) can be rewritten as

max
X�0,Tr(X)=1

min‖U‖∞�ρ
〈Σ + U,X〉, (1.6)

where ‖U‖∞ denotes the largest component of U in magnitude, i.e., ‖U‖∞ =
maxij |Uij |. The dual problem of (1.5) is given by interchanging the max and min
in (1.6), i.e.,

min‖U‖∞�ρ
max

X�0,Tr(X)=1
〈Σ + U,X〉,

which can be further reduced to

min
U∈Rp×p

λmax(Σ + U), s.t. ‖U‖∞ � ρ, (1.7)

where λmax(Z) denotes the largest eigenvalue of matrix Z. d’Aspremont et al. [9]
proposed to solve the dual problem (1.7) using Nesterov’s first-order algorithm (see
e.g., [27, 28]), which is an accelerated projected gradient method. However, since the
objective function of (1.7) is nonsmooth, one needs to smooth it in order to apply
Nesterov’s algorithm. Thus, the authors of [9] actually solve an approximation of the
dual problem (1.7), which can be formulated as follows.

minfμ(U), s.t. ‖U‖∞ � ρ, (1.8)

where μ > 0 is the smoothing parameter, fμ(U) := max{〈Σ + U,X〉 − μd(X), s.t.
Tr(X) = 1,X � 0} and d(X) := Tr(X logX) + log(n). It is shown in [9] that an
approximate solution Xk to the primal problem (1.5) can be obtained by Xk =
∇fμ(Uk), where Uk is an approximate solution of (1.8). It is easy to see that Xk
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is not guaranteed to be a sparse matrix. Besides, although there is no duality gap be-
tween (1.5) and (1.7), the authors solve an approximation of (1.7). It needs also to
be noted that Nesterov’s algorithm used in [9] cannot solve the constrained problem
(1.4). Although (1.4) and (1.5) are equivalent with appropriately chosen parameters
K and ρ, in many applications, it is usually easier to choose an appropriate K since
we know how many nonzeros are preferred in the sparse PCs.

Note that (1.2) only gives the largest sparse PC. In many applications, several
leading sparse PCs are needed in order to explain more variance. Multiple sparse
PCs are usually found by solving a sequence of sparse PCA problems (1.2), with Σ

constructed via the so-called deflation technique for each sparse PC.
In this paper, we propose an alternating direction method based on a variable-

splitting technique and an augmented Lagrangian framework for solving directly the
primal problems (1.4) and (1.5). Our method solves two subproblems in each iter-
ation. One subproblem has a closed-form solution that corresponds to projecting a
given matrix onto the simplex of the cone of semidefinite matrices. This projection
requires an eigenvalue decomposition. The other subproblem has a closed-form so-
lution that corresponds to a vector shrinkage operation (for Problem (1.5)) or a pro-
jection onto the �1 ball (for Problem (1.4)). Thus, our method produces two iterative
points at each iteration. One iterative point is a semidefinite matrix with trace equal to
one and the other one is a sparse matrix. Eventually these two points will converge to
the same point, and thus we get an optimal solution which is a sparse and semidefinite
matrix. Compared with Nesterov’s first-order method suggested in [9] for solving the
approximated dual problem (1.8), our method can solve the nonsmooth primal prob-
lems (1.4) and (1.5) uniformly. Also, since we deal with the primal problems directly,
the �1 norm in the constraint or the objective function guarantees that our solution is
a sparse matrix, while Nesterov’s method in [9] does not guarantee this since it solves
the approximated dual problem.

The rest of the paper is organized as follows. In Sect. 2, we introduce our al-
ternating direction method of multipliers for solving the nonsmooth SDP problems
(1.4) and (1.5). We discuss some practical issues including the deflation technique for
computing multiple sparse PCs in Sect. 3. In Sect. 4, we use our alternating direction
method of multipliers to solve sparse PCA problems arising from different applica-
tions such as classification of text data and senate voting records to demonstrate the
efficacy of our method. We make some conclusions in Sect. 5.

2 Alternating Direction Method of Multipliers

We first introduce some notation. We use C to denote the simplex of the cone of the
semidefinite matrices, i.e., C = {X ∈ R

p×p | Tr(X) = 1,X � 0}. We use B to denote
the �1-ball with radius K in R

p×p , i.e., B = {X ∈ R
p×p | ‖X‖1 � K}. IA(X) denotes

the indicator function of set A, i.e.,

IA(X) =
{

0 if X ∈ A,

+∞ otherwise.
(2.1)
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We know that IC (X) and IB(X) are both convex functions since C and B are both
convex sets. We then can reformulate (1.4) and (1.5) uniformly as the following un-
constrained problem:

min−〈Σ,X〉 + IC (X) + h(X), (2.2)

where h(X) = IB(X) for (1.4) and h(X) = ρ‖X‖1 for (1.5). Note that h(X) is convex
in both cases. (2.2) can be also viewed as the following inclusion problem:

Find X, s.t. 0 ∈ −Σ + ∂IC (X) + ∂h(X). (2.3)

Problem (2.3) finds zero of the sum of two monotone operators. Methods based
on operator-splitting techniques, such as Douglas–Rachford method and Peaceman–
Rachford method, are usually used to solve Problem (2.3) (see e.g., [6, 7, 11, 13, 14,
22, 30]). From the convex optimization perspective, the alternating direction method
of multipliers (ADMM) for solving (2.2) is a direct application of the Douglas–
Rachford method. ADMM has been successfully used to solve structured convex
optimization problems arising from image processing, compressed sensing, machine
learning, semidefinite programming etc. (see e.g., [2, 15–19, 26, 33, 36–39]). We now
show how ADMM can be used to solve the sparse PCA problem (2.2).

ADMM for solving (2.2) is based on a variable-splitting technique and an aug-
mented Lagrangian framework. By introducing a new variable Y , (2.2) can be rewrit-
ten as

min −〈Σ,X〉 + IC (X) + h(Y )

s.t. X = Y.
(2.4)

Note that although the number of variables is increased, the two nonsmooth functions
IC (·) and h(·) are now separated since they are associated with different variables.
For this equality-constrained problem, augmented Lagrangian method is a standard
approach to solve it. A typical iteration of augmented Lagrangian method for solving
(2.4) is given by

⎧
⎪⎨

⎪⎩

(
Xk+1, Y k+1

) := arg min
(X,Y )

Lμ

(
X,Y ;Λk

)
,

Λk+1 := Λk − 1

μ

(
Xk+1 − Y k+1),

(2.5)

where the augmented Lagrangian function Lμ(X,Y ;Λ) is defined as:

Lμ(X,Y ;Λ) := −〈Σ,X〉 + IC (X) + h(Y ) − 〈Λ,X − Y 〉 + 1

2μ
‖X − Y‖2

F , (2.6)

where μ > 0 is a penalty parameter and Λ is the Lagrange multiplier associated with
the linear constraint X = Y . Note that it is usually hard to minimize the augmented
Lagrangian function Lμ(X,Y ;Λk) with respect to X and Y simultaneously. In fact,
it is as difficult as solving the original problem (2.4). However, if we minimize the
augmented Lagrangian function with respect to X and Y alternatingly, we obtain
two subproblems in each iteration and both of them are relatively easy to solve. This
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results in the following alternating direction method of multipliers:
⎧
⎪⎪⎨

⎪⎪⎩

Xk+1 := arg min
X

Lμ

(
X,Y k;Λk

)
,

Y k+1 := arg min
Y

Lμ

(
Xk+1, Y ;Λk

)
,

Λk+1 := Λk − (
Xk+1 − Y k+1

)
/μ.

(2.7)

It can be shown that the two subproblems in (2.7) are both relatively easy to solve in
the sparse PCA problem. Before we show that, we characterize two nice properties
of the indicator function (2.1).

Property 1 The proximal mapping of the indicator function IA(·) is the Euclidean
projection onto A, i.e.,

proxIA (X) ≡ P A(X), (2.8)

where

proxIA (X) := arg min
U

{
IA(U) + 1

2
‖U − X‖2

F

}
, (2.9)

and

P A(X) := arg min
U

{
1

2
‖U − X‖2

F , s.t. U ∈ A
}
. (2.10)

Property 2 The optimality conditions for Problem (2.10) are given by

X − U∗ ∈ ∂IA
(
U∗), (2.11)

which is equivalent to

〈
X − U∗,Z − U∗〉 � 0, ∀Z ∈ A, (2.12)

where U∗ is the optimal solution of (2.10).

Now, the first subproblem in (2.7) can be reduced to

Xk+1 := arg min

{
μIC (X) + 1

2

∥∥X − (
Y k + μΛk + μΣ

)∥∥2
F

}
, (2.13)

which can be further reduced to projection onto C using Property 1,

Xk+1 = P C
(
Y k +μΛk +μΣ

) := arg min

{
1

2

∥∥X−(
Y k +μΛk +μΣ

)∥∥2
F
, s.t. X ∈ C

}
.

(2.14)
When h(Y ) = IB(Y ) as in Problem (1.4), the second subproblem in (2.7) can be

reduced to

Y k+1 := arg min

{
μIB(Y ) + 1

2

∥∥Y − (
Xk+1 − μΛk

)∥∥2
F

}
, (2.15)
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which can be further reduced to projection onto B using Property 1,

Y k+1 = P B
(
Xk+1 − μΛk

) := arg min

{
1

2

∥∥Y − (
Xk+1 − μΛk

)∥∥2
F
, s.t. Y ∈ B

}
.

(2.16)
When h(Y ) = ρ‖Y‖1 as in Problem (1.5), the second subproblem in (2.7) can be

reduced to

Y k+1 := arg min

{
μρ‖Y‖1 + 1

2

∥
∥Y − (

Xk+1 − μΛk
)∥∥2

F

}
. (2.17)

Problem (2.17) has a closed-form solution that is given by

Y k+1 = Shrink
(
Xk+1 − μΛk,μρ

)
, (2.18)

where the shrinkage operator is defined as
(
Shrink(Z, τ)

)
ij

:= sgn(Zij )max
{|Zij | − τ,0

}
, ∀i, j. (2.19)

In the following, we will show that (2.13) and (2.15) are easy to solve, i.e., the
two projections (2.14) and (2.16) can be done efficiently. First, since the problem of
projection onto C

P C (X) = arg min

{
1

2
‖Z − X‖2

F , s.t. Tr(Z) = 1,Z � 0

}
(2.20)

is unitary-invariant, its solution is given by PC (X) = U diag(γ )U�, where X =
U diag(σ )U� is the eigenvalue decomposition of X, and γ is the projection of σ

onto the simplex in the Euclidean space, i.e.,

γ := arg min

{
1

2
‖ξ − σ‖2

2, s.t.
p∑

i=1

ξi = 1, ξ � 0

}

. (2.21)

We consider a slightly more general problem:

ξ∗ := arg min

{
1

2
‖ξ − σ‖2

2, s.t.
p∑

i=1

ξi = r, ξ � 0

}

, (2.22)

where scalar r > 0. Note that (2.21) is a special case of (2.22) with r = 1. From the
first-order optimality conditions for (2.22), it is easy to show that the optimal solution
of (2.22) is given by

ξ∗
i := max{σi − θ,0}, ∀i = 1, · · · ,p,

where the scalar θ is the solution of the following piecewise linear equation:

p∑

i=1

max{σi − θ,0} = r. (2.23)
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It is known that the piecewise linear equation (2.23) can be solved quite efficiently
and thus solving (2.22) can be done easily. In fact, the following procedure (Algo-
rithm 1) gives the optimal solution of (2.22). We refer the readers to [31] for the proof
of the validity of the algorithm. It is easy to see that Algorithm 1 has an O(p logp)

complexity. Linear time algorithms for solving (2.22) are studied in [4, 12, 29]. Thus,
solving (2.13) corresponds to an eigenvalue decomposition and a projection onto the
simplex in the Euclidean space, and they both can be done efficiently.

Algorithm 1: Projection onto the simplex in the Euclidean space

Input: A vector σ ∈ R
p and a scalar r > 0.

Sort σ into σ̂ as a non-decreasing order: σ̂1 � σ̂2 � · · · � σ̂p

Find index ĵ , the smallest j such that σ̂j − 1
p−j+1

(∑p
i=j σ̂i − r

)
> 0

Compute θ = 1
p−ĵ+1

(∑p

i=ĵ
σ̂i − r

)

Output: A vector γ , s.t. γi = max{σi − θ,0}, i = 1, · · · ,p.

Solving (2.15) (or equivalently (2.16)) corresponds to a projection onto the �1-
ball: ‖Y‖1 � K . It has been shown in [12, 35] that projection onto the �1-ball can be
done easily. In fact, the solution of

γ̂ = arg min

{
1

2
‖ξ − σ̂‖2

2, s.t. ‖ξ‖1 � r

}
(2.24)

is given by γ̂i = sgn(σ̂i)γi,∀i = 1, · · · ,p, where γ is the solution of

min
1

2

∥∥γ − |σ̂ |∥∥2
2, s.t.

p∑

i=1

γi = r, γ � 0,

i.e., the projection of |σ̂ | (elementwise absolute value of σ̂ ) onto the simplex. Thus,
(2.15) can be rewritten as

vec
(
Y k+1) = arg min

{
1

2

∥∥y − vec
(
Xk+1 − μΛk

)∥∥2
2, s.t. ‖y‖1 � K

}
, (2.25)

and it corresponds to a projection onto the simplex in the Euclidean space, where
vec(Y ) denotes the vector form of Y which is obtained by stacking the columns of Y

into a long vector.
To summarize, our ADMM for solving (1.4) and (1.5) can be uniformly described

as Algorithm 2.

Remark 2.1 Although Algorithm 2 suggests that we need to compute the eigenvalue
decomposition of Y k + μΛk + μΣ in order to get the solution to (2.13), we actually
only need to compute the positive eigenvalues and corresponding eigenvectors of
Y k + μΛk + μΣ .
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Algorithm 2: ADMM for solving (1.4) and (1.5)

Initialization: Y 0 = 0, Λ0 = 0.
for k = 0,1, · · · do

Compute the eigenvalue decomposition: Y k + μΛk + μΣ = U diag(σ )U�
Project σ onto the simplex in Euclidean space by Algorithm 1, and denote
the solution by γ

Compute Xk+1 = U diag(γ )U�
Perform one of the following:

• if (1.4) is solved, update Y k+1 by solving (2.25)
• if (1.5) is solved, update Y k+1 by (2.18)

Update Λk+1 by Λk+1 = Λk − (Xk+1 − Y k+1)/μ

We have the following global convergence result for Algorithm 2.

Theorem 2.2 The sequence {(Xk,Y k,Λk)} produced by (2.7) (Algorithm 2) from
any starting point converges to an optimal solution to Problem (2.4).

Proof The proof of this convergence result is a direct application of the well studied
convergence result for Douglas–Rachford operator splitting method (see [13, 14]).
We include the specialized proof for Problem (2.4) in the Appendix just for the sake
of completeness. �

3 The Deflation Techniques and Other Practical Issues

It should be noticed that the solution of Problem (1.1) only gives the largest eigen-
vector (the eigenvector corresponding to the largest eigenvalue) of Σ . In many ap-
plications, the largest eigenvector is not enough to explain the total variance of the
data. Thus one usually needs to compute several leading eigenvectors to explain more
variance of the data. Hotelling’s deflation method [32] is usually used to extract the
leading eigenvectors sequentially. The Hotelling’s deflation method extracts the r th
leading eigenvector of Σ by solving

xr = arg max
{
x�Σr−1x, s.t. ‖x‖2 � 1

}
,

where Σ0 := Σ and

Σr = Σr−1 − xrx
�
r Σr−1xrx

�
r .

It is easy to verify that Hotelling’s deflation method preserves the positive-
semidefiniteness of matrix Σr . However, as pointed out in [25], it does not pre-
serve the positive-semidefiniteness of Σr when it comes to the sparse PCA problem
(1.2), because the solution xr is no longer an eigenvector of Σr−1. Thus, the second
leading eigenvector produced by solving the sparse PCA problem may not explain
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well the variance of the data. We should point out that the deflation method used in
[9] is Hotelling’s deflation method.

Several deflation techniques to overcome this difficulty for sparse PCA were pro-
posed by Mackey in [25]. In our numerical experiments, we chose to use the Schur
complement deflation method in [25]. The Schur complement deflation method up-
dates matrix Σr by

Σr = Σr−1 − Σr−1xrx
�
r Σr−1

x�
r Σr−1xr

. (3.1)

The Schur complement deflation method has the following properties as shown in
[25]. (i) Schur complement deflation preserves the positive-semidefiniteness of Σr ,
i.e., Σr � 0. (ii) Schur complement deflation renders xs orthogonal to Σr for s � r ,
i.e., Σrxs = 0, ∀s � r .

When we want to find the leading r sparse PCs of Σ , we use ADMM to
solve sequentially r problems (1.4) or (1.5) with Σ updated by the Schur comple-
ment deflation method (3.1). We denote the leading r sparse PCs obtained by our
ADMM as Xr = (x1, · · · , xr ). Usually the total variance explained by Xr is given
by Tr(X�

r ΣXr). However, because we do not require the loading vectors to be or-
thogonal to each other when we sequentially solve the SDPs (1.4) or (1.5), these PCs
are correlated. Thus, Tr(X�

r ΣXr) will overestimate the total explained variance by
x1, · · · , xr . To alleviate the overestimated variance, Zou et al. [42] suggested that the
explained total variance should be computed using the following procedure, which
was called adjusted variance:

AdjVar(Xr) := Tr
(
R2),

where M�Xr = QR is the QR decomposition of M�Xr . In our numerical experi-
ments, we always report the adjusted variance as the explained variance.

It is also worth noticing that the problems we solve are convex relaxations of the
original problem (1.2). Hence, one needs to postprocess the matrix X obtained by
solving (1.4) or (1.5) to get the approximate solution to (1.2). To get the solution
to the original sparse PCA problem (1.2) from the solution X of the convex SDP
problem, we simply perform a rank-one decomposition to X, i.e., X = xx�. Since X

is a sparse matrix, x should be a sparse vector. This postprocessing technique is also
used in [9].

For the stopping criteria of ADMM, we consider both the primal and dual residuals
as suggested by Boyd et al. in [2]. Note that in our problem, the primal residual at
iteration k is measured by

rk := Xk − Y k

and the dual residual at iteration k is measured by

sk := (
Y k−1 − Y k

)
/μ.

We thus chose to terminate our ADMM when
∥∥rk

∥∥
F

< εp and
∥∥sk

∥∥
F

< εd, (3.2)
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where

εp := pε1 + ε2 max
{∥∥Xk

∥∥
F
,
∥∥Y k

∥∥
F

}
and εd := pε1 + ε2

∥∥Λk
∥∥

F
, (3.3)

and ε1 and ε2 are tolerance parameters that will be specified later.

4 Numerical Results

In this section, we use our ADMM to solve the SDP formulations (1.4) and (1.5) of
sparse PCA on both synthetic and real data sets. We mainly compare the performance
of ADMM with DSPCA used in [9] for solving (1.5). We also include a comparison
with the ALSPCA method proposed in [23], but we should note that ALSPCA solves
a completely different model, which is non-convex and thus the global convergence
of ALSPCA is not guaranteed. The MATLAB codes of DSPCA and ALSPCA were
downloaded from the authors’ websites. Our codes were written in MATLAB. All
experiments were run in MATLAB 7.6.0 on a laptop with Intel Core I3 2.30 GHz
CPU and 6 GB of RAM.

4.1 Random Examples

We created some random examples to test the speed of ADMM and compared it
with DSPCA [9] and ALSPCA [23]. The sample covariance matrix Σ was created
by adding some small noise to a sparse rank-one matrix. Specifically, we first cre-
ated a sparse vector x̂ ∈ R

p with s nonzeros randomly chosen from the Gaussian
distribution N (0,1). We then got the sample covariance matrix Σ = x̂x̂� + σvv�,
where σ denotes the noise level and v ∈ R

p is a random vector with entries uni-
formly drawn from [0,1]. We applied DSPCA and ADMM to find the largest sparse
PC of Σ . We report the comparison results in Tables 1 and 2 that correspond to
noise levels σ = 0.01 and σ = 0.1, respectively. The parameters used for ALSPCA
were set as their default settings. When using DSPCA to solve (1.5), we set different
ρ’s to get solutions with different sparsity levels. Specifically, we tested DSPCA for
ρ = 0.01,0.1,1 in Tables 1 and 2. We set different K’s in (1.4) to control the sparsity
level when using ADMM to solve it. We set ε1 = 10−3 and ε2 = 10−4 used in (3.3)
for the stopping criterion (3.2) of ADMM, and the parameter μ was set as p/200. In
both Tables 1 and 2, we tested four data sets with dimension p and sparsity s setting
as (p, s) = (100,10), (100,20), (200,10) and (200,20).

We report the cardinality of the largest sparse PC (Card), the percentage of the
explained variance (PEV) and the CPU time in Tables 1 and 2. The objective function
value 〈Σ,X〉 for both ADMM and DSPCA is also reported. We do not include the
objective value for ALSPCA because it solves a different model. From Table 1 we see
that, for σ = 0.01, DSPCA is sensitive to the parameter ρ that controls the sparsity.
ρ = 0.01 always gave the best results for DSPCA and the explained variance is very
close to the standard PCA. ρ = 0.1 still provided relatively good solutions for DSPCA
in terms of both sparsity and the explained variance. When ρ was increased to 1, the
solutions given by DSPCA sometimes had more nonzeros than the desired sparsity
level (when (p, s) = (100,10)), and even when the solutions were of the desired
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Table 1 Comparisons of ADMM, DSPCA and ALSPCA on random examples with σ = 0.01

(p, s) Method Parameters Card PEV (%) CPU Obj

(100,10) PCA 96.163249

DSPCA ρ = 0.01 10 96.159101 6.55 7.345668e+000

ρ = 0.10 10 95.813919 4.83 7.319300e+000

ρ = 1.00 13 87.279890 4.18 6.667379e+000

ADMM K = 7 19 96.163089 0.07 7.345973e+000

K = 6 9 95.781520 0.06 7.316825e+000

K = 5 7 93.862335 0.06 7.170217e+000

ALSPCA 9 96.024985 0.07

(100,20) PCA 98.072574

DSPCA ρ = 0.01 20 98.068461 6.10 1.489481e+001

ρ = 0.10 20 97.708755 4.85 1.484018e+001

ρ = 1.00 20 85.252763 3.70 1.294834e+001

ADMM K = 13 20 98.072458 0.10 1.489542e+001

K = 12 20 98.047225 0.11 1.489158e+001

K = 11 19 97.788266 0.15 1.485225e+001

ALSPCA 18 97.828436 0.07

(200,10) PCA 91.425700

DSPCA ρ = 0.01 10 91.421783 30.35 7.345351e+000

ρ = 0.10 10 91.092859 22.11 7.318923e+000

ρ = 1.00 8 82.914799 17.21 6.661851e+000

ADMM K = 9 10 91.425406 0.26 7.345642e+000

K = 8 10 91.425042 0.26 7.345612e+000

K = 7 9 91.251270 0.26 7.331651e+000

ALSPCA 9 91.293829 0.12

(200,20) PCA 95.579244

DSPCA ρ = 0.01 20 95.575274 28.04 1.489413e+001

ρ = 0.10 20 95.224690 22.16 1.483950e+001

ρ = 1.00 20 83.086984 15.27 1.294800e+001

ADMM K = 14 20 95.568816 0.58 1.489313e+001

K = 13 20 95.424208 0.56 1.487059e+001

K = 12 19 95.149218 0.59 1.482774e+001

ALSPCA 18 95.341285 0.10

sparsity level, the explained variances were affected by a lot (when (p, s) = (100,20)

and (200,20)). For ADMM, different K’s were tested for different settings. Results
shown in Table 1 indicate that when K is slightly greater than s/2, ADMM usually
produced good results. For example, for (p, s) = (100,20), both K = 13 and K = 12
produced good results in the sense that the cardinality of the largest sparse PC is the
same as the desired one, and the explained variance is very close to the standard PCA.
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Table 2 Comparisons of ADMM, DSPCA, and ALSPCA on random examples with σ = 0.1

(p, s) Method Parameters Card PEV (%) CPU Obj

(100,10) PCA 71.514735

DSPCA ρ = 0.01 46 71.490030 6.50 7.349620e+000

ρ = 0.10 21 71.227570 5.14 7.322638e+000

ρ = 1.00 10 64.918238 2.93 6.673999e+000

ADMM K = 7 21 71.403999 0.06 7.340776e+000

K = 6 9 71.184328 0.06 7.318192e+000

K = 5 7 69.745358 0.06 7.170257e+000

ALSPCA 9 71.388004 0.08

(100,20) PCA 83.590727

DSPCA ρ = 0.01 62 83.580802 6.91 1.490222e+001

ρ = 0.10 20 83.270360 4.73 1.484687e+001

ρ = 1.00 20 72.747226 4.05 1.297063e+001

ADMM K = 12 20 83.480007 0.10 1.488425e+001

K = 11 19 83.336977 0.13 1.485875e+001

K = 10 18 82.890834 0.14 1.477920e+001

ALSPCA 19 83.371441 0.07

(200,10) PCA 51.692525

DSPCA ρ = 0.01 10 51.604525 12.49 7.346205e+000

ρ = 0.10 10 51.455062 8.16 7.324928e+000

ρ = 1.00 88 46.945896 7.67 6.683022e+000

ADMM K = 8 14 51.499128 0.23 7.331202e+000

K = 7 9 51.505655 0.26 7.332131e+000

K = 6 8 50.893478 0.26 7.244984e+000

ALSPCA 9 51.529656 0.12

(200,20) PCA 68.379142

DSPCA ρ = 0.01 20 68.373517 32.02 1.489495e+001

ρ = 0.10 20 68.115662 27.10 1.483878e+001

ρ = 1.00 20 59.539696 21.34 1.297053e+001

ADMM K = 13 19 68.218241 0.54 1.486113e+001

K = 12 19 68.007900 0.51 1.481530e+001

K = 11 17 67.641121 0.59 1.473540e+001

ALSPCA 18 68.203072 0.11

When K = 11, ADMM produced a sparser solution, i.e., the cardinality of the largest
PC was 19, but the explained variance was only degraded slightly.

From Table 2 we see that, for σ = 0.1, i.e., when the noise level was larger,
DSPCA was more sensitive to the noise compared with their performance when
σ = 0.01. However, we observed that the performance of ADMM when σ = 0.1
was consistent with its performance when σ = 0.01, i.e., its performance was not
very sensitive to the noise.
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From both Tables 1 and 2, we see that ADMM was significantly faster than
DSPCA, and comparable to the speed of ALSPCA.

4.2 Text Data Classification

Sparse PCA can also be used to classify the keywords in text data. This application
has been studied by Zhang, d’Aspremont and El Ghaoui in [40] and Zhang and El
Ghaoui in [41]. In this section, we show that by using our ADMM to solve the sparse
PCA problem, we can also classify the keywords from text data very well. The data
set we used is a small version of the “20-newsgroups” data,1 which is also used in
[40]. This data set consists of the binary occurrences of 100 specific words across
16242 postings, i.e., the data matrix M is of the size 100 × 16242 and Mij = 1 if the
ith word appears at least once in the j th posting and Mij = 0 if the ith word does not
appear in the j th posting. These words can be approximately divided into different
groups such as “computer”, “religion” etc. We want to find the words that contribute
as much variance as possible and also discover which words are in the same category.
By viewing each posting as a sample of the 100 variables, we have 16424 samples of
the variables, and thus the sample covariance matrix Σ ∈ R

100×100. Using standard
PCA, it is hard to interpret which words contribute to each of the leading eigenvalues
since the loadings are dense. However, sparse PCA can explain as much the variance
explained by the standard PCs, and meanwhile interpret well which words contribute
together to the corresponding variance. We applied our ADMM to solve (1.4) to find
the first three sparse PCs. We set (μ,K) = (0.05,5), (0.01,3) and (0.01,4), respec-
tively, in the three resulting problems. We set ε1 = ε2 = 10−4 in the stopping criterion
(3.2). The resulting three sparse PCs have eight, 12 and 19 nonzeros, respectively.
The total explained variance by these three sparse PCs is 11.64 %, while the variance
explained by the largest three PCs by the standard PCA is 19.10 %.

The words corresponding to the first three sparse PCs generated by our ADMM
are listed in Table 3. From Table 3 we see that the words in the first sparse PC are ap-
proximately in the category “school”, the words in the second PC are approximately
in the category “religion”, and the words in the third sparse PC are approximately in
the category “computer”. So our ADMM can classify the keywords into appropriate
categories very well.

4.3 Senate Voting Data

In this section, we use sparse PCA to analyze the voting records of the 109th US Sen-
ate, which was also studied by Zhang, d’Aspremont, and El Ghaoui in [40]. The votes
are recorded as 1 for “yes” and −1 for “no”. Missing votes are recorded as 0. There
are 100 senators (55 Republicans, 44 Democrats and one independent) and 542 bills
involved in the data set. However, there are many missing votes in the data set. To
obtain a meaningful data matrix, we only choose the bills for which the number of
missing votes is at most one. There are only 66 such bills among the 542 bills. So
our data matrix M is a 66 × 100 matrix with entries 1, −1 and 0, and each column of

1This data set can be downloaded from http://cs.nyu.edu/~roweis/data.html.

http://cs.nyu.edu/~roweis/data.html
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Table 3 Words associated with
the first three sparse PCs using
ADMM

First PC (eight words) Second PC (12 words) Third PC (19 words)

course bible computer

email case email

fact christian files

help course ftp

problem evidence graphics

question fact mac

system god number

university government phone

jesus problem

number program

question research

world science

software

state

system

university

version

windows

world

Total sparsity: 39, total explained variance: 11.64 %

M corresponds to one senator’s voting. The sample covariance matrix Σ = MM� in
our test is a 66 × 66 matrix.

To see how standard PCA and sparse PCA perform in classifying the voting
records, we implemented the following procedure as suggested in [40]. We used stan-
dard PCA to find the largest two PCs (denoted as v1 and v2) of Σ . We then projected
each column of M onto the subspace spanned by v1 and v2, i.e., we found ᾱi and β̄i

for each column Mi such that

(ᾱi , β̄i) := arg min
(αi ,βi )

‖αiv1 + βiv2 − Mi‖.

We then drew each column Mi as a point (ᾱi , β̄i) in the two-dimensional subspace
spanned by v1 and v2. The left figure in Fig. 1 shows the 100 points. We see from
this figure that senators are separated very well by partisanship. However, it is hard
to interpret which bills are responsible to the explained variance, because all the bills
are involved in the PCs. By using sparse PCA, we can interpret the explained variance
by just a few bills. We applied our ADMM to find the first two sparse PCs (denoted
as s1 and s2) of Σ . We set (μ,K) = (0.05,5) for both problems and ε1 = ε2 = 10−4

in the stopping criterion (3.2).
The resulting two sparse PCs s1 and s2 produced by our ADMM have eight and six

nonzeros, respectively. We projected each column of M onto the subspace spanned
by these two sparse PCs. The right figure in Fig. 1 shows the 100 projections onto the
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Fig. 1 Projection of the senate voting records onto the subspace spanned by the top 2 principal compo-
nents: Left: standard PCA; Right: sparse PCA

Table 4 Bills involved in the first two PCs by ADMM

Bills in the first sparse PC

Budget, Spending, and Taxes_Education Funding Amendment_3804

Budget, Spending, and Taxes_Reinstate Pay-As-You-Go through 2011 Amendment_3806

Energy Issues_LIHEAP Funding Amendment_3808

Abortion Issues_Unintended Pregnancy Amendment_3489

Budget, Spending, and Taxes_Budget FY2006 Appropriations Resolution_3488

Budget, Spending, and Taxes_Budget Reconciliation bill_3665

Budget, Spending, and Taxes_Budget Reconciliation bill_3789

Budget, Spending, and Taxes_Education Amendment_3490

Health Issues_Medicaid Amendment_3496

Bills in the second sparse PC

Appropriations_Agriculture, Rural Development, FDA Appropriations Act_3677

Appropriations_Emergency Supplemental Appropriations Act, 2005_3515

Appropriations_Emergency Supplemental Appropriations Act, 2006_3845

Appropriations_Interior Department FY 2006 Appropriations Bill_3595

Executive Branch_John Negroponte, Director of National Intelligence_3505

subspace spanned by the sparse PCs s1 and s2. We see from this figure that the sena-
tors are still separated well by partisanship. Now since only a few bills are involved in
the two sparse PCs, we can interpret which bills are responsible most for the classifi-
cation. The bills involved in the first two PCs are listed in Table 4. From Table 4 we
see that the most controversial issues between Republicans and Democrats are topics
such as “Budget” and “Appropriations”. Other controversial issues involve topics like
“Energy”, “Abortion” and “Health”.
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5 Conclusion

In this paper, we proposed alternating direction method of multipliers to solve an
SDP relaxation of the sparse PCA problem. Our method incorporated a variable-
splitting technique to separate the �1 norm constraint, which controls the sparsity
of the solution, and the positive-semidefiniteness constraint. This method resulted in
two relatively simple subproblems that have closed-form solutions in each iteration.
Global convergence results were established for the proposed method. Numerical
results on both synthetic data and real data from classification of text data and senate
voting records demonstrated the efficacy of our method. Compared with Nesterov’s
first-order method DSPCA for sparse PCA studied in [9], our ADMM method solves
the primal problems directly and guarantees sparse solutions. Numerical results also
indicate that ADMM is much faster than DSPCA.
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Appendix

In this section, we prove that the sequence (Xk,Y k,Λk) produced by the alternating
direction method of multipliers (2.7) (i.e., Algorithm 2) converges to (X∗, Y ∗,Λ∗),
where (X∗, Y ∗) is an optimal solution to (2.4) and Λ∗ is the corresponding optimal
dual variable. Although the proof of global convergence results of ADMM has been
studied extensively in the literature (see e.g., [14, 20]), we here give a very simple
proof of the convergence of our ADMM that utilizes the special structures of the
sparse PCA problem. We only prove the case when h(Y ) = IB(Y ) and leave the case
when h(Y ) = ρ‖Y‖1 to the readers since their proofs are almost identical.

Before we give the main theorem about the global convergence of (2.7) (Algo-
rithm 2), we need the following lemma.

Lemma A.1 Assume that (X∗, Y ∗) is an optimal solution of (2.4) and Λ∗ is the
corresponding optimal dual variable associated with the equality constraint X = Y .
Then the sequence (Xk,Y k,Λk) produced by (2.7) satisfies

∥∥Uk − U∗∥∥2
G

− ∥∥Uk+1 − U∗∥∥2
G

�
∥∥Uk − Uk+1

∥∥2
G
, (A.1)

where

U∗ =
(

Λ∗
Y ∗

)
, Uk =

(
Λk

Y k

)
and G =

(
μI 0
0 1

μ
I

)
,

and the norm ‖ · ‖2
G is defined as ‖U‖2

G = 〈U,GU 〉 and the corresponding inner
product 〈·, ·〉G is defined as 〈U,V 〉G = 〈U,GV 〉.
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Proof Since (X∗, Y ∗,Λ∗) is optimal to (2.4), it follows from the KKT conditions
that the following hold:

0 ∈ −Σ + ∂IC
(
X∗) − Λ∗, (A.2)

0 ∈ ∂IB
(
Y ∗) + Λ∗, (A.3)

and

X∗ = Y ∗ ∈ C ∩ B. (A.4)

By using Property 2, (A.2) and (A.3) can be, respectively, reduced to

〈
Σ + Λ∗,X − X∗〉 � 0, ∀X ∈ C, (A.5)

and
〈−Λ∗, Y − Y ∗〉 � 0, ∀Y ∈ B. (A.6)

Note that the optimality conditions for the first subproblem (i.e., the subproblem
with respect to X) in (2.7) are given by Xk+1 ∈ C and

0 ∈ −Σ + ∂IC
(
Xk+1) − Λk + 1

μ

(
Xk+1 − Y k

)
. (A.7)

By using Property 2 and the updating formula for Λk in (2.7), i.e.,

Λk+1 = Λk − 1

μ

(
Xk+1 − Y k+1), (A.8)

(A.7) can be rewritten as

〈
Σ + Λk+1 + 1

μ

(
Y k − Y k+1),X − Xk+1

〉
� 0, ∀X ∈ C. (A.9)

Letting X = Xk+1 in (A.5) and X = X∗ in (A.9), and summing the two resulting
inequalities, we get

〈
Λk+1 − Λ∗ + 1

μ

(
Y k − Y k+1),X∗ − Xk+1

〉
� 0. (A.10)

The optimality conditions for the second subproblem (i.e., the subproblem with
respect to Y ) in (2.7) are given by Y k+1 ∈ B and

0 ∈ ∂IB
(
Y k+1) + Λk + 1

μ

(
Y k+1 − Xk+1). (A.11)

By using Property 2 and (A.8), (A.11) can be rewritten as

〈−Λk+1, Y − Y k+1〉 � 0, ∀Y ∈ B. (A.12)
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Letting Y = Y k+1 in (A.6) and Y = Y ∗ in (A.12), and summing the two resulting
inequalities, we obtain

〈
Λ∗ − Λk+1, Y ∗ − Y k+1〉 � 0. (A.13)

Summing (A.10) and (A.13), and using the facts that X∗ = Y ∗ and Xk+1 =
μ(Λk − Λk+1) + Y k+1, we obtain

μ
〈
Λk −Λk+1,Λk+1 −Λ∗〉+ 1

μ

〈
Y k −Y k+1, Y k+1 −Y ∗〉 � −〈

Y k −Y k+1,Λk −Λk+1〉.

(A.14)
Rearranging the left hand side of (A.14) by using Λk+1 − Λ∗ = (Λk+1 − Λk) +
(Λk − Λ∗) and Y k+1 − Y ∗ = (Y k+1 − Y k) + (Y k − Y ∗), we get

μ
〈
Λk − Λ∗,Λk − Λk+1〉 + 1

μ

〈
Y k − Y ∗, Y k − Y k+1〉

� μ
∥
∥Λk − Λk+1

∥
∥2 + 1

μ

∥
∥Y k − Y k+1

∥
∥2 − 〈

Λk+1 − Λk,Y k+1 − Y k
〉
. (A.15)

Using the notation of Uk , U∗ and G, (A.15) can be rewritten as

〈
Uk − U∗,Uk − Uk+1〉

G
�

∥∥Uk − Uk+1
∥∥2

G
− 〈

Λk − Λk+1, Y k − Y k+1〉. (A.16)

Combining (A.16) with the identity

∥∥Uk+1 − U∗∥∥2
G

= ∥∥Uk+1 − Uk
∥∥2

G
− 2

〈
Uk − Uk+1,Uk − U∗〉

G
+ ∥∥Uk − U∗∥∥2

G
,

we get

∥∥Uk − U∗∥∥2
G

− ∥∥Uk+1 − U∗∥∥2
G

= 2
〈
Uk − Uk+1,Uk − U∗〉 − ∥∥Uk+1 − Uk

∥∥2
G

� 2
∥∥Uk − Uk+1

∥∥2
G

− 2
〈
Λk − Λk+1, Y k − Y k+1〉 − ∥∥Uk+1 − Uk

∥∥2
G

= ∥∥Uk − Uk+1
∥∥2

G
− 2

〈
Λk − Λk+1, Y k − Y k+1〉. (A.17)

Now, using (A.12) for k instead of k + 1 and letting Y = Y k+1, we get

〈−Λk,Y k+1 − Y k
〉
� 0. (A.18)

Letting Y = Y k in (A.12) and adding it to (A.18) yields

〈
Λk − Λk+1, Y k − Y k+1〉 � 0. (A.19)

By substituting (A.19) into (A.17) we get the desired result (A.1). �

We are now ready to give the main convergence result of (2.7) (Algorithm 2).
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Theorem A.2 The sequence {(Xk,Y k,Λk)} produced by (2.7) (Algorithm 2) from
any starting point converges to an optimal solution to Problem (2.4).

Proof From Lemma A.1 we can easily get

(i) ‖Uk − Uk+1‖G → 0;
(ii) {Uk} lies in a compact region;

(iii) ‖Uk − U∗‖2
G is monotonically non-increasing and thus converges.

It follows from (i) that Λk − Λk+1 → 0 and Y k − Y k+1 → 0. Then (A.8) implies
that Xk − Xk+1 → 0 and Xk − Y k → 0. From (ii) we obtain the result that Uk has a
subsequence {Ukj } that converges to Û = (Λ̂, Ŷ ), i.e., Λkj → Λ̂ and Y kj → Ŷ . From
Xk − Y k → 0 we also get Xkj → X̂ := Ŷ . Therefore, (X̂, Ŷ , Λ̂) is a limit point of
{(Xk,Y k,Λk)}.

Note that by using (A.8), (A.7) can be rewritten as

0 ∈ −Σ + ∂IC
(
Xk+1) − Λk+1 + 1

μ

(
Y k+1 − Y k

)
, (A.20)

which implies that

0 ∈ −Σ + ∂IC (X̂) − Λ̂. (A.21)

Note also that (A.11) implies that

0 ∈ ∂IB(Ŷ ) + Λ̂. (A.22)

Moreover, it follows from Xk ∈ C and Y k ∈ B that

X̂ ∈ C and Ŷ ∈ B. (A.23)

(A.21), (A.22), (A.23) together with X̂ = Ŷ imply that (X̂, Ŷ , Λ̂) satisfies the KKT
conditions for (2.4) and thus is an optimal solution to (2.4).

To complete the proof, we need to show that the limit point is unique. Let
{(X̂1, Ŷ1, Λ̂1)} and {(X̂2, Ŷ2, Λ̂2)} be any two limit points of {(Xk,Y k,Λk)}. As we
have shown, both {(X̂1, Ŷ1, Λ̂1)} and {(X̂2, Ŷ2, Λ̂2)} are optimal solutions to (2.4).
Thus, U∗ in (A.1) can be replaced by Û1 := (R̂1, Ŵ1, Λ̂1) and Û2 := (R̂2, Ŵ2, Λ̂2).
This results in

∥∥Uk+1 − Ûi

∥∥2
G

�
∥∥Uk − Ûi

∥∥2
G
, i = 1,2,

and we thus get the existence of the limits

lim
k→∞

∥
∥Uk − Ûi

∥
∥

G
= ηi < +∞, i = 1,2.

Now using the identity

∥∥Uk − Û1
∥∥2

G
− ∥∥Uk − Û2

∥∥2
G

= −2
〈
Uk, Û1 − Û2

〉
G

+ ‖Û1‖2
G − ‖Û2‖2

G

and passing the limit we get

η2
1 − η2

2 = −2〈Û1, Û1 − Û2〉G + ‖Û1‖2
G − ‖Û2‖2

G = −‖Û1 − Û2‖2
G
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and

η2
1 − η2

2 = −2〈Û2, Û1 − Û2〉G + ‖Û1‖2
G − ‖Û2‖2

G = ‖Û1 − Û2‖2
G.

Thus we must have ‖Û1 − Û2‖2
G = 0 and hence the limit point of {(Xk,Y k,Λk)} is

unique. �
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