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Abstract Background modeling has emerged as a popular foreground detection tech-
nique for various applications in video surveillance. Background modeling methods
have become increasing efficient in robustly modeling the background and hence de-
tecting moving objects in any visual scene. Although several background subtraction
and foreground detection have been proposed recently, no traditional algorithm today
still seem to be able to simultaneously address all the key challenges of illumination
variation, dynamic camera motion, cluttered background and occlusion. This limita-
tion can be attributed to the lack of systematic investigation concerning the role and
importance of features within background modeling and foreground detection. With
the availability of a rather large set of invariant features, the challenge is in determin-
ing the best combination of features that would improve accuracy and robustness in
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detection. The purpose of this study is to initiate a rigorous and comprehensive sur-
vey of features used within background modeling and foreground detection. Further,
this paper presents a systematic experimental and statistical analysis of techniques
that provide valuable insight on the trends in background modeling and use it to draw
meaningful recommendations for practitioners. In this paper, a preliminary review of
the key characteristics of features based on the types and sizes is provided in addition
to investigating their intrinsic spectral, spatial and temporal properties. Furthermore,
improvements using statistical and fuzzy tools are examined and techniques based
on multiple features are benchmarked against reliability and selection criterion. Fi-
nally, a description of the different resources available such as datasets and codes is
provided.

Keywords Background modeling - Foreground Detection - Features - Local Binary
Patterns

1 Introduction

Background modeling and foreground detection are important steps for video pro-
cessing applications in video-surveillance [86], optical motion capture [68], multi-
media [20], teleconferencing and human-computer interface. The aim is to separate
the moving objects, called “foreground”, from the static information, called “back-
ground”. For example, Fig. 1 shows an original frame of a sequence from the BMC
2012 dataset [552], the reconstructed background image and the moving objects mask
obtained from a decomposition into the low-rank matrix and sparse matrix based
model [56]. Conventional background modeling methods exploit the temporal vari-
ation of each pixel to model the background and hence use it in conjunction with
change detection for foreground extraction. The last decade witnessed very signifi-
cant contributions to this field [52][48][49] [S1]1[56][571[53]1[50][191] [55]. Despite
these works and advances to background modeling and foreground detection, the
dynamic nature of visual scenes attributed by changing illumination conditions, oc-
clusion, background clutter and noise have challenged the robustness of such tech-
niques. Under this pretext, focus has shifted towards the investigation of features and
their role in improving both the accuracy and robustness of background modeling and
foreground detection. Although fundamental low-level features such as color, edge,
texture, motion and stereo have reported reasonable success, recent visual applica-
tions using mobile devices and internet videos where the background is non-static,
require more complex representations to guarantee robust moving object detection
[54]. Furthermore, in order to generalize existing background modeling and fore-
ground detection schemes to real-life scenes where dynamic variations are inevitable
and the pose of the camera is little known, automatic feature selection, model selec-
tion and adaptation for such schemes are often desired.

Considering the needs and challenges aforementioned, in this paper, a compre-
hensive review of low-level and hand-crafted features used in background modeling
and foreground detection is initiated for benchmarking them against the complexities
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Fig. 1 Background Modeling and Foreground Detection: Original image (309), reconstructed background
image, foreground mask (Sequences from BMC 2012 dataset [552]).

of typical dynamic scenes. Thus, the aim of this survey is then to provide a first com-
plete overview of the role and the importance of features in background modeling and
foreground detection by reviewing both existing and new ideas for (1) novices who
could be students or engineers beginning in the field of computer vision, (2) experts
as we put forward the recent advances that need to be improved, and (3) reviewers
to evaluate papers in journals, conferences, and workshops. In addition, this survey
gives a complete overview Moreover, an accompanying website called the Features
Website! is provided. It allows the reader to have a quick access to the main resources,
and codes in the field. So, this survey is intended to be a reference for researchers and
developers in industries, as well as graduate students, interested in robust background
modeling and foreground detection in challenging environments.

Some of the main contributions of this paper can be summarized as follows:

— A review regarding feature concepts: A first complete overview of low-level
and hand-crafted features used in background modeling and foreground detec-
tion over the last decade concerning more than 600 papers. After a preliminary
overview on the key concepts in the field of features in Section 2, a survey of
spectral features including color features are detailed in Section 4. Then, spatial
features such as edge, texture and stereo features are studied in Section 5, Sec-
tion 6 and Section 7, respectively. Temporal features such as motion features are
reviewed in Section 8. In Section 15, features that are extracted in alternative do-
mains other than the pixel domain are described. Finally, the different strategies
of combining multiple features using fusion operators and feature selection mech-
anisms are discussed in Section 17 and Section 18.

— A description of the different resources available to allow fair comparisons
of the features. We present the color datasets and recent RGB-D datasets with
accurate ground-truth providing a balanced coverage of the range of challenges
which are present in the real world. Furthermore, we present the LBP Library
which provide a common framework for the implementation of the local texture
patterns.

Thttps://sites.google.com/site/featuresbackgroundforeground/



The rest of this paper is organized as follows. First, a preliminary overview that inves-
tigates the classification of low-level and hand-crafted features by size and type of the
features are considered within the context of background modeling and foreground
detection in Section 2. Moreover, basic concepts on feature reliability, feature fusion
and feature selection are detailed in Section 2.6.1, Section 2.6.2 and Section 2.6.3, re-
spectively. Further, each individual feature is reviewed with their crisp description in
Section 4 to Section 8. For each feature, the paper shall also present an investigation
of their intrinsic properties that facilitate robustness against the challenges in real-
life videos. Also, the paper shall provide an insight on strategies to combine multiple
features using fusion operators (Section 17) and hence apply feature selection us-
ing boosting algorithms (Section 18). Finally, a description of the different resources
available such as datasets and codes is provided in Section 19. Section 21 concludes
with remarks on future research directions.

2 A Preliminary Overview

Features (descriptors or signatures) characterize a picture element captured in the
current frame of a video sequence and are compared against a known background
model to classify it as either foreground or background. Features can be (1) low-level
features directly obtained from the sensors as color features, (2) low-level computed
features as gradients, (3) hand-crafted features as texture features, and (4) features
learned by machine learning methods such as deep learning method which is able
to learn deep and hierarchical features, which turn out to be much more powerful
than classical hand-crafted features (also called hand-design features) for comparing
image patches [667][60][582]. Furthermore, feature representations can take multiple
forms and can be computed for and from: a pixel, a block around the central pixel and
a cluster (a region with the same value of feature than the current pixel). Practically,
there are several types of features which can be computed either in the spatial or trans-
form domains. Some of the features commonly used within the background modeling
literature includes: color features, edge features, stereo features, motion features, tex-
ture features, local histogram features and Haar-like features [557]. These different
features have intrinsic properties that allow the model to take into account spectral,
spatial and/or temporal characteristics. Furthermore, these features use mathematical
concepts in their design that facilitate computing them using well-known statistical
or fuzzy concepts. Thus, features used in background/foreground separation can be
classified from four different view points: their size, their type in a specific domain,
their intrinsic properties and their mathematical concepts (Section 2.1 to Section 2.4).
Then, we investigate how features can be used in terms of reliability, fusion and se-
lection in Section 2.6.

2.1 Classification by Size

The size of the picture element chosen for interpreting necessary features that faith-
fully represent its characteristics plays a crucial role in modeling. As mentioned ear-
lier, features can be computed from and for a pixel [512], a block [147] or a cluster



[41]. That is, the size of the picture element that is used to model the background
and hence for comparing the current image frame to the background model, can ei-
ther be a pixel [512], a block [147], a region (Regions of difference [338], shape
[241], behavior [265], cluster [41], super-pixel [253], global appearance [680]) with
a feature value. During practical implementations, a feature value at a given pixel can
either depend on the feature value at the pixel itself or on the feature values around a
predefined neighborhood in the form of a block or a cluster.

— Pixel-based Features: These features, otherwise known as point features, con-
cern only the pixel at a given location (x,y). This is the case of intensity and
color features but in some cases include stereo features too. The background
model applied in this case of pixel-based modeling and comparison is an inde-
pendent process on each individual pixel. Practically, these features are used in
uni-modal or multi-modal pixel-wise background modeling and foreground de-
tection. Furthermore, pixel-based feature can be used to compute the mean or an
other statistic value over spatial and/or temporal neighborhood to take into ac-
count spatial and/or temporal constraints. Then, the statistic value is assigned to
the central pixel. For example, Varadarajan et al. [554][553] proposed a region-
based Mixture of Gaussians called (R-MOG) instead of a pixel based MOG. Each
region is a square neighborhood which is effectively a block of size 4 x 4. Then,
the color mean obtained from the neighborhood is assigned to the central pixel.

— Block-based Features: This category of features is a generalization of the pixel-
type, where in the element size a block of 1 x 1 or any arbitrary block size m x n
it represents an individual feature. In contrast to the previous case of pixel-based
feature, which equally applies, spatial and/or temporal information can also be
computed depending on the spatial and temporal interaction of the element to its
neighborhood as in edge, texture and motion features. To completely exploit their
potential, the spatial and/or temporal properties of these features need to be taken
into account in all the background subtraction steps to be fully addressed. Prac-
tically, these block-based features can be assigned to a central pixel of a block
(or neighborhood), or to all the block. For example, textures such as Local Bi-
nary Pattern can be assigned at each central pixel of a block size 3 by moving
this block all over the frame, or to all the block as in the works of Heikkila
and Pietikainen [206], and Heikkila et al. [207] which used a pixel-wise LBP
histogram based one (LBP-P) and a block-wise LBP histogram based approach
(LBP-B), respectively. Thus, the block-based features can be used in pixel-wise
or block-wise background modeling and foreground detection. When the fea-
tures are obtained from the video compressed domain, the approach is mandatory
block-based because the block are pre-defined and thus they can not be moved
over the frame. However, in block-based modeling and comparison, blocks (also
called patches [684][681][146][619]) can overlap or not [183]. A block is usu-
ally obtained as a vector of 3 x 3 neighbors of the current pixel. The advan-
tage is to take into account the spatial dimension to improve the robustness and
to reduce the computation time. Furthermore, blocks can be of spatio-temporal
type called spatio-temporal blocks [429], spatio-temporal neighborhoods [562],



spatio-temporal patches [321][595][596] or bricks [605][337][678]) that intrin-
sicly encapsulate temporal information within spatial relationships of a group of
pixels. In Pokrajac and Latecki [429], a dimensionality reduction technique is
applied to obtain a compact vector representation for each block. These blocks
provide a joint representation of texture and motion patterns. One advantage is
their robustness to noise and to the movement in the background. However, the
disadvantage is that the detection is less precise because only blocks are detected,
making them unsuitable for applications that require detailed shape information.

— Region-based Features: Region-level (cluster-level, superpixel-level) features
consider element sizes that are non-uniform across the image frame considered,
and then specific features are computed on the corresponding element size. First,
pixels in an image frame are grouped using an application-specific homogeneity
criteria, typically exploiting partitioning mechanisms as follows: 1) region-based
mechanisms as in Lin et al. [338] with the notion of Regions of Difference (RoD),
2) shape mechanisms as proposed in Jacobs and Pless [241], 3) behavior mecha-
nisms as in Jodoin et al. [265], 4) clustering mechanisms as discussed by Bhaskar
etal. [41][40][42], and Park and Byun [419], and 5) super-pixel mechanisms as in
Sobral et al. [253], Ebadi et al. [141][140], Zhao et al. [671] and Chen et al. [79].
For example in Bhaskar et al. [41], each cluster contains pixels that have simi-
lar features in the color space. Then, the background model is applied on these
clusters to obtain cluster of pixels classified as background or foreground. This
cluster-wise approach gives less false alarms. Instead of the block-wise approach,
the foreground detection is obtained at a pixel-level precision.

Pixel-based features need less time to be extracted than block-based or region-based
features which require to be computed. In literature, in general, it can be summarized
that the size of the feature and the comparison element determines the robustness

of background modeling to noise and the challenges met in the videos, and often
controls precision of foreground detection. A pixel-based modeling and comparison
gives a pixel-based precision but it is less robust to noise compared to block-based

or region-based based modeling and comparison. However, there are several works
which combined block-based (or region-based) and pixel-based approaches to reduce
computation time by first using a block (or region) approach, and second to obtain a
pixel precision by using a pixel-based approach, and they can be classified as follows:

(1) multi-scales strategies [668][113][112][106][85][180], (2) multi-levels strategies
[545][249][642][689][405][533][101][102][103][529][623], (3) multi-resolutions strate-
gies [353][569][683][599],(4) multi-layers strategies [289][286] [664][489][596][597]
[521][163][182][612][367][386][259], (5) hierarchical strategies [184][185][186][81]
[16][616][575][686][94][675], and (6) coarse-to-fine strategies [37][36] [157][555][690].
The analysis of these different approaches is out of the scope of this review, and the
reader can found details about these strategies in [55].



2.2 Classification by Type

Features can be computed in the pixel domain or in a transform domain. In this sec-
tion, features those are predominantly computed in each domain and their robustness
to critical situations in real videos, are discussed.

2.2.1 Features in the Pixel Domain

Features are popularly computed in the pixel domain as the value of the pixel is di-
rectly available. The following features are commonly used:

— Intensity features: Intensity features are the most basic features that can be pro-
vide by gray-level cameras or infra-red (IR) cameras (See Section 3).

— Color features: The color features in the RGB color space are most widely used
because it is directly available from the sensor or the camera. But the RGB color
space has an important drawback: its three components are dependent to each
other which increases its sensitivity to illumination changes. For example, if a
background point is covered by the shadow, the three component values at this
point could be affected because the brightness and the chromaticity information
are not separated. Thus, the three component values increase or decrease together
as the lighting increases or decreases, respectively [349]. Alternative color spaces
that have also been explored in the literature include YUV or YCrCb spaces.
Several comparisons between these color spaces are available in the literature
including [298][450][273][28][350] and usually YCrCb is selected as the most
appropriate color space. Although color features are often very discriminative
features of objects, they have several limitations in the presence of challenges
such as illumination changes, camouflage and shadows (See Section 4). In order
to solve such issues, authors have also proposed to use other features like edge,
texture and stereo features in addition to the color features.

— Edge features: The ambient light present in the scene can significantly affect the
appearance of moving objects. However, spectral features, are limited by their
ability to adapt to such changes in appearance. Thus, edge features emerged as
a robust alternative for moving object detection. Edge features are generally com-
puted using a gradient approaches such as Canny, Sobel [240][210][17][349][326]
[285][234] or Prewitt [339][579] edge detector. It is commonly believed that edge
features can handle local illumination changes, thus eliminating the chances of
leaving ghosts when foreground objects begin to move. Despite some compelling
advantages, edge features (high pass filters) tend to vary more than other compa-
rable features based on low pass filters [349]. For example, edge features in the
horizontal and vertical directions have different reliability characteristics, since
textured objects have high values in both directions, whereas homogeneous ob-
jects have low values in both directions (See Section 5).



— Texture features: Texture features are appropriate to cope with illumination changes
and shadows. Some common texture features that are generally used within this
domain include the Local Binary Pattern (LBP) [207], and the Local Ternary
Pattern (LTP) [332]. Numerous variants of LBP and LTP can be found in the lit-
erature as can be seen summarized in Table 5. Furthermore, statistical and fuzzy
textures can be used as developed in Section 6.

— Stereo features: The extraction of stereo features rely on the need and use of
specific acquisition systems such as a stereo, 3D, multiple, Time of Flight (ToF)
cameras or RGB-D cameras (Microsoft Kinect?, or Asus Xtion Pro Live?) to ob-
tain the disparity information that usually represent the depth in the visual scene.
It has become well-known that stereo features allow the model to deal with the
camouflage in color [144][167][202][494][66][148][153] (See Section 7).

— Motion features: Motion features are usually obtained via optical flow but with
the limitation of the computational time. Motion features allow the model to deal
with irrelevant background motion and clutter [532][230][229][228][231][227][226]
(See Section 8).

— Local histogram features : Local histograms are usually computed on color fea-
tures [324][363][406][407][323][247][318][660][661][687]. But, local histograms
can also be computed on edge features [252][145][218][386][415] to obtain His-
tograms of Oriented Gradients (HOG) (See Section 9).

— Local histon features: Histon [90] is a contour plotted on the top of the his-
tograms of three primary color components of a region in a manner that the col-
lection of all points falling under the similar color sphere of predefined radius,
called similarity threshold, belongs to one single value. The similar color sphere
is the region in RGB color space such that all the colors falling in that region
can be classified as one color. For every intensity value in the base histogram, the
number of pixels falling under similar color sphere is calculated, and this value is
added to the histogram value to get the histon value of that intensity. Histon can
be extended to 3D histon and 3D Fuzzy histon as developed by Chiranjeevi and
Sengupta [90] (See Section 10).

— Local correlogram features: Correlogram was originally proposed for computer
vision applications like object tracking [676]. Since, correlogram captures the
inter-pixel relation of two pixels at a given distance, spatial information is ob-
tained in addition to the color information. Thus, correlograms can efficiently
alleviate the drawbacks of histograms, which only consider the pixel intensities
for calculating the distribution. The main drawback of correlograms is their com-
putation time due to their size of 2563 x 2563 in RGB, and 256 x 2563 in grey
level. Hence, the single channel is quantized to a finite number of levels {. Due to
this, the correlograms’ size is further reduced to [ x [ with [ < 256. Correlogram
can be extended to fuzzy correlogram [87] and multi-channel fuzzy correlogram



[91] (See Section 11).

— Haar-like features: Some authors [293][294][195][675], used the Haar-like fea-
tures [557]. Haar-like features are features defined in real-time face detector and
based on the similarity with Haar wavelets. Haar-like features are computed from
adjacent rectangular areas at a given location in a detection window by adding
the pixel intensities in each area and by calculating the difference between these
sums. The main advantage of Haar-like features is their computation speed. With
the use of integral images, Haar-like features of any size can be computed in con-
stant time (See Section Section 12).

— Location features: The location (x,y) can be used as a feature to exploit the de-
pendency between the pixel [481][479][394][395][396] (See Section 14).

Table 3, Table 4, Table 5, Table 6 and Table 7 present an overview of the features
in the pixel domain. Pixel domain features are generally robust and perform well
provided more accurate representation of the visual scene is available. However, its
high computational complexity restricts its real-time use in some applications. The
features in the pixel domain are analyzed in details from Section 4 to Section 14.

2.2.2 Features in a Transform Domain

In order to accomplish some of the real-time demands of visual scene analysis, feature
computation in a transform domain has gained importance.

— Frequency domain: The frequency domain offers a good framework to detect
periodic processes that appear in dynamics backgrounds such as waving trees
and waves in the ocean. For this, there is a need to transform the data values
in the pixel domain into the frequency domain via a transformation such as the
Fourier Transform (FFT) [591][547], Discrete Cosine Transform (DCT) [437],
Wavelet Transform [158][175][156], Curvelet Transform [278], Walsh Trans-
form [534][536][535], Hadamard Transform [30], Slant Transform [193] and Ga-
bor Transform [607][609][588]. Practically, FTT processes blocks much faster in
comparison with DCT. But, DCT outperforms slightly FFT in terms of precision,
similarity and F-measure [555].

— Video compressed domain: As videos are usually compressed before transmis-
sion and storage, a number of compressed domain approaches have also been
developed to improve the computational complexity of feature extraction. To ob-
tain moving objects, the compressed video stream is partially decoded. Thus, the
compressed domain data, such as motion vectors (MVs), transform coefficients,
are employed to extract moving objects. Initially, compressed domain algorithms
focussed attention on the MPEG standard. According to the classification of mov-
ing object detection, those methods can be mainly divided into three groups:

Zhttp://www.microsoft.com/en-us/kinectforwindows/
3http://www.asus.com/Multimedia/



MVs based method [18], coefficients based method [645] [577], and combin-
ing MV and coefficients based methods [435] [436]. Other compressed domain
algorithms used the video coding standard such as the H.264/AVC which process
each video frame in units of a MacroBlock (MB) [541]. Thus, these MacroBlocks
could be used as features. A Rate Distortion Cost (RDCost) value for each MB
which changes depending on the frame content can be used as an indicator of
changes. Typically, more cost will be spent on high motion and/or detailed MBs
and less cost for low motion and/or homogenous MBs, which was verified in the
experiments of [541]. The reasons for the effectiveness of the RDCost for fore-
ground/background separation can be attributed to the following reasons. First,
RDCost reflects the overall coding cost of a MB, which considers the effect of
each factor on coding efficiency during video coding, such as prediction mode,
MB partition size, motion vectors, residuals, etc. So RDCost can reflect true mo-
tion. Second, RDCost is in unit of MB. Only one MB has an RDCost value, as the
basic coding unit in H.264/AVC is MB. Thus, RDCost is less affected by noise
when compared with MVs [18]. Finally, compressed domain algorithms recently
focused attention on the HEVC standard [674][673][73].

Table 5 shows an overview of the features in a transform domain. The features in the
transform domain are analyzed in details in Section 15.

2.3 Classification by Intrinsic Properties

According to Li et al. [326], features can be classified by their intrinsic properties
into the following categories:

— Spectral features: The intensity or color features are directly available from the
images. Spectral features can easily detect changes if the difference in color be-
tween the foreground and the background are sufficient. However, spectral fea-
tures produce 1) false positive detections particularly when there are illumination
changes, and 2) false negative detections when foreground objects have similar
color to the background (camouflage). Spectral features do not take into account
or exploit the neighbourhood relationship of the considered pixel to deal with its
poor robustness. Further, stereo features can also be considered as spectral fea-
tures in the depth domain.

— Spatial features: Spatial features are edge and texture features. These features
help to detect foreground objects that camouflage with the background and sup-
press shadows. Spatial features are however not applicable to non-stationary back-
ground objects at pixel level since the corresponding spatial features vary over
time.

— Temporal features: Temporal features concern the motion between consecutive
image frames. One way to obtain temporal features is to estimate the consistency



of optical flow over a short duration of time.

In order to achieve robust background modeling and foreground detection, fea-
tures in each category are required to deal with a number of challenges commonly
encountered in video surveillance as indicated in Bouwmans [51]. Table 1 shows an
overview of the features classified following their intrinsic properties.

2.4 Classification by Mathematical Concepts

Some of the mathematical concepts that underlie during the computation of robust
features can present an other useful categorization of features into crisp, statistical
and fuzzy types.

— Crisp Features: Crisp features are those features which are computed without
the use and need of any statistical or fuzzy concepts. It is the case of the color
features (RGB, YUYV, HSV, etc...), edge features obtained by a filter (Canny, So-
bel, Prewitt), motion features obtained through optical flow or temporal operator,
and stereo features.

— Statistical Features: Statistical features can be obtained by exploiting some of
the statistical properties of the representation of the visual. The first work de-
veloped by Satoh et al. [462] proposed a Radial Reach Correlation (RRC) fea-
ture which has several variants: Bi-polar Radial Reach Correlation (BP-RCC)
[457], Fast Radial Reach Correlation (F-RRC) [235][236], and Probabilistic Bi-
polar Radial Reach Correlation (PrBP-RCC) [631]. In a similar way, Yokoi [629]
used Peripheral Ternary Sign Correlation (PTESC). Recently, Yoshinaga et al.
[634][635] proposed the Statistical Local Difference Pattern (SLDP). The aim
of these statistical features is to be more robust to illumination changes and dy-
namic backgrounds. Thus, SLDP integrates both pixel-based multi-modal model
with color feature and spatial-based unimodal model with texture feature in one
model feature taking into account the advantages of their respective robustness.

— Fuzzy Features: Fuzzy features are used to take into account the imprecision and
the incertitude in features that represent a visual scene. For example, Chiranjeevi
and Sengupta introduced fuzzy 3D Histons [90], fuzzy correlograms [87][91] and
fuzzy statistical texture features [89][93]. The aim is to deal with illumination
changes and dynamic backgrounds.

Table 2 shows an overview of the features classified following their mathematical
concepts.
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2.5 Exhaustive Overview of all the Features

The reader can refer to Table 3, Table 4, Table 5, Table 6 and Table 7 for an exhaus-
tive overview of all the features. The first column indicates the category model and
the second column the name of each method. Their corresponding acronym is indi-
cated in the first parenthesis and the number of papers counted for each method in
the second parenthesis. The third column gives the name of the authors and the date
of the related publication. Furthermore, prospective features not currently used for
background modeling and foreground detection but in other computer vision appli-
cations are indicated in each table.

Fig.3 shows the distribution of research papers which used the corresponding
type of features in their background modeling and foreground detection. It shows the
domination of following types of features: 1) fexture features due their robustness in
presence of shadows and gradual illumination changes, and sometimes in dynamic
backgrounds, 2) features in a transform domain due to the fact they allow to reduce
computation time, and 3) multiple features because it combines features from other
categories and allow to combine their advantages.

For texture features, we can see in Fig. 4 that local pattern textures such as LBP
and LTP are the most investigated. They are followed by spatio-temporal patterns
and statistical texture features. Fuzzy texture features are less investigated although
they appear to be very suitable and robust in presence of dynamic backgrounds and
illumination changes as can be seen in the work of Chiranjeevi and Sengupta [89].

This exhaustive overview shows the activity and the importance of the research
on features in the field of background modeling and foreground detection. To have
a quantitative view of the activity, we have counted the number of papers in terms
of publication in conferences and journals. From Fig. 2, we can see how the research
focus on the development of background modeling and foreground detection methods
has grown in the last 20 years. However, we can note that compared to the number
of papers (more than 15000 in the field), this field is less investigated although the
role and the importance of the features is primordial in the robustness of the methods
against challenges as developed in Section 2.6.5.
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Fig. 2 Number of papers by years. Note that the ratio between journal and conference publications
increased in favor of journal publications, and thus testifies the importance of this field.
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Fig. 3 Number of papers by type of features: Texture features, features in a transform domain, multiple
features are the most predominant features investigated.
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Fig. 4 Number of papers by type of textures. Local pattern textures, spatio-temporal patterns and sta-
tistical texture feature are the most investigated.
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