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Abstract

In recent years, a variety of computational sites and resources have emerged,
and users often have access to multiple resources that are distributed. These
sites are heterogeneous in nature and performance of different tasks in a
workflow varies from one site to another. Additionally, users typically have
a limited resource allocation at each site capped by administrative policies.
In such cases, judicious scheduling strategy is required in order to map tasks
in the workflow to resources so that the workload is balanced among sites
and the overhead is minimized in data transfer. Most existing systems ei-
ther run the entire workflow in a single site or use näıve approaches to dis-
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tribute the tasks across sites or leave it to the user to optimize the alloca-
tion of tasks to distributed resources. This results in a significant loss in
productivity. We propose a multi-site workflow scheduling technique that
uses performance models to predict the execution time on resources and dy-
namic probes to identify the achievable network throughput between sites.
We evaluate our approach using real world applications using the Swift par-
allel and distributed execution framework. We use two distinct computa-
tional environments–geographically distributed multiple clusters and multi-
ple clouds. We show that our approach improves the resource utilization and
reduces execution time when compared to the default schedule.

Keywords: System Modeling, Workflow, Optimization, Swift, Clouds

1. Introduction

Large-scale scientific applications involve repetitive communication-, data-,
memory- or compute-intensive tasks. These applications are often encoded
as workflows in order to improve productivity, and are deployed over remote
computational sites. The workflow framework must schedule tasks over avail-
able sites and manage data movement among the tasks. In recent years, given
the increasing prevalence of computation, these sites have been significantly
grown in number and size and have diversified in terms of their underly-
ing architecture. They vary widely in system characteristics including raw
compute power, per-node memory, file system throughput, and performance
of the network. With such heterogeneity, different tasks within the same
workflow may perform better at different sites. Even in a single large super-
computer, we are witnessing this heterogeneity both at a node-level, as well
as at a system level. In the latter case, we now have systems where larger
memory footprint nodes are interconnected with compute intensive nodes
via a high-performance interconnect. Furthermore, emerging computational
infrastructures such as clouds have considerably altered the course of com-
putational research in the recent years. The existing computational models
are still not well-aligned with the cloud model of computation.
In addition to the issue of resource heterogeneity, users confront logistical
constraints in using these systems including allocation time and software
compatibility. Users often subscribe to a multitude of sites, spanning geo-
graphical regions, connected through various types of networks. It is often
desired, therefore, to deploy an application over multiple sites in order to
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best utilize the resources collectively.
Unfortunately, the resource allocation for each site may be limited and the
system configuration at each site may be suited for some tasks but not oth-
ers. Such resource-task affinity constraints must be taken into account while
scheduling these workflows. Given these constraints and the dynamic nature
of the network connecting these sites, it is non-trivial to compute a sched-
ule that will optimally utilize the resources across sites to achieve the best
time-to-solution. An ideal scenario from a user’s perspective is:

1. Construct a workflow [1].

2. Provide the list of resources.

3. Execute the workflow by spreading the tasks to distributed resources
(provided by the user in the previous step) without any intervention
from the user.

This work tackles the aforementioned step 3. In particular, our work ad-
dresses the following key challenge:

Efficiently schedule and run data and compute-intensive work-
flows over multiple, heterogeneous, and geographically dispersed
computational sites.

We use the Swift framework [2] for workflow execution, SKOPE framework [3]
for workflow performance modeling, and a network scheduling algorithm for
optimizing mapping between tasks and resources. A scheme of our framework
with steps and their interconnections is shown in Figure 1. The framework
takes the workflow description encoded as a Swift script and profiles different
tasks in the workflow on available resources to generate a workflow skeleton in
the format required by SKOPE (see Section 3 for details). Using the workflow
skeleton, SKOPE builds analytical models about the data transfers between
tasks, and empirical models about performance scalability of tasks. SKOPE
then constructs a job graph describing the estimated computation and data
transfer according to the models. The job graph is used as inputs to the
scheduling algorithm, which generates an optimized schedule by taking into
account the performance scalability of tasks and network condition between
the relevant sites. Eventually, the Swift framework executes the workflow
using the recommended schedule.
Although considerable work has been done in the past on scientific workflow
management systems [4, 5, 6, 7, 8] and metascheduling systems [9, 10, 11],
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Figure 1: A Conceptual framework for multi-site workflow scheduling.

optimizing the execution of workflows across heterogeneous resources at mul-
tiple geographically distributed sites has not received much attention. This
is due in part to the lack of access to multiple independent resources and
in part to the lack of workflow enactment capabilities. Most metaschedul-
ing systems run the entire application or workflow at a single site. Systems
such as Swift enables the execution of various tasks of a workflow at different
sites but they do not have sophisticated scheduling algorithms to optimize
the execution of workflow across different sites. A good scheduling algorithm
must take into account not only the heterogeneous nature of the compute
infrastructure at various sites but also the network connectivity and load be-
tween the computational sites and the data source(s) and sink(s). Our goal
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is to develop better schedules for workflows across geographically distributed
resources.
Our specific contributions in this work is as follows:

• Development of the notion of workflow skeletons framework to capture,
explore, analyze and model empirical workflow behavior with regard to
dynamics of computation and data movement.

• An algorithm to construct an optimized schedule, according to the mod-
eled workflow behavior.

• Integration of the workflow skeleton and the scheduling algorithm into
a deployment system.

• Demonstration of the effectiveness of our approach over two distinct
distributed environments: a collection of traditional clusters and mul-
tiple clouds. We use the Amazon AWS, the Google Compute Engine
and the Microsoft Azure cloud platforms in this work.

The remainder of the paper is organized as follows. Section 2 presents an
overview of Swift, a workflow expression and execution framework; typical
scheduling mechanisms; and SKOPE, a workload modeling framework. Sec-
tion 3 presents our optimized scheduling technique. Section 4 describes our
experimental setup. Section 5 presents an evaluation of the proposed ap-
proach using real scientific workflows over multiple sites with distinct char-
acteristics. Section 6 discusses related works. Conclusions are given in Sec-
tion 7.

2. Background

In this section we introduce parallel workflow scripting, resource schedul-
ing, and workload behavior modeling techniques which forms the basis of
our work. The following terminology is used. A workflow is a process that
involves the execution of many programs. The invocation of an individual
program is referred to as a task. These tasks may be dependent on each
other or can run in parallel. Tasks are dispatched to various sites in groups
of scheduling units, or jobs. Jobs define the granularity in which the sched-
ule maps tasks to resources. A job consists of one or multiple tasks that
correspond to the same program but different input data.
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2.1. Swift: Parallel Workflow Scripting

Swift is a workflow framework for parallel execution of ordinary programs [12].
The Swift runtime contains a powerful platform for running user programs
on a broad range of computational infrastructures, such as clouds, grids,
clusters, and supercomputers out of the box. A user can define an array of
files, and use foreach loops to create a large number of implicitly parallel
tasks. Swift will then analyze the script and execute tasks based on their
dataflow; a task is executed only after any of its dependent tasks finish.
Applications encoded as Swift scripts have been shown to execute on multiple
computational sites (clusters, clouds, supercomputers) via Swift coasters [13,
12, 14] mechanism which implements the pilot jobs paradigm. The pilot job
paradigm dispatches a pilot task to each of the sites and measures the task
completion rate. The task completion rate for the corresponding task-site
combination then serves as an indicator to increase or decrease the number
of tasks assigned to each site. However, it does not distinguish the latency in
task execution from the overhead in data transfer. Moreover, the number of
tasks to be executed on each node remains a global constant; it may starve
some CPUs if the number is too low, or thrash the shared cache or memory
if the number is too high. Therefore, the resulting schedule is sub-optimal.

2.2. Workflow Scheduling

The resource and job scheduling problem is a classic NP-hard problem [15].
It can be formally stated by resource and job definitions, and the algorithms
vary depending on characteristics of resources and jobs. For instance, job-
shop scheduling [16] is for multiple independent jobs with varying sizes and
multiple homogeneous resources.
In the context of distributed computing, jobs may have dependencies among
them and take input data from remote sites and send output to a different
set of remote sites. The sites themselves may also have a broad spectrum of
system architectures and capacities. In order for scheduling to take into ac-
count all these factors, sophisticated algorithms are needed. In this paper, we
tackle a workflow scheduling problem of minimizing the time-to-completion
of a workflow where performance models of tasks in the workflow are given
as mathematical functions with regard to all remote sites. We extend our
previous linear programming based scheduling algorithms [17] to incorporate
performance models as well as network and compute resources. In general,
scheduling algorithms considering several factors (e.g., network and compute
resources) at the same time are termed as joint scheduling algorithms [18, 19].
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Joint scheduling algorithms are advantageous for better performance while
they may need more sophisticated mechanisms and may lead to high time
complexities. Even though many previous studies including our work [17]
have addressed these issues, many more factors as described above are left
unconsidered for reasons such as time complexities. Our scheduling algo-
rithms extended for task performance models for multiple computation sites
are unique from the perspective of incorporating all factors such as network
and compute resources and site-specific task performance models. In ad-
dition, model-driven job graphs will be able to provide rich semantics for
flexible and efficient scheduling.

2.3. SKOPE: A Workload Behavior Modeling Framework

SKOPE (SKeleton framewOrk for Performance Exploration) is a framework
that helps users describe, model, and explore a workload’s current and po-
tential behavior [3]. It asks the user to provide a description, called code
skeleton, that identifies a workload’s performance behavior including data
flow, control flow, and computational intensity. These behavioral properties
are intrinsic to the application and is agnostic of any system hardware. They
are interdependent; the control flow may determine data access patterns, and
data values may affect control flow. Given different input data, they may
result in diverse performance outcomes. They also reveal transformation op-
portunities and help users understand how workloads may interact with and
adapt to emerging hardware. According to the semantics and the structure
in the code skeleton, the SKOPE back-end explores various transformations,
synthesizes performance characteristics of each transformation, and evaluates
the transformation with various types of hardware models.
In this work, we adopt and extend SKOPE to model workflows with data
transfer requirements over wide area networks. The SKOPE front-end is ex-
tended with syntax and semantics to describe files and computational tasks.
The resulting code skeleton is called the workflow skeleton. We further add
a back-end procedure that constructs job graphs from workload skeletons.

3. Model-Driven Multisite Workflow Scheduling

In this section, we describe how we use modeling to schedule a workflow on
multiple sites. User provides the workflow as a Swift script or using some
other interface. In case of latter, an approach such as [1] can be used to
obtain a workflow. From the Swift script, we generate a performance property
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description of the workflow, which includes tasks’ site-specific scaling and the
data dependency among them. Such a description is generated in the form of
our extended SKOPE language, and is referred to as a workflow skeleton, or
skeleton in short. This process is done manually now but will be automated
in the future. User also provides a list of resources available to execute the
workflow. SKOPE then automatically generates a job graph, where a job
refers to one or more tasks of the workflow grouped as a scheduling unit.
The technique of grouping multiple tasks into a job is generally called task
clustering. This technique helps reduce the complexity of a job graph and
queue waiting time when tasks are scheduled on multiple HPC resources. In
particular, the reduced complexity of a job graph leads to less running time of
our LP-based scheduling algorithms, which requires higher computing time
than simple heuristics.
The job graph depicts the jobs’ site-specific resource requirements as well
as the data flow among them. Such a job graph is then used as input to a
scheduling algorithm, which also takes into account the resource graph that
describes the underlying properties at multiple sites and the network connect-
ing them. The output of the algorithm is an optimized mapping between the
job graph and the resource graph, which the default Swift scheduler then
uses to dispatch the jobs.

Table 1: Syntax for workflow skeletons

Macros and Data Declarations
File type and size (in KB) :MyFile N

Constant definition :symbol = expr
Array of files :type array[N][M]

Variable def./assign var = expr
Variable range var name=begin:end(exclusive):stride

Control Flow Statements
Sequential for loop for var range {list of statements}

Parallel for loop forall list of var ranges {list of statements}
Branches if(conditional probability){list of statements}

else{list of statements}
Data Flow Statements

file input/load ld array[expri][exprj ]
file output/store st array[expri][exprj ]

Characteristic Statements
Run time (in sec.) comp T

Task description
Application definition def app(arg list){list of statements}

Application invocation call app(arg list)
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3.1. Workflow Skeleton

We use workflow skeletons for two specific purposes: (1) define tasks; (2)
identify data movements among tasks.
The syntax of a workflow skeleton is summarized in Table 1. Figure 2 presents
an illustrative workflow from the geoscience area involving ab initio simula-
tions. In Figure 2(a), shows the script for the workflow. Its skeleton is listed
in Figure 2(b). The skeleton is structured identically to its original workflow
script in terms of file types, task definitions, and the control and data flow
among the tasks.
A skeleton is parsed by the SKOPE framework into a data structure called
the block skeleton tree (BST). Figure 2(c) shows the BST corresponding to
the skeleton in Figure 2(b). Each node of the BST corresponds to a state-
ment in the skeleton. Statements such as task definitions, loops, or branches
may encapsulate other statements, which in turn become the children nodes.
The loop boundaries and data access patterns can be determined later by
propagating input values.
To describe a task’s distinct behavior over various sites, the user can represent
its skeleton with a switch statement. Each of its case statements describes
the task’s performance model for the corresponding site. An example skeleton
description of a task is demonstrated by lines 33-36 in Figure 2(b). This
performance model is then used by the scheduler to determine how many
tasks to assign to a site.
Given the high-level nature of workflows and the structural similarity be-
tween a workflow script and the skeleton, generating the workflow skeletons
is straightforward and will be automated in the future with a source-to-source
translator. The major effort in writing a workflow skeleton falls on profil-
ing tasks over available systems in order to obtain site-specific performance
models. For each task, we measure its single node execution time when it is
co-executed with multiple tasks, up to a point where all computing resources
(i.e., cores) on the same node are exploited.
We then apply quadratic curve fitting to obtain an empirical performance
model. Since a typical workflow is repeatedly executed, such performance
information can be obtained from historical data, either by explicit user
measurement or by implicit profiling.

3.2. Procedural Job Graph Generation

The workflow skeleton produces a job graph as input to the scheduling algo-
rithm. A job graph is a DAG describing the performance characteristics of
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Figure 2: Illustrative workflow script (a), skeleton (b), and the corresponding block skele-
ton tree (BST) (c) for a pedagogical workflow related to a geoscience application.

each job and the data movement among them. Figure 3 illustrates the job
graph generated from the workflow skeleton in Figure 2(b). In a job graph,
nodes refer to jobs and edges refer to data movements. Note that the struc-
ture of the job graph is independent of the hardware resources. Moreover,
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a node is annotated with the amount of computation resources, or the exe-
cution time needed by the corresponding task for each available system. An
edge is annotated by the amount of data that is transferred from the source
node to the sink node.
Note that a job is a scheduling unit that may refer to a group of tasks.
Grouping multiple tasks can be achieved by simply transforming nested par-
allel for loops in the workflow skeleton into a two level nested loop, where
the inner loop defines a job with a number of tasks, and the outer loop is
sized according to the desired number of jobs, which is a predefined constant
according to the available number of sites. In this work, we adopt the heuris-
tic where iterations of a parallel for loop are grouped into a number of jobs
no more than 10 times the number of sites. Such a granularity enables the
scheduler to balance the workloads among sites, and at the same time does
not lead to a significant overhead in probing a large number of possibilities.

Figure 3: Job graph for the workflow shown in Figure 2(a).

Generating a job graph from a workflow skeleton involves four major steps.
First, we decide the group size according to the number of tasks and the
number of sites. Second, we obtain the data footprint for each job by aggre-
gating the data footprints for tasks within a group. Third, we construct the
data flow among dependent jobs. Finally, we derive a symbolic expression to
express the execution time of a job over different systems; this also involves
aggregating the execution time of tasks within a group.
The key to our technique is data movement analysis, for which we apply
array section analysis using bounded regular section (BRS) [20]. BRS has
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been conventionally used to study stencil computation’s data access pat-
terns within loops. It is adopted in our study to analyze data access pat-
terns over arrays of files. In BRS, an array access can be regarded as a
function that maps a range of loop iterators to a set of elements over the
array. In this paper, we refer to the range of loop iterators as a tile (T)
and the set of accessed array elements as a pattern (P). For example, sup-
pose A is a 2-D array of files and a task accesses A[r][c] in a nested for

loop with two iterators, r and c. The tile corresponding to the loop is de-
noted as T(r, c) = {r : 〈rl : ru : rs〉; c : 〈cl : cu : cs〉}, where each of
the three components represents the lower bound, upper bound, and stride,
respectively. The overall pattern accessed within this loop is denoted as
A[〈rl : ru : rs〉][〈cl : cu : cs〉], which is summarized by P(A[r][c],T(r, c)).
Patterns can be intersected and/or unioned.
To obtain the data footprint of a job, we identify its corresponding node in
the BST and obtain the tile T corresponding to one iteration of all loops in
its ancestor nodes (i.e., the outer loops) and all iterations of its child nodes
(i.e., the inner loops). Given an access to a file array, A, we apply T to obtain
a pattern, P(A,T), which symbolically depicts the data footprint of the job.
We then build the data flow among jobs. First, we scan all BST nodes that
correspond to jobs. Pairs of nodes producing and consuming the same array
of files become candidate dependent jobs. Next, we perform intersection
operations between produced and consumed patterns to determine the exact
pattern that caused the dependency. The size of the dependent patterns is
the amount of data movement associated with an edge in the job graph.
Then, we derive the execution time of each job for different systems. We
simply traverse the BST of the code skeleton once for each site; in each
traversal, the switch statement is evaluated, and its execution time for that
particular site is obtained. We then aggregate the per task execution time
into the per job execution time by multiplying it with the number of tasks
within a job.
The resulting job graph is output in the form of an adjacency list. In addition,
each node has two attributes, one is the number of independent tasks within
this job, and the other is the performance modeling which estimates the
execution time of each job given the number of assigned cores. It is then
passed to the scheduler algorithm to generate an optimized mapping among
the jobs and resources.
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3.3. Multisite/Multicloud Scheduling

In this section, we present how a scheduler interact with other components
in our framework, and we describe our scheduling algorithm in detail.

3.3.1. General procedure

The scheduler in our framework needs a resource graph as well as the given
job graph. While a job graph provides a description about the requirement
and behavior of a workflow, a resource graph provides a description about
the distributed compute resource where a workflow is deployed. In particu-
lar, the knowledge includes available compute nodes at each site, the number
of cores per node, and the network bandwidth amongst computation sites.
We use a resource graph to describe such information about underlying dis-
tributed systems.Figure 4 (a) illustrates an example of the resource graph.
Nodes and edges denote compute resources and network paths among those
resources. Even though a network path can span multiple physical network
links, we use only one logical link between two sites because we cannot setup
paths at our discretion in these experiments. However, if we have control
over network path setup in connection-oriented networks, a physical network
topology can also be used as a resource graph because our algorithm is a
network-centric joint scheduling algorithm and can take into account a real
network topology for data transfers. Figure 4 (b) is the resource graph for
multisite scheduling, corresponding to Table 2. The resource graph is for grid
computing environments, and the resource graph for cloud computing envi-
ronments can be constructed in a similar way. We ran disk-to-disk transfer
probes to identify the achievable throughput among our computation sites.
Note that the resource graph is a complete graph, where each node is con-
nected to all other nodes.

V1 

C1 

V2 

C2 

V3 

C3 

V4 

C4 

V5 

C5 

BWV1V3 BWV2V3 

BWV3V4 BWV3V5 

Resource 

Capacity 

Bandwidth 

LCRC 
Blues 

XSEDE 
Stampede 

Submit 

Host 

RCC 
Midway 

XSEDE 
Trestles 

(a) (b) 

Figure 4: (a) Resource graph model (b) Resource graph in our experiments.
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Figure 5 shows the basic ideas of converting a task scheduling problem into
a network flow problem. Given a task T1 and three resources R1, R2, and
R3 where D is the T1’s demand for CPU resource and C1, C2, and C3 are
capacities of R1, R2, and R3 as shown in Figure 5(a), a task scheduling
problem is equal to find the optimal path for a data flow with the amount
D among the three paths from the node T1 to the resources, where the
bandwidth of a path is set to the capacity of a destination resource node
as in Figure 5(b). For example, if D = 10 and C1, C2, and C3 are 1, 2, 5,
respectively, this means that the run times of task T1 on R1, R2, and R3 are
10(= 10

1
), 5(= 10

2
), and 2(= 10

5
), respectively. More details on our algorithm

will be described in the following sections.

Task1 
D 

(a) (b) 

Resource1 
C1 

Resource2 
C2 

Resource3 
C3 

Task1 

Resource1 Resource2 Resource3 

C1 
C2 

C3 

Figure 5: (a) Task and resources (b) Task to resource mapping.

Multicloud scheduling works in the same way as multisite scheduling does.
Though cloud computing can provision infinite amount of resources, cloud
providers do not allow users to use as many virtual machines as they want
on demand. In practice, users can get virtual machines up to a fixed number
(e.g., 20), and users should get permission from cloud providers ahead of
using a large number of virtual machines. Accordingly, we can assume that a
limited number of virtual machine instances are available for on-demand pro-
visioning at each cloud, which is similar to the assumption on HPC resources.
Furthermore, it is important to note that the virtual machine instances are
drawn from underlying hardware with different characteristics and load. In
this scenario, it is crucial to identify true capability of the virtual machine.
In order to find out processing speeds and memory bandwidth, we bench-
marked each of the clouds used in this work. We take the results shown in
Table 3 into account for the final multicloud schedule.
Alternatively, our scheduler combined with intelligent SKOPE job graph gen-
eration can achieve better performance. A job in a job graph that SKOPE
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provides to the scheduler may correspond to multiple parallel tasks and is a
basic scheduling unit. Previously, partitioning techniques for multiple same-
level tasks, called task clustering, groups all the tasks into fixed number of
partitions (e.g., 2 or 4) with the same number of tasks to reduce schedul-
ing overhead or task queue wait time. The SKOPE job graph generator
may provide as many parallel jobs in a job graph as the number of available
computation sites. In this way, our scheduler can maximize parallel execu-
tion of jobs according to the current resource environment while static task
clustering approach would not utilize idle resources.

3.3.2. Task-resource affinity aware joint scheduling

In this paper, we extend our joint scheduling algorithm presented in [17].
Joint scheduling means that it takes into account both compute resources
and network paths together in order to further optimize the execution of a
workflow. In distributed workflow scheduling, data movement among sites is
not trivial, especially when the network resources are not abundant. That
means independent scheduling of compute resource and network paths may
not give a near optimal schedule. Our previous algorithm converts a schedul-
ing problem into a network flow formulation, for which there are well-known
linear programming approaches, as shown in Figure 4.
However, these formulations lack task performance models for heterogeneous
compute resources. In order to schedule workflows among multisite compute
resources, a new notion of task-resource affinity is proposed and incorporated
into our previous workflow scheduling algorithms. This is novel in a sense
that all factors including network and compute resources and task perfor-
mance models per site are incorporated into one formulation.

Table 2: Cluster execution sites and their characteristics

Site CPU Cores CPU Speed Memory/Node Remarks
LCRC Blues 310X16=4960 2.60GHz 62.90 GB 35 jobs cap

XSEDE Stampede 6400X16=102400 2.70GHz 31.31 GB 50 jobs cap
XSEDE Trestles 324X32=10368 2.4GHz 63.2 GB unknown

RCC Midway 160X16=2560 2.60GHz 32.00 GB Institute-wide access

The one of key issues in extending the previous algorithm is how to incorpo-
rate the different task performance models on different resources and how to
account for the amount of resources in a task performance model. We define
task-resource affinity as T i

s(n) which represents the run time of task i on the
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Table 3: Cloud execution sites and their characteristics

Cloud Processing
(GFLOPs)

Memory
Bandwidth

(GB/sec)

Cost
per instance
per hour

Limitations

Microsoft Azure 8.6 10.2 $0.14 50 instances/subscription
Google Compute 16.9 11.0 $0.14 24 CPUs/region

Amazon AWS 10.5 12.1 $0.14 20 instances/region

resource site s where n nodes are provisioned. This task-resource affinity
is provided by the SKOPE framework for all pairs of tasks and resources.
For example, given T i

s(n) = 10
n

, the run time of task i is 1 when ten nodes
at site s are provisioned while the run time of task i is 10 when one node
at site s is provisioned. To incorporate these task-resource affinity into the
network flow models as shown in Figure 5, we have to set the values of Cs

and di appropriately where Cs, denotes computation power at site s and di
denotes the amount of compute resource demand of task i. Note that this
capacity is used for a bandwidth of a link representing a compute resource
in our network flow formulation [17]. Equation 1 is the task-resource affinity
equation showing the relationship among T i

s(n), di, and Cs. So di
Cs

represents
how fast a task demand, di, can be processed by compute resources at site s,
Cs. This is analogous to a situation where di amount of water flows through
a water pipe with capacity Cs.

T i
s(n) =

di
Cs

(1)

Note that Cs and di are relative values. To describe that task i takes 1 second
at compute resource site s, we can assign either 100 or 10 to both of Cs and
di. We can set Cs for a computation resource site with fewest computation
resource to 100. Then we can get di and assign this to the corresponding
task in the formulation. To compute Cm, when m 6= s, we should normalize
Cm regarding the base case by Equation 2.

Cm = 100× T i
s(n)

T i
m(n′)

(2)

We do the same to each task repetitively such that we assign different C to
the edges connecting other tasks and resources in the auxiliary graph [17].
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3.3.3. Cost optimization

In the context of grid and cloud computing, many heuristics for optimizing
additional objectives such as the execution cost of a workflow as well as the
makespan of a workflow have been proposed. Many of them are proposed
newly from the scratch and some of them are extended from the existing
heuristics such as heterogeneous-earliest-finish-time (HEFT).
Our algorithm is a linear programming based approach, which has a major
advantage of extensibility over other heuristics. The cost of a workflow can
be incorporated as a constraint or an objective in our linear programming
formulations, which means there is no need to develop new heuristics or to
put efforts in extending existing heuristics to adapt to new constraints.

4. Experimental Setup

In this section we introduce the application and computation sites used in
our experiments.

4.1. Application Characteristics

Synthetic Workflow. We use a synthetic application consisting of various
computation and memory intensive tasks. The computation intensive task is
matrix multiplication while the memory intensive tasks are array summation,
scale, and triad operations from the STREAM benchmarks [21]. The graph in
Figure 6 shows the overall data flow of a synthetic workflow. The application
consists of a total of 255 tasks.

Figure 6: The synthetic application workflow representation
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Image Reconstruction. The Advanced Photon Source (APS) at Argonne Na-
tional Laboratory provides the Western Hemispheres most brilliant X-ray
beams for research. Typically, during the experiments, the data generated at
the beamlines is typically moved to a local HPC cluster for quasi real-time
processing through a LAN. At the end of the experiments, raw and pro-
cessed data is moved to the user‘s home institution typically over a WAN.
The science workflows at APS is changing in nature rapidly as a result of
double exponential growth in both detector resolution and experiment rep-
etition rate. As data volumes increase, we see increased need to use remote
computation facilities to process and analyze the data. For example, a near-
real-time analysis of a few TB of APS data at a remote compute cluster
at Pacific Northwest National Laboratory was done recently. In our ex-
periments, we use a downsized APS application consisting of two tasks, a
raw image reconstruction task and an image analysis task, which are both
compute-intensive tasks and can be distributed among remote computation
sites. through 2D slice images reconstructed from raw tomography data at
computation sites in our experiments. We also assume a workflow in which
ten datasets are generated by ten experiments performed at X-ray beamlines
(note that there are more than 60 beamlines at APS) and will be processed
using remote computation sites.

PowerGrid. The electrical power prices in a region are a result of combina-
tion of many stochastic and temporal factors, including variation in supply
and demand due to market, social, and environmental factors. Evaluating
the feasibility of future generation power grid networks and renewable energy
sources requires modeling and simulation of this complex system. In partic-
ular, the power grid application described here is used to statistically infer
the changes in the unit commitment prices with respect to small variations
in random factors. The application involves running a stochastic model for
a large number of elements generated via a three-level nested foreach loop.
A numerical algorithm is run to compute lower and upper bounds, which
converge for large enough samples. A moderate sample size of five samples
can generate hundreds of thousands of tasks. Each task makes call to the
Python-implemented sample generation and AMPL [22] models making it an
interlanguage implementation spanning Python and AMPL interpreters, as
depicted in Figure 7.
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Figure 7: Electrical power price analysis application components: tasks and a plot showing
convergence of upper and lower bounds for large sample sizes.

4.2. Cluster Sites

We used four execution sites–XSEDE’s Stampede and Trestles clusters, Ar-
gonne’s Laboratory Computing Resource Center (LCRC) cluster ‘Blues’ and
University of Chicago Research Computing Center (RCC) cluster ‘Midway’
to evaluate our approach. A summarized characterization of these four sites
is given in Table 2.
XSEDE (www.xsede.org) is an NSF-funded, national cyberinfrastructure com-
prising multiple large-scale computation systems on sites across the US.
Stampede is one of the supercomputing systems offered by XSEDE. Stam-
pede runs the SLURM scheduler for submitting user jobs. Similarly, Trestles
is another supercomputing environment offered by XSEDE. It consists of 324
compute nodes and over 100 TFlop/s of peak performance. It employs a PBS
based resource manager.
LCRC Blues (www.lcrc.anl.gov/about/blues) is a recently-acquired cluster
available to science users at the Argonne National Laboratory. It comprises
of 310 16-core nodes. Blues runs the PBS scheduler.
RCC Midway (rcc.uchicago.edu) is the University of Chicago Research Com-
puting Center cluster supporting University-wide high-end computational
needs. The cluster has multiple resource partitioning dedicated to special-
ized computing such as HPC, HTC and GPU computing and runs a SLURM
batch queue scheduler.
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4.3. Cloud sites

We used three of the most popular contemporary public cloud offerings: the
Amazon AWS cloud, the Google Compute Engine and the Microsoft Azure
cloud.
Amazon AWS is the oldest and most mature cloud provider service and offers
many features for compute, network and storage management in the cloud.
Google Compute Engine and Microsoft Azure are relatively newer offerings
and provide similar but limited functionality compared to Amazon AWS (as
of this writing). Both AWS and Google Compute Engine offer command
line tools for cloud resource management and administration. This allows
for fast and automated shutdown of instances when they are not used during
the experiment.
We chose three distinct cloud offerings because of the following reasons:

1. Avoid vendor lock in from a single provider.

2. Demonstrate application adaptability to more than one cloud.

3. Aggregate multi-cloud resources to circumvent limitations on resources
set by individual providers.

4. Diversify the types of middleware, hypervisors and resource providers,
with the data centers being spread globally.

The aforementioned reasons also form the motivation for cloud based part of
current work. As new infrastructure such as clouds mature, more and more
applications will be ported to them. With the experiments we discuss in this
work, we demonstrate an ability to readily port traditional applications to
clouds via a versatile system that is well suited to both traditional clusters
and clouds.
We used 10 instances from each of the clouds for our experiments. We se-
lected medium sized Linux instances with 2 cores and 7 GB of memory each
costing $0.14 per instance per hour. For the purpose of uniformity of our
experiments, we did not use any of the provider specific load-balancing, or
advanced network provisioning features. All the resources were chosen from
the nearest zones from the US Midwest region.

5. Evaluation

In this section we present an evaluation of our approach. We use the ‘syn-
thetic’, ‘powergrid’ and ‘image reconstruction’ application workflows encoded
in Swift. We submit the application workflows to four sites (Blues, Midway,
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Stampede and Trestles) from a remote machine (located outside of the net-
work domains of the clusters), where all input data resides. We first gather
data needed to build empirical performance models. To do so, we conduct
a pilot run, where we allocate one node for each site and execute each task
on each site, with different number of tasks per node. This measures the
execution time of a task when there are other tasks running on other cores
of the same node. Figure 8 shows one such set of measurements on each site
for the powergrid workflow. This provides the node-level weak scaling trend
for each task. We use quadratic curve fitting and generate a scaling model,
which is incorporated into the workflow skeleton.

Figure 8: Profiled single-node weak scaling for the PowerGrid workflow on different sites.

In the first set of experiments, we use the default scheduler in Swift and
merely tune a configuration parameter, “throttle”, which controls the number
of parallel jobs to send to sites and hence the number of parallel data transfers
to sites. The default scheduler distributes an equal number of jobs to each
of the execution sites.
In the second set of experiments, we alter the Swift configuration and dis-
tribute the jobs according to a schedule proposed by our scheme. We plot
the execution trace log in order to generate a cumulative task completion
plot as shown in Figures 9 to 12. The plot labeled ‘baseline’ and ‘enhanced’
show cumulative task completion with default and proposed schemes respec-
tively. We notice an initial poor performance (especially Figure 10) as the
schedule starts acquiring resources via local resource managers which rapidly
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improves as the resources become available on remote sites. We note a sharp
and steady increase in task completion for short tasks as seen in most of
the synthetic workflow. On the other hand, a steps-like plot is seen in the
case of compute intensive APS workflow of Figure 12. Similarly the poor
performance of default scheme can be attributed to ramping up of jobs at
sites with poor affinity for those jobs and/or a lower bandwidth to carry data
to the site once the bandwidths are saturated by initial ramp-up.
It can be noted from the results in Figures 9 to 12, we achieve a shorter
makespan with an informed schedule and save the effort for the users to fine
tune the performance in the default Swift schedule. In complex and large
real workflows interfaced with multiple remote sites, such fine tuning will
consume a lot of time or even impossible. Our scheme achieves up to 60%
improvement in makespan over the default scheme. This is possible because
of the following key decisions taken by our schedule:

1. Accounts for both computational and data movement characteristics of
tasks and capacities of resources.

2. Steers computation according to a proactive plan based on task-resource
affinity.

3. Groups tasks into chunks to send out to sites ensuring load-balancing
from the beginning of execution.

Figures 13 and 14 shows the activity share plot of each of the clouds during
the execution of the synthetic workflow application over 10 instances of each
of the three clouds (totalling 30 instances). The horizontal axis shows the
time progression and the vertical axis shows the number of active tasks over
each of the cloud. Each task in the application was modified such that it
prints a timestamp as it begins and ends. An aggregate of the timestamps of
all tasks from each of the 30 cloud instances were recorded and plotted. As
shown in the Figure 13 the average time it takes for a default schedule is 53
minutes to complete over the three clouds resulting in a total cost of $3.85
(30 * 0.14*55/60). Note that since the schedule is default, all the instances
form a single pool and it is not determined instances from which cloud needs
to be shut down as there is no deterministic assurance as to which instances
will not be used.
On the other hand, Figure 14 shows the same workflow over the same cloud
resources with our schedule allocating a pre-determined number of tasks to
each cloud. This divides the clouds into three distinct resource pools thus
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Figure 9: Synthetic workflow performance with a load of 255 tasks.

making it possible to shutdown each individual cloud instances as they are fin-
ished doing computation. This results in cost saving over and above the cost
that are saved by a better schedule resulting in a faster time-to-completion.
The workflow finishes in 46 minutes with the improved schedule resulting in
a total cost of $3.22 (30 * 0.14*46/60) if computed conservatively. With an
ability to shut down the Azure cloud at 24 minutes and AWS at 38 min-
utes saves additional amount resulting in the total cost to be $2.52 for this
workflow. In practice, such workflows can be executed many times over for
different datasets resulting in a significant savings over the time duration of
an application lifecycle. A one time analysis of application and resources
results in a schedule which can be used repeatedly.
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Figure 10: PowerGrid workflow performance for a small sample size resulting in 65 tasks.

6. Related work

Large scale applications have been shown to benefit significantly on hetero-
geneous systems [23] for data-intensive science [24] and under multiple sites
infrastructure [25]. We demonstrate the value of these arguments in a realis-
tic scenario. There has been much prior work on workflow management and
performance modeling, which we discuss below.

6.1. Workflow Management

Some of the well-known workflow management systems include Pegasus [5,
26], HTCondor DAGMan [27, 28], Taverna [4], Triana [29] and makeflow [30].
Pegasus, in particular, keeps the separation of workflow description and sys-
tem environment description. Pegasus Mapper takes an abstract workflow
describing tasks’ inputs, outputs, execution times, and data transfer times
in XML format, which is given by users. The execution times are absolute
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Figure 11: PowerGrid workflow performance for a large sample size resulting in 127 tasks.

values and are not given with regard to all available resources. Pegasus Map-
per outputs an executable workflow describing the precedence among tasks
and mapping of tasks and resources. At this phase, Pegasus Mapper deploys
heuristics such as heterogeneous-earliest-finish-time (HEFT) [31], consider-
ing task execution time and/or data transfer times. HTCondor DAGMan,
which is default Pegasus workflow execution engine, reads the executable
workflow, and carries out best-efforts batch-mode scheduling together with
remote execution engines such as PegasusLite and Pegasus MPI Cluster.
Our work differs from those previous work in two aspects. First, instead of
having users manually measure execution time and data transfer overhead for
individual tasks, we model tasks’ execution time on heterogeneous resources
and data transfer overhead through a workflow skeleton. The workflow skele-
ton, which is the equivalent of abstract workflow in Pegasus, has richer infor-
mation (e.g., the control flow and data access patterns of a task) than abstract
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Figure 12: APS application performance with a load of 20 tasks.

workflow. In addition, SKOPE analyzes this workflow skeleton and output a
job graph, which will be an input to our scheduler. The job graph is still the
equivalent of abstract workflow in Pegasus. We can say that we introduce
one more step, workflow skeleton, to incorporate task models into workflow
management systems. As a result, we can project the overall time-to-solution
without executing each possible schedule, which may not be feasible. Sec-
ond, our scheduler takes into account the variance of task execution time over
different sites and resource affinity among the tasks more accurately. Many
variations of HEFT heuristic go through two phases. In the first phase, they
determine ranks of tasks, the order of scheduling, based on averaged exe-
cution and communication time over all available resources. In the second
phase, they evaluate each task on every resource in the determined order.
This is not globally optimized method, and if a task show great variable in
execution time among resources, the schedule by those heuristics can be far
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Figure 13: Synthetic application performance over clouds with default schedule.

from the optimal schedule. Our scheduling algorithm incorporates different
execution times on heterogeneous resources into LP-based formulation, which
is more globally optimized. Even though our LP-based algorithm may have
some disadvantages when the size of workflow grows, it can be taken care
of by task clustering and repetitive scheduling of partitioned small groups
of a whole workflow. With the advent of cloud computing, existing work-
flow management systems including Pegasus [32] extended their support to
cloud, and many workflow scheduling algorithms focusing on costs of cloud
have been proposed [33]. We show that our approach based on task models
can be extended to multi-cloud environments and our LP-based scheduling
algorithm can easily incorporate cost- or deadline- constrained scheduling.
Simulation studies on multi-site resources have been done in the past such
as Workflowsim [34] on generic wide-scale environments. While they provide
detailed analysis of workflow deployment, simulations often take a significant
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Figure 14: Synthetic application performance over clouds with improved schedule.

amount of time to emerge with and accurate picture of real-world scenarios
and tend to lag behind in mapping the new architectures.
A related but dissimilar work on application skeleton have been recently
undertaken by Zhang et. al. [35]. The work differs from ours in the sense
that the goals of the work is mainly to address the requirement of generating
varying workloads and dataflow patterns in the context of workflows.
Our approach based on workflow skeleton captures the application character-
istics while offloading the execution responsibility to Swift which leads to a
better division of responsibility. This approach makes our work distinct and
a valuable contribution to parallel and distributed processing community.

6.2. Performance Modeling

Performance modeling has been widely used to analyze and optimize work-
load performance. SKOPE [3] provides a generic framework to model work-
load behavior. It has been used to explore code transformations when porting
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computational kernels to emerging parallel hardware [36]. We apply the same
principles in modeling kernels and parallel applications and extend SKOPE
to model workflows. In particular, we propose workflow skeletons and use
them to generate job graphs, which are in turn used to manage workflow.
Application or hardware specific models have been used in many scenarios to
study workload performance and to guide application optimizations [37, 38],
where applications are usually run at a small scale to obtain knowledge about
the execution overhead and their performance scaling. Snavely et al. devel-
oped a general modeling frameworks [39] that combine hardware signatures
and application characteristics to determine the latency and overlapping of
computation and data movement. An alternative approach uses black-box
regression, where the workload is executed or simulated over systems with
different settings, to establish connections between system parameters and
run time performance [40, 41, 42]. All the above techniques target both
computational kernels and full parallel applications.

7. Conclusion

In this paper, we propose a multi-site scheduling approach for scientific work-
flows using performance modeling. We introduce the notion of workflow
skeletons and extended the SKOPE framework to capture, analyze and model
the computational and data movement characteristics of workflows.
We develop a resource and job aware scheduling algorithm that utilizes the
job graph generated using the workflow skeleton and the resource graph gen-
erated using the resource description. We incorporate our approach into
Swift, a script-based parallel workflow execution framework. We evaluate
using real-world applications in image reconstruction for an experimental
light-source and for modeling of power-grid in a multi-site environment. We
show that our approach reduces the total execution time of the workflows by
as much as 60%. We demonstrate our approach using three application work-
flows over two distinct distributed, multisite computational environments:
traditional clusters and clouds.
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