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Abstract

In this paper, we introduce methods to differentiate posed expressions from spontaneous ones by capturing global spatial
patterns embedded in posed and spontaneous expressions, and by incorporating gender and expression categories as priv-
ileged information during spatial pattern modeling. Specifically, we construct multiple Restricted Boltzmann Machines
(RBMs) with continuous visible units to model spatial patterns from facial geometric features given expression-related
factors, i.e. gender and expression categories. During testing, only facial geometric features are provided, and the samples
are classified into posed or spontaneous expressions according to the RBM with the largest likelihood. Furthermore, we
propose efficient inference algorithm by extending annealing importance sampling to RBM with continuous visible units
for calculating partition function of RBMs. Experimental results on benchmark databases demonstrate the effectiveness
of the proposed approach in modelling global spatial patterns as well as its superior posed and spontaneous expression
distinction performance over existing approaches.
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1. Introduction

Spontaneous expressions reveal one’s real emotions,
while posed expressions may disguise one’s inner feel-
ings. Automatically distinguishing between spontaneous
and posed expressions can benefit many real life scenes.5

For example, service robots can make human-robot in-
teraction more realistic by perceiving users’ true feelings.
Doctors can be more certain during diagnosis by knowing
patients’ genuine feelings. Detectives may detect a lie by
differentiating posed expression from spontaneous ones.10

Behavior research indicates that posed and spontaneous
expressions are different from each other in both tempo-
ral and spatial patterns. Temporal patterns involve the
speed, amplitude, trajectory and total duration of onset
and offset. For example, Ekman et al [1, 2] revealed that15

the trajectory appears often smoother for spontaneous ex-
pressions than for posed ones, and the total duration is
usually longer, and onset is more abrupt for posed expres-
sions than spontaneous expressions in most cases. Spatial
patterns mainly consists of the movement of facial mus-20

cles. Ekman et al [1] found that both zygomatic major
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and orbicularis oculi are contracted during spontaneous s-
miles, while only zygomatic major is contracted for posed
smiles, as shown in Figure 1. Furthermore, the contraction
of zygomatic major is more likely to occur asymmetrical-25

ly for posed smiles than spontaneous ones [3]. Recently,
some works reveal contradictory findings in spa-
tial patterns. For example, Krumhuber et al [4]
questioned the differences of orbicularis oculi mus-
cle movements between posed and spontaneous s-30

mile. Schmidt et al [5] suggested that asymme-
try of facial movements may play a much small-
er role in distinguishing posed and spontaneous s-
mile. But they observed other differences between
posed and spontaneous smile, such as smile inten-35

sity [4], amplitude, maximum speed, and duration
[5]. Despite lack of a consensus on the differences
between posed and spontaneous expression, we be-
lieve there indeed exist differences in spatial and
temporal facial patterns between posed and spon-40

taneous facial expressions as demonstrated by ex-
isting research. And, the goal of this research is to
automatically capture the differences and to lever-
age them for distinguishing posed and spontaneous
facial expressions.45

Inspired by the observations from nonverbal behavior re-
search, researchers have begun to pay attention to posed
and spontaneous expression distinction. The main com-
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(a) Posed smile

 

(b) Spontaneous smile

Figure 1: Posed and spontaneous smile, frames in (a) are from posed
smile, and frames in (b) are from spontaneous smile. Both the zy-
gomatic major (facial mouth area) and the orbicularis oculi (eyes
area) are contracted during spontaneous smiles (the first frame of
(b)), while only the zygomatic major is contracted for posed smiles
(the first frame of (a)). The contraction of zygomatic major is more
likely occur asymmetrically for posed smiles than spontaneous ones
(second frame in (a) and (b))

ponents of posed and spontaneous expression distinction
consists of feature extraction and classification. Although50

various features are proposed to describe temporal pat-
terns embedded in spontaneous and posed expressions, and
many classifiers are adopted, most studies only focus on
one kind of expression, such as smile or pain, and little
research explicitly models spatial patterns embedded in55

posed and spontaneous expression respectively. Further-
more, little research incorporates expression-related fac-
tors, such as gender, age, for posed and spontaneous ex-
pression classification. Thus, in this paper, we propose Re-
stricted Boltzmann Machine (RBM) to explicitly capture60

the high-order spatial patterns embedded in posed and
spontaneous expressions from facial geometric features,
and incorporate gender and expression categories as privi-
leged information during spatial pattern modeling. Specif-
ically, we construct multiple RBMs with continuous visi-65

ble units to model high order spatial patterns embedded
in posed and spontaneous expressions given expression-
related factors. During training, contrastive divergence
(CD) [6] is adopted to learn the parameters of RBMs.
During testing, only facial geometric features are provided,70

and the samples are classified into posed or spontaneous
expressions according to the RBM with the largest like-
lihood. Furthermore, to calculate the partition function
of RBMs, we extended Annealing Importance Sampling
(AIS) [7] to RBM with continuous visible units case.75

The rest of the paper is organized as follows: Section
2 presents an overview of the related works on posed and
spontaneous distinction. The detailed introduction of our
method is given in Section 3. Section 4 discusses the exper-
imental results. Finally, the paper is concluded in Section80

5.

2. Related Work

Current research of posed and spontaneous expression
differentiation mainly consists of two steps: feature ex-

traction and classification. For feature extraction, most85

research proposes features specially designed for differen-
tiating posed expressions from spontaneous ones. For ex-
ample, Cohn and Schmidt [8] proposed temporal features,
i.e. duration, amplitude, and the ratio of amplitude to
duration. Valstar [9] defined several mid-level feature, in-90

cluding intensity, speed, duration, symmetry, trajectory
and the occurrence order of brow actions, from the dis-
placements of facial fiducial points. Dibeklioglu et al. [10]
extracted distance and angular features to discriminate the
movements of eyelids. They [11] further extracted ampli-95

tude, duration, speed, and acceleration to describe dynam-
ics of eyelid, cheek, and lip corner movements. Seckington
[12] defined six features including morphology, apex over-
lap, symmetry, total duration, speed of onset and speed
of offset, to represent temporal dynamics, which is essen-100

tial for distinguishing between posed and spontaneous s-
miles. In addition to defining posed vs spontaneous ex-
pression specified features, some research adopts common-
ly used features for expression recognition. For example,
Littlewort et al [13] fed the extracted Gabor wavelet fea-105

tures into SVM to recognize 20 facial action units as the
middle-level features for posed and spontaneous pain clas-
sification. Pfister et al. [14] proposed a spatio-temporal
local texture features, CLBP-TOP. Zhang et al. [15] used
Scale-invariant feature transform (SIFT) appearance fea-110

tures and facial animation parameters (FAP) geometric
features.

After feature extraction, classifiers should be trained.
Cohn and Schmidt [8] adopted a linear discriminant clas-
sifier for posed and spontaneous smile recognition. Little-115

wort et al [13] employed SVM, Adaboost, and linear dis-
criminant analysis to classify posed and spontaneous pain
from recognized 20 facial action units. Valstar [9] adopted
gentle Boost and relevance vector machines to distinguish
posed vs. spontaneous brow actions. Dibeklioglu et al.120

[10] used continuous HMM, k-NN and naive Bayes classi-
fiers to differentiate spontaneous smiles from posed ones.
They [11] also employed individual SVM classifiers for d-
ifferent facial regions, and fuse them to classify genuine
and posed smiles. Seckington [12] proposed to use dynam-125

ic Bayesian networks to model the temporal dynamics to
distinguish between posed and spontaneous expressions.
Zhang et al. [15] adopted minimal redundancy maximal
relevance for feature selection, and support vector machine
(SVM) as classifier for discrimination between posed and130

spontaneous versions of six basic emotions. Although var-
ious approaches have been developed for posed and spon-
taneous expression differentiation, there still exist several
limitations. First, most computer vision works only focus
on one specific expression, such as smile. To the best of our135

knowledge, only two works [15][14] considered all six basic
expressions (i.e. happiness, disgust, fear, surprise, sadness
and anger) for posed and spontaneous expressions recog-
nition. Zhang et al [15] investigated the performance of a
machine vision system for posed and spontaneous expres-140

sions recognition of six basic expression on USTC-NVIE
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database. Pfister et al [14] proposed a generic facial ex-
pression recognition framework to differentiate posed from
spontaneous expressions from both visible and infrared im-
ages on SPOS database.145

Furthermore, most current works applied different clas-
sifiers for posed and spontaneous expression recognition,
without capturing the spatial patterns embedded in posed
and spontaneous expressions explicitly. We call them
feature-driven method. Only recently, Wang et al [16] pro-150

posed multiple Bayesian networks (BN) to capture posed
and spontaneous spatial facial patterns respectively given
gender and expression categories. We call it a model-based
method. Their recognition results on the USTC-NVIE and
SPOS databases outperform those of the state of the art.155

However, due to the first-order Markov assumption of BN,
their model can only capture the local dependencies among
geometric features instead of the global and high-order re-
lations among them. Furthermore, finding the optimal
structure of a large geometric feature network for posed160

and spontaneous expression recognition is difficult. Com-
pared with BN, restricted Boltzmann machine can model
higher-order dependencies among random variables by in-
troducing a layer of latent units [17]. It has been widely
used to model complex joint distributions over structured165

variables such as image pixels. Thus, in this paper, we
propose to use RBM to explicitly model complex joint dis-
tributions over feature points , i.e. spatial patterns, em-
bedded in posed and spontaneous expressions respectively.

In addition, little work incorporates expression-related170

factors, such as gender, age and expression categories, for
posed and spontaneous expression distinction, although
researches indicate that different gender have different fa-
cial expression manifestation, face structures develop with
ages, expression manifestation varies with ages, and dif-175

ferent expressions usually evokes different spatial patterns
[18, 19]. Recently, Dibeklioglu et al. [11] analyzed effect of
age and gender on posed and spontaneous expression dis-
tinguishing by using age or gender as one feature. Wang
et al [16] employed gender and expression categories as180

privileged information to help classify posed and spon-
taneous expressions. Compared with these two works,
the former requires expression-related factors during both
training and testing, while the later requires expression-
related factors only for training. It means expression-185

related factors should be predicted during testing in the
former. Such sequential approach may propagate the error
of expression-related factor recognition to the subsequent
expression recognition. Therefore, we prefer to incorpo-
rate expression-related factor as privileged information in190

this paper. Specifically, we construct multiple RBMs with
continuous visible units to model spatial patterns in posed
and spontaneous expressions given expression-related fac-
tors. During training, contrastive divergence (CD) [6] is
adopted to learning the parameters of RBMs. During test-195

ing, the samples are classified into posed or spontaneous
expressions according to the RBM with the largest likeli-
hood. In addition, to solve the partition function of RBM-

s, we extended Annealing Importance Sampling (AIS) to
RBM with continuous visible units.200

Compared with related works, our contributions are as
follows:

1. We are the first to use RBM to explicitly model
the high-order spatial patterns embedded in posed and
spontaneous expressions.205

2. We further propose a partition function estimation
method by extending AIS to RBM with continuous visible
units.

3. We incorporate gender and expression category as
privileged information into posed and spontaneous expres-210

sion distinction.

3. Proposed method

The framework of our proposed method is shown in
Fig.2, including feature extraction, spatial pattern mod-
eling using RBM, and posed and spontaneous expression215

distinction. The details are described in the following sub-
sections.

3.1. Feature extraction

In this paper, we extract the displacements of facial
points between apex and onset expression frames as fea-220

tures. The apex frame is the frame with the most exagger-
ated expression during apex phase, and the onset frame is
the first frame of the onset phase. The first step of feature
extraction is to locate several facial points which shift ob-
viously when a facial expression occurs and these points225

which will be used for geometric normalization. There are
29 feature points, the 1st . . . 27th facial point are showed in
Figure 2, automatically detected on apex and onset frames
using the algorithm introduced in [20]. We assigned the
center of two eyes as the 28th and 29th point. Next step230

is to use face alignment and normalization to make the
facial features robust to different subjects and different
face pose variation. We rotate every facial image to make
the inter-ocular line horizontal and with fixed length, and
change the position of other facial points accordingly. In235

the meantime, the facial region is cropped according
to the width between center of two eyes and the
height between eyes center with nose tip. Then,
we resize facial region to 100 × 100 by applying bicu-
bic interpolation [21] and Anti-aliasing filter [22]. After240

that, we extract spatial movements of facial points by cal-
culating the difference of facial points coordinates value
between apex and onset frames. Since we located 27 facial
points which moves significantly when expressions appear,
a 54 dimensional feature vector is generated.245

3.2. Spatial pattern modeling using RBM

A RBM for modeling spatial pattern embedded in posed
or spontaneous expressions consists of two layers as shown
in Figure. 3, one layer with n visible variables v, represent-
ing the feature point displacements, and one layer with m250
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Figure 2: The framework of our proposed method, where “P” and “S” represent posed and spontaneous expression respectively.

Figure 3: Restricted Boltzmann Machine

hidden variables h ∈ {0, 1}m. Since feature point dis-
placements are continuous, the visible units we used are
continuous and have Gaussian marginal distributions. By
introducing the latent layer, the RBM can model com-
plex joint distributions over structured visible variables,255

i.e. feature point displacements. Thus, it can capture the
spatial pattern embedded in posed or spontaneous expres-
sions.

The total energy of RBM with continuous visible vari-
ables is defined in Eq. 1.

E(v,h; θ) = −
∑
i

∑
j

viWijhj −
∑
j

cjhj +
1

2

∑
i

(vi − bi)
2

(1)
where, θ = {W,b, c} are the parameters. Wij are the
weight of the connection between visible node vi and hid-
den node hi, which measures the compatibility between
vi and hj . {bi} and {cj} are the biases of vi and hi re-
spectively. The joint distribution over visible and hidden
variables is described as Eq. 2

P (v,h|θ) = 1

Z(θ)
exp(−E(v,h; θ)) (2)

where Z(θ) is the partition function. The distribution over
visible units of RBM is calculated by marginalizing over

all hidden units with Eq. 2, as shown in Eq. 3. This allows
RBM to capture global dependencies among the visible
variables.

P (v|θ) =
∑
h

P (v,h|θ) =
∑

h exp(−E(v,h; θ))

Z(θ)
(3)

Given the training data {vi}Ni=1, where N indicates the
number of training samples, the goal of RBM training is
to maximize the joint distribution over visible units, as
follows:

θ∗ = argmaxθL(θ) = argmaxθ
1

N

N∑
i=1

logP (v|θ) (4)

The gradient with respect to θ can be calculated as Eq.5

∂logP (v|θ)
∂θ

=

⟨
∂E

∂θ

⟩
p(h|v,θ)

−
⟨
∂E

∂θ

⟩
p(h,v|θ)

(5)

where ⟨·⟩p represents the expectation over distribution
p. Calculating the gradient involves inferring P (h,v|θ),
which is intractable. However there is an efficient way to
estimate its approximation called contrastive divergence
(CD) [6]. The basic idea is to approximate P (h,v|θ) with
an one step sampling from the data. In the case of contin-
uous visible nodes, during sampling, the probability dis-
tributions of P (v|h, θ) and P (h|v, θ) can be calculated as:

P (v|h, θ) =
∏
i

N(bi +
∑
j

wijhj , 1);

P (h|v, θ) =
∏
j

δ(
∑
i

viwij + cj)
(6)

In this work, expression categories and gender are used
as privileged information, which is only available during260
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training. It means we construct one RBM for each ex-
pression or gender. For example, if we consider gender as
privileged information, 2×2 RBMs (θl, l = 1, ..., 2×2) are
trained for modeling spatial patterns embedded in male
posed expression, female posed expression, male sponta-265

neous expression and female spontaneous expression re-
spectively. Similarly, 2 × 6 RBMs (θl, l = 1, ..., 2 × 6) are
trained, when expression categories are used as privileged
information.

3.3. Posed and spontaneous expression distinction270

After training, we obtain multiple RBM given expres-
sion related factors. During testing, only geometric fea-
tures are provided, without expression related factors. For
a test sample t, the log likelihood that RBM trained on
class l assign to t is as follows:

logP (t|θl) = log

(∑
h

exp(−E(h, t; θl))

)
− logZ(θl) (7)

Then, the label of the test sample is the class with great-
est log likelihood value according to Eq. 8:

l⋆ = max
l∈[1,C]

{logP (t|θl)} (8)

where l⋆ represents the predicted label, C is the number
of RBMs.

It is intractable to compute the partition function Z(θ)
of RBM directly. Salakhutdinov and Murry [7] proposed to
use Annealed Importance Sampling (AIS) [23] to estimate275

the partition function of a RBM with discrete visible units.
In this work, we extend the AIS method to calculate the
partition function of a RBM with continuous visible units.
The algorithm of distinguishing posed and spontaneous
expression is shown in Algorithm 1.280

Algorithm 1 Posed and Spontaneous expression recogni-
tion
Input: Training samples: Str,

Label of training samples: Ltr,
Gender (expression) categories of Str: Lg (Le),
Test samples: Ste.

Output: Label of test samples: Lte.
Training phase
Divide Str into C classes, according to Ltr and Lg (Le)
for l = 1 : C do
Train a RBM (θc) for {t|t ∈ Str ∩ t ∈ c} using CD
algorithm with Eq. 5 and Eq. 6;

end for
Testing phase
for l = 1 : C do
Estimate Z(θc) using the Algorithm 2;
Estimate logP (t|θc) (t ∈ Ste) with θc and Eq. 7;

end for
Predict Lte for Ste using Eq. 8.

AIS estimates the ratio of partition function of the ob-
ject RBM to a “base-rate” RBM. In order to evaluate the
partition function of a RBM, we suppose p0 and pK are
two probability distributions over V which represents the
visible units of two RBMs (i.e. “base-rate” RBM and the285

object RBM). Here, elements in V comply with Gaussian
marginal distribution. Parameters of two RBMs are rep-
resented as θ0 = {W 0, b0, c0} and θK = {WK , bK , cK}.
RBMs can have different number of hidden units h0 ∈
{0, 1}m0 and hK ∈ {0, 1}mK .290

First, a sequence of intermediate distributions for k =
0, . . . ,K are defined as:

pk(v) =
p∗k(v)

Zk
=

1

Zk

∑
h

exp(−Ek(v,h)) (9)

where the energy function is given by:

Ek(v,h) = (1− βk)E(v,h0; θ0) + βkE(v,hK , θK) (10)

where 0 = β0 < β1 < . . . < βK = 1. Different with [7],
here, E(v,h; θ) is from Eq. 1, in which the visible units
are continuous.

Then, we define a Markov chain transition operator
Tk(v

′; v) that leaves pk(v) invariant. With Eq.9 and Eq.10
to derive a block Gibbs sampler, the conditional distribu-
tion over RBM’s hidden or visible units can be defined as
follow:

p(h0
j = 1|v) = δ

(
(1− βk)(

∑
i

W 0
ijvi + c0j )

)
(11)

p(hK
j = 1|v) = δ

(
βk(
∑
i

WK
ij vi + cKj )

)
(12)

p(v′i|h) = N

(
(1− βk)(

∑
j

W 0
ijh

0
j + b0i )

+ βk(
∑
j

WK
ij h

K
j + bKi ), 1

) (13)

where Eq. 13 is a Gaussian marginal distribution. Given
a sample v, Eq. 11 and Eq. 12 are used to draw samples
of hidden units within two RBMs. Then, with Eq. 13, we
can draw a new sample v′. The unnormalized probability
over visible units can be estimated as:

p∗k(v) =
∑

h0,hK

e(1−βk)E(v,h0;θ0)+βkE(v,hK ;θK)

= e−
1−βk

2

∑
i(vi−bi)

2

·
m0∏
j=1

(1 + e(1−βk)(
∑

i W
0
ijvi+c0j ))

· e−
βk
2

∑
i(vi−bi)

2

·
mK∏
j=1

(1 + eβk(
∑

i W
K
ij vi+cKj ))

(14)
With equations 11, 12, 13, and 14, we can perform AIS
starting by running a blocked Gibbs sampler (Eq. 6) to295
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Algorithm 2 Annealed Importance Sampling

Input: Parameters of object RBM: θK
Parameters of “base-rate” RBM: θ0
βk, k = 0, . . . ,K

Output: Partition function of object RBM: ZK .
for i = 1 : M do
Sample v1 from p0, by running a blocked Gibbs sam-
pler with Eq. 6;
for k = 2 : K do
Sample vk given vk−1 using Tk−1 with Eq. 11, 12,
and 13;

end for
Compute the importance weight wi with Eq. 14:

wi =
p∗1(v1)

p∗0(v0)

p∗2(v2)

p∗1(v1)
. . .

p∗K(vK)

p∗K−1(vK−1)
; (15)

end for
The ratio of partition function:

ZK

Z0
≈ 1

M

M∑
i=1

p∗K(vi)

p∗0(v
i)

=
1

M

M∑
i=1

wi = r̂IS ; (16)

Compute ZK with Eq. 16 and Eq. 17

generate samples from p0. We gradually change βk from 0
to 1. The procedure of AIS algorithm displayed in Algo-
rithm 2.

The partition function of the object RBM (ZK) can be
estimated by finding the ratio to the normalizer for p0
with θ0 = {0, b0, 0} where the weight matrix is zero. The
partition function Z0 is computed as follow:

Z0 =
∑
v

∑
h

exp(E0(v,h))

= (
√
2π)n · 2(m0)

(17)

In this case, we can draw exactly independent samples
from p0, since the weights between visible and hidden n-300

odes are zero. By annealing from this simple model to
the final model, we can estimate the partition function
through AIS.

4. Experiments and Analysis

4.1. Experimental conditions305

For experiments, we evaluate our methods on
the SPOS [14], the USTC-NVIE [24], and the M-
MI [25] databases. The SPOS database and the
USTC-NVIE database contain posed and sponta-
neous expression for six basic expression categories310

(i.e. happiness, disgust, fear, surprise, anger and
sadness). The MMI database contains happiness
and disgust spontaneous expressions and six basic
expression categories for posed expressions.

The USTC-NVIE database is a natural visible and ther-315

mal infrared facial expression database. The onset and
apex frames are provided for both posed and spontaneous
subsets. Both apex and onset frames from all posed and
spontaneous expression samples, which come in pairs from
the same subject are selected. During this procedure, we320

discarded spontaneous samples whose maximum evalua-
tion value on six expression categories are zero, since these
samples have no expression. Finally 1028 samples, includ-
ing 514 posed and 514 spontaneous expression samples
from 55 male and 25 female subjects, are selected. Our325

experimental results on the database are obtained by ap-
plying a 10-fold cross validation to all samples according
to the subjects. Given the databases, facial feature point
displacements between apex and onset frames are used for
modeling spatial patterns embedded in posed and sponta-330

neous expressions from three aspects: all samples without
gender and expression information, with gender informa-
tion and with expression information, respectively. We
first build 2 RBM models, which denote as “PS model”,
using posed and spontaneous samples without the gender335

and expression labels respectively. Then, 4 RBM mod-
els are built, which denote as “PS gender model”, using
male posed, male spontaneous, female posed, and female
spontaneous samples respectively. Last, we build 12 RBM
models, which denote as “PS exp model”, using posed and340

spontaneous samples for each expression respectively.
The SPOS database is a visible and near infrared expres-

sion database. The image sequences in this database start
from onset frame and end with apex frame. Therefore, the
first and last frames of all posed and spontaneous samples345

are selected, including 84 posed and 150 spontaneous ex-
pression samples. Since only seven subjects (4 males and
3 females) are in SPOS database and it does not include
all six expression images for a certain subject, we can not
select samples in pairs as we did on USTC-NVIE database.350

In order to compare with [14], leave-one-subject-out cross
validation is used during our experiments.

For the MMI database, according to the descrip-
tion in [25], spontaneous expression contains t-
wo subsets. The first subset of spontaneous ex-355

pression, part IV described in [25], includes 383
manually segmented sequences that contain hap-
piness and disgust expressions. The second sub-
set of spontaneous expression, part V, contain-
s nine unsegmented visual and audio recordings.360

We selected 318 segments which are onset-apex-
offset segments from the first subset of sponta-
neous expression. For posed expression, we select-
ed sessions with expression labels from part I, II,
and III which consist of posed expressions as de-365

scribed in [25]. Since there are only happiness and
disgust expression categories for spontaneous ex-
pressions, only happiness and disgust expression
categories from the selected posed segments are
used in our experiments. Finally, we obtained370

64 posed segments (35 happiness and 29 disgust)
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from 24 subjects and 318 spontaneous segments
(258 happiness and 60 disgust) from 15 subject-
s, on MMI database. We manually extract onset
and apex frames from the selected segments. Af-375

ter that, following the same procedures as USTC-
NVIE database, we extract facial feature point dis-
placements between apex and onset frames as in-
put to RBM, and build RBMs from three aspects:
all samples without gender and expression infor-380

mation (i.e. “PS model”), with gender information
(i.e. “PS gender model”) and with expression in-
formation (i.e. “PS exp model”), respectively. 10-
fold cross validation to all samples according to the
subjects were then performed in the experiments385

on the MMI database.

4.2. Experimental results of posed and spontaneous expres-
sion recognition

Experimental results on the USTC-NVIE database are
shown in Table 1. Comparing the results of PS model with390

those of the remaining models, we can find that using gen-
der and expression information during training can help
model the variation of muscle in posed and sponta-
neous expression, since both accuracy and F1 score of P-
S gender and PS exp are higher than that of PS model.395

All experimental accuracies are greater than 90%, which
demonstrated that our proposed method can capture the
spatial patterns effectively by using multiple RBM models.

Table 1: P vs. S recognition results on USTC-NVIE database

Model
PS PS gender PS exp

P S P S P S

P 482 32 467 47 478 36

S 53 461 29 485 48 466

Accuracy(%) 91.73 92.61 91.83

F1-score 0.9190 0.9248 0.9192

“P” represents posed expression.
“S” represents spontaneous expression.

Table 2: P vs. S recognition results on SPOS database

Model
without any information

P S

P 51 33

S 23 127

Accuracy(%) 76.07

F1-score 0.6456

“P” represents posed expression.
“S” represents spontaneous expression.

Experimental results on the MMI database are
shown in Table 3. Our model achieved 89.01% by400

using PS model alone. By using gender and expres-
sion as privileged information, recognition accura-
cy reached 89.27% and 89.79% respectively, which

Table 3: P vs. S recognition results on MMI database

Model
PS PS gender PS exp

P S P S P S

P 33 31 36 28 33 31

S 11 307 13 305 8 310

Accuracy(%) 89.01 89.27 89.79

F1-score 0.6111 0.6372 0.6286

“P” represents posed expression.
“S” represents spontaneous expression.

are higher than that using PS model. F1 scores of
using privileged information are also higher than405

that of PS model. The results of experiments on
MMI database once again demonstrated the effec-
tiveness of RBM models capturing facial spatial
patterns and the effectiveness of using gender and
expression as privileged information to help the410

modeling task.
Experimental results on the SPOS database are shown

in Table 2. The accuracy and F1-score are achieved 76.07%
and 0.6456, respectively. The results are acceptable,
but not as good as those on the USTC-NIVE415

database and the MMI database. Since the num-
ber of samples from USTC-NVIE database and
the MMI database vastly exceed that from SPOS
database and RBM models require much data to
train, it is reasonable that the accuracy rate and420

F1-score obtained on SPOS Database are a little
lower than those on the NVIE database and the
MMI database.

To show the differences of spatial patterns between
posed and spontaneous expressions captured by RBM in-425

tuitively, we analyzed the weights of the RBM-
s trained on the USTC-NVIE, SPOS and MMI
databases. In Figure 4, the global spatial pattern cap-
tured by both RBMs are demonstrated. As described in
Section 3.2, parameters Wij measures the compatibility430

between visible node vi and latent node hj . The greater
the absolute value of Wij , the more the point displace-
ment affect the captured spatial pattern. Figure 4 (a) and
(b) are the weights of two different hidden nodes of “P-
S happiness” model built on USTC-NVIE database. Fig-435

ure 4 (d) and (e) are of “PS happiness” model built
on MMI database. Figure 4 (a) and (d) show the pat-
tern that the displacement of points around mouth area
are more likely to occur asymmetrically for posed happi-
ness than spontaneous ones. Figure 4 (b) and (e) show440

the pattern that the displacement of points around eye-
s area are greater for spontaneous happiness than posed
ones. Figure 4 (a), (d) and (b), (e) conform to the s-
tatements in section 1 that the contraction of zygomatic
major (mouth area) is more likely to occur asymmetrical-445

ly for posed smiles than spontaneous ones and that the
orbicularis oculi muscle (eyes area) is contracted only dur-
ing spontaneous smiles. These empirical findings are
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consistent with those findings in [1] and [3].
We sum W over all hidden units in “PS” model trained450

on the SPOS database and the MMI database, and
demonstrate them in Figure. 4 (c) and (f), respectively.
We can find that the W values of RBM for posed expres-
sions and those for spontaneous expressions are very differ-
ent, proving that the spatial pattern for posed expressions455

and that for spontaneous expressions are different. This
is consistent with behavior researches. Besides, in most
cases, the weights of posed RBM are greater than those of
spontaneous RBM. It further confirms that posed expres-
sions are more exaggerated than spontaneous ones.460

4.3. Comparison with other methods

We compare our work with related works for distinguish-
ing posed vs. spontaneous expressions using feature driven
methods [15, 14, 26] and model based methods capturing
local facial spatial patterns through BN [16]. In addition,465

we conduct posed and spontaneous expression distinction
experiment using a linear kernel support vector machine
(SVM) with the same features and the same experimental
conditions with ours as a baseline.

In order to better compare with other methods,470

we conducted our experiments five times on each
database. Mean and variance of accuracy of ex-
periments on each database are listed in Table 4-6.
Since we do not have code for these methods, we
cannot perform a statistical test to evaluate the475

statistical significance of our method.
Table 4 shows the comparison results on the USTC-

NVIE database. Zhang et al recognized posed and spon-
taneous expression for six basic expressions on the USTC-
NIVE database by extracting both geometric and appear-480

ance features. They removed the images whose face or
facial point cannot be detected correctly, and finally se-
lected 3572 posed and 1472 spontaneous images. Since
they did not explicitly state which images were selected,
we cannot select the same images as theirs. Therefore, we485

compare the experimental results as a reference. Although
Zhang et al extracted more complex features and applied
more samples for training, we achieve a better result. This
demonstrates that the trained RBMs capture spatial pat-
terns for posed and spontaneous expressions successful-490

ly. The experimental conditions of our work are close to
that of Wang et al ’ work [16]. From Table 4, we can find
that our approach slightly outperforms theirs for “PS mod-
el” and “PS gender model”, demonstrating the superiority
of high-order dependence modeled by RBM. For “PS exp495

model” , Wang et al ’ is slightly better than ours. It may
be due to the small size of training set. Under the same
experimental conditions, our approach significantly out-
performs the baseline, i.e. SVM. It further demonstrates
the effectiveness of the proposed method.500

Pfister et al [14] distinguished posed and spontaneous
expression from both visible and near-infrared images on
the SPOS database. We only compare our work with their

Table 4: Comparison with other methods on USTC-NVIE database

Comparison with methods based on capturing spatial patterns
Accuracy(%) PS PS gender PS exp
Our method

(Mean/Variance)
91.71/
1.73e-5

92.24/
7.43e-6

91.46/
6.36e-6

S. Wang et al [16] 91.63 92.22 92.90
Comparison with feature driven methods

Accuracy(%) PS PS gender PS exp
SVM 81.52 / /

L. Zhang et al [15] 79.43 / /

work on visible images. Wang et al [16] conducted experi-
ments using visible images on the SPOS database. The505

comparisons are shown in Table 5. From Table 5, we
can find that our approach outperforms Pfister et al ’s.
Although the average recognition accuracy of our
method is slightly lower than Wang et al ’s, the
best recognition accuracy, As shown in Table 2, of510

our method is 76.06% which is better than Wang
et al ’s. Besides, the features used in Pfister et al ’s, Wang
et al ’s and ours are texture features, action unit related
geometric features, and feature point displacement respec-
tively. It means we use simpler features, but achieve better515

results. In addition, our method outperforms the baseline
significantly.

Table 5: Comparison with other methods on SPOS database

Comparison with methods based on capturing spatial patterns
Method Ours

(Mean/Variance)
Wang et al [16]

Accuracy (%) 74.10/1.33e-4 74.79
Comparison with feature driven methods

Method T. Pfister et al [14] SVM
Accuracy (%) 72.0 63.25

Table 6 shows the comparison results on the M-
MI database. Dibeklioglu et al [26] extracted fea-
tures to describe the dynamics of eyelid, cheek,520

and lip corner movements, and fused them over
different regions and over different temporal phas-
es for posed and spontaneous smile recognition.
They selected 74 posed smiles from 30 subjects and
120 spontaneous smiles from 15 subjects. Since525

we do not know which samples they used in MMI
database for posed and spontaneous smile recogni-
tion, we can not compare our works with theirs un-
der exactly same experimental conditions. We can
only compare with their published results. They530

also investigate gender effects on their system. D-
ifferent from using gender as privileged informa-
tion, they applied gender information during both
training and testing phase. We can find that al-
though with more unbalancing data and more sim-535

ple features, our method still outperforms Dibek-
lioglu’s. It further demonstrates the effectiveness
of the proposed method.

From the above comparison, we can find that our
method significantly outperforms current feature-driven540
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Figure 4: Weights at every facial points from the trained RBMs, (a) and (b) are from two different hidden nodes of “PS happiness” model
trained on USTC-NVIE database, and (c) is from the sum of all hidden nodes of RBMs trained on SPOS database. (d) and (e) are from
two different hidden node of “PS happiness” model trained on MMI database, and (f) is from the sum of all hidden nodes
of “PS” model. We drew a facial points distribution map same as that in Figure 2 at x− y plane. z coordinate is the weight values, i.e. W .
The red bars represent weight values from RBM for posed expressions, and the blue bars represent weight values from RBM for spontaneous
expressions

Table 6: Comparison with other methods on MMI database

Comparison with methods based on capturing spatial patterns
Accuracy(%) PS PS gender PS exp
Our method

(Mean/Variance)
88.33

/1.59e-5
88.64

/1.58e-5
89.63

/3.58e-5
Comparison with feature driven methods

Accuracy(%) PS PS gender PS exp
SVM 84.55 / /

H. Dibeklioglu et al [26] 88.14 87.63 /

methods on both databases, and is superior to current
model-based methods in most cases. It demonstrates that
our proposed RBM spatial models successfully capture the
global spatial patterns, which are crucial for distinguishing
posed and spontaneous expressions.545

5. Conclusions

In this paper, we propose to use RBM to explicitly mod-
el complex joint distributions over feature points, i.e. s-
patial patterns, embedded in posed and spontaneous ex-
pressions respectively, and incorporate expression-related550

factor as privileged information, which is only available
during training. Specifically, we construct multiple RBM-
s with continuous visible units to model spatial pattern-
s embedded in posed and spontaneous expressions given

expression-related factors. During training, contrastive555

divergence is adopted to learn the parameters of RBM-
s. During testing, the samples are classified into posed or
spontaneous expressions according to the RBM with the
largest likelihood. In addition, to solve the partition func-
tion of RBMs, we extended annealing importance sampling560

to RBM with continuous visible units case. Experimen-
tal results on three benchmark databases demonstrate the
power of the proposed model in capturing spatial pattern-
s as well as its advantage over existing methodologies for
posed and spontaneous expression distinction.565

The proposed model has two major advantages over ex-
isting methods. 1) Unlike methods that can only cap-
ture local spastical patterns, our model is developed upon
the restricted Boltzmann machine, and therefore can ex-
ploit the global relations among geometric features. 2)570

Although expression-related factors can influence pattern-
s embedded in posed and spontaneous expressions, these
factors are generally ignored by the current methods. Our
approach, however, can successfully capture them to help
more accurately characterize facial spatial patterns.575
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