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Abstract

We investigate whether it is possible to improve the
performance of automated facial forensic sketch matching
by learning from examples of facial forgetting over time.
Forensic facial sketch recognition is a key capability for
law enforcement, but remains an unsolved problem. It is
extremely challenging because there are three distinct con-
tributors to the domain gap between forensic sketches and
photos: The well-studied sketch-photo modality gap, and
the less studied gaps due to (i) the forgetting process of the
eye-witness and (ii) their inability to elucidate their mem-
ory. In this paper, we address the memory problem head on
by introducing a database of 400 forensic sketches created
at different time-delays. Based on this database we build
a model to reverse the forgetting process. Surprisingly, we
show that it is possible to systematically “un-forget” facial
details. Moreover, it is possible to apply this model to dra-
matically improve forensic sketch recognition in practice:
we achieve the state of the art results when matching 195
benchmark forensic sketches against corresponding photos
and a 10,030 mugshot database.

1. Introduction
Facial sketch recognition is an important law enforce-

ment tool for determining the identity of criminals where
only an eyewitness account of the suspect is available. In
this situation, a forensic sketch artist renders the face of the
suspect by hand or with compositing software based on eye-
witness description. The facial sketch is then disseminated
in the media, but the crucial capability is to then identify the
suspect by matching it against a photo mugshot database.

Motivated by this, the computer vision [12] and biomet-
rics [2] fields have extensively studied sketch to photo face
matching. However, practical matching of forensic sketches
to photo databases remains an unsolved question. This is
because studies have primarily focused on matching viewed
sketches rather than the rarer forensic sketches. Viewed
sketches such as those in the popular CUHK [23] database

are drawn by artists while viewing a photo. As such there is
no forgetting issue, and the sketches are accurate renditions
of the subject. The cross-modal sketch-photo gap is thus
small, and viewed sketches are relatively easy to match – re-
sulting in benchmark performance saturated at near-perfect
[1, 2, 4, 12]. Forensic sketches are drawn based on eye-
witness description, possibly days after the event. Despite
being the practically relevant variant of the problem for law
enforcement, forensic sketch matching remains both rela-
tively unstudied and unsolved. It is a much harder and un-
solved problem due to the sketch-photo gap being widened
by: (i) forgotten / inaccurate memory of facial details [7],
and (ii) imperfect communication of memory [5] (whether
to a human sketch-artist or software compositor [7]). Never-
theless, it is relatively unstudied largely due to lesser avail-
ability of forensic sketch benchmark databases, which is
why we introduce a new forensic sketch database.

In computer vision, facial sketch-photo matching has
been studied extensively using a variety of approaches in-
cluding invariant feature engineering [1, 2, 4, 12], cross-
modal regression/synthesis [22, 23] and shared subspace
learning [20]. These contributions address the sketch/photo
modality gap, but do not address the issue of forgotten or
inaccurately remembered details due to imperfect memory.
In contrast, psychology [25] and forensic psychology [6]
have studied the reliability of different facial features in hu-
man face matching, and the fading of memory with time [7].
This has provided some insights into human recognition (in-
ternal facial features are more important overall), and the
reliability of human memory, for example that memory fi-
delity drops rapidly after a few hours [7]. This means that
forensic sketches are very inaccurate in practice, because
they are usually taken days after the event [6, 7]. Thus the
memory gap is the key underlying problem to solve.

Motivated by these studies in human memory and recog-
nition, we investigate here whether it is possible to bring
learning and computer vision techniques to bear to ame-
liorate the memory gap problem. To disentangle the three
factors (cross-modal, forgetting, and imperfect communica-
tion) in the forensic sketch/photo gap, we introduce a new
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Figure 1. Database and approach overview. We first learn a projection for “un-forgetting”, as well as modality and description gap (top).
We apply this projection to improve (un-forget) forensic sketches before matching against photos (below). Reconstructed sketch (red) is a
closer match to the true photo (bottom left) than the input forensic sketch (bottom right) (visualisation with HOGgles [21]).

facial sketch memory gap database that contains 100 sub-
jects. Uniquely, each subject has a photo, a viewed sketch,
a 1-hour delay sketch, a 24-hour delay sketch and an un-
viewed sketch. Based on this database, we investigate the
question of whether memory transience is random (i.e., all
memory errors are equally likely), or there is any system-
aticity in the forgetting process (i.e., misremembered details
occur with some kind of predictable pattern that can be ex-
ploited). Somewhat surprisingly, we demonstrate that it is
possible for a machine learning model to input a forensic
sketch, and to some extent reverse the forgetting process to
produce a more accurate sketch that is easier to match.

Based on our memory gap database and model, we aim
to improve forensic sketch to mugshot matching: by mod-
elling the photo-sketch modality gap, imperfect communi-
cation gap and – uniquely – by modelling a map from mem-
ories of old to recently seen faces to correct misremembered
facial details. Since forgetting dynamics differ across time
periods [7], it is unclear how to model the memory gap
data: a single model covering forgetting across different
time-periods is too coarse, but a distinct model of the forget-
ting in time-slice of the database is too specific. Similarly,
the overall forensic sketch matching task spans modality,
communication and memory gaps. An intuitive approach
would therefore be to apply in sequence multiple models

trained to span each of these gaps. We show that while this
is effective, a better solution in practice is to apply multi-
task learning [24] to build a single model trained to span
the longer 24h memory gap, but with the others (short-term
memory, modality and communication) as auxiliary tasks.
Finally, we demonstrate the practical value of these contri-
butions by transferring the model learned on our memory
gap database to a realistic forensic task [11, 12] of match-
ing 195 forensic sketches against corresponding photos and
a 10,030-mugshot database. The results demonstrate a large
improvement over the previous state of the art. An overview
of our proposed framework is illustrated in Figure 1.

2. Related work

Facial sketch-photo recognition: Studies on matching fa-
cial sketches to photos can be classified based on the type
of sketches used: viewed, semi-forensic and forensic, and
whether the sketches are hand drawn, or computer com-
posited. The majority of previous studies have focused
on viewed sketches due to being an easier task with ac-
cessible benchmark databases. Representative approaches
to viewed sketch recognition include bridging the gap with
MRF-based photo-sketch synthesis, [23], learning common
subspace for comparison with PLS [20], or engineered new
invariant descriptors [8]. For further details, we refer the



reader to the survey in [17]. Recognition rates on the main
viewed sketch benchmarks [23] have reached 100% [8], so
viewed sketch recognition can be considered solved.

Forensic sketch face recognition: One of the earliest stud-
ies to discuss automatically matching forensic sketches with
photos was [10]. It highlighted the importance, as well
as complexity and difficulty of forensic sketch based face
recognition. The first significant demonstration of auto-
mated forensic sketch matching was [12], which combined
feature engineering (SIFT and LBP) with a discriminative
(LFDA) method to learn a weighting that maximised iden-
tification accuracy. Later studies such as [2] improved these
results, again combining feature engineering (Weber and
Wavelet descriptors) plus the discriminative learning (ge-
netic algorithms) strategy to maximise matching accuracy.

Unlike viewed sketches, forensic sketch databases are
few and small in size. The main sketch/photo databases
are 159 pairs identified by [12], and 190 pairs in the IIIT-
D database [2]. A realistic evaluation of sketch-based face
matching should also include a large pool of mugshots to
match against, in addition to the true photo corresponding to
each sketch. Despite this, only a few studies have evaluated
forensic sketch matching algorithms in this way. Notably
[12], which trained a matching model on viewed sketches
and then tested matching 159 forensic sketches against cor-
responding photos and a 10,030 mugshot database. In this
paper we also evaluate our approach in this rigorous way,
and show that the results can be significantly improved by
explicitly modelling the human visual memory components.

Regression models: Regression models are widely
used in cross-domain face recognition [17]. For facial
sketch matching, regression models may provide facial
sketch↔photo synthesis [22] to support matching, for ex-
ample via support vector regression (SVR) [26]. Alterna-
tively, Partial Least Squares (PLS) models may be used to
map images in each modality to a common subspace where
they are more comparable [20]. Although widely and effec-
tively used, all prior work has focused on regression mod-
elling to tackle the modality-gap problem rather than the
memory-gap problem. In this paper, we exploit Gaussian
Process regression to deal with both the memory-gap and
the modality-gap components in forensic sketch matching.

Facial Attributes: Study of facial attributes [14, 16] is
a topical problem in computer vision. It is also relevant
to forensic sketch recognition because encoding sketches
and photos in terms of facial attributes can help to bridge
the sketch/photo modality gap [18], or prune the matching
space [12]. However, attributes are vulnerable to forgetting
as well, so the attributes of a sketch may mismatch those
of the corresponding photo even if they are perfectly de-
tectable by computer vision techniques.

Human memory and forensic sketches: Studies have

shown the ability of individuals to recognise faces depends
on different facial features according to the level of famil-
iarity [25]. Internal facial features are important for identifi-
cation of familiar faces, and external features for unfamiliar
faces [6]. It remains to be seen if/how these findings trans-
late to automatic face recognition, so we use whole face
images in our study. With regards to the forgetting pro-
cess, forensic psychology studies have found that memory
fidelity drops dramatically between the first hour and first 24
hours after witnessing a face. However, in practice forensic
sketches are rarely made within the first day [7]. Thus, any
mechanism capable of bridging this gap automatically is ex-
pected to both have a large impact on quantitative recogni-
tion performance and forensic police work in practice.

Contributions: Overall, our contributions are as follows:
(i) We present a new memory gap facial sketch database
with 100 subjects each with a photo and four sketches that
disentangle different aspects of the forensic sketch gap (400
sketches in total). (ii) We use this database to demonstrate
that there is systematicity in facial forgetting, by showing
that inaccurate forensic facial sketches can be automati-
cally improved by machine learning methods trained to re-
cover ‘recent’ from ‘old’ face memories. (iii) We trans-
fer the learned memory reconstruction models to a realistic
forensic sketch matching benchmark. The results signifi-
cantly outperform the previous state of the art [11, 12, 15]
at matching forensic sketches against corresponding photos
and a large 10,030 mugshot database.

3. Memory-Aware Facial Sketch Modeling
The forensic sketch-photo matching task is compli-

cated by three distinct challenges. Photo/sketch modal-
ity change, forgetting, and communication (of memory to
sketch artist/compositing software) issues all contribute.
We create a dataset designed to disentangle these issues.
It contains N subjects, with photos Dp = {xp

i }
N
i=1 and

sketches drawn with different conditions Ds = {xt
i}

N
i=1,

t = (v)iewed, (1) hour, (24) hour and (u)nviewed. Each
image is assumed to be represented by a d-dimensional fea-
ture vector x. The task of nearest-neighbour (NN) matching
a viewed sketch xt=v to a photo database would be

i∗NN = argmin
i
|xv − xp

i | . (1)

Studies focusing on bridging the modality gap by linear
regression-based synthesis or linear subspace projection
aim to solve a similar task, after learning a suitable regres-
sion matrix W v or projections W v and W p respectively:

i∗map = argmin
i
|W vxv −W pxp

i | . (2)

Memory Modelling: Making use of our memory-gap



database, we can separate contributing components of the
forensic-sketch gap. For example, training W v→p in

W v→p = argmin
Wv→p

∑
i

‖xp
i −W

v→pxv
i ‖

2
2 (3)

is the conventional task of learning to bridge the modality
gap between photos and viewed sketches. Training Wu→v

would be learning to correct the communication gap. While
training W 24→v in

W 24→v = argmin
W 24→v

∑
i

∥∥xv
i −W 24→vx24

i

∥∥2
2

(4)

is learning to correct 24 hours worth of transience, inde-
pendent of the modality or communication gap. Given the
conditions in our memory-gap database, there are a vari-
ety of potential tasks (10 in total) including: correcting the
modality v → p or short term memory gap 1→ v; reducing
or completely correcting the long-term memory gap 24→ 1
or 24 → v respectively; and full forensic sketch matching
u → p (see Sec. 5.1 for full list). We will learn all 10 tasks
allowed by our database.
Mapping Strategy: Rather than the most common lin-
ear projection approach to these learning tasks [20], we
use Gaussian Process Regression (GPR) [19]. We take this
approach because: (i) GPR provides a more flexible non-
linear mapping, and importantly (ii) as a Bayesian regres-
sion framework, GPR provides a distribution over the re-
construction rather than a single point estimate. This uncer-
tainty metric at each point of the reconstruction turns out
to be important to improve matching performance, by auto-
matically weighting each feature according to its reliability.
Exploiting Multiple Models: As mentioned earlier, our
memory-gap database provides 10 potential modelling
tasks. The most obvious ways to use these for practical
forensic sketch matching would be: (i) apply the model
learned for direct forensic sketch-photo matching u → p,
or (ii) given multiple models trained to correct the differ-
ent sources of error, sequentially apply them to correct each
source of error in turn, e.g., u→ 24→ 1→ v → p.

Clearly some of these tasks are related (e.g., tasks 1→ v,
24 → 1, 24 → v span different steps of forgetting). So an
alternative approach that will turn out to be better is to learn
all the tasks together in a multi-task learning framework. In
this way each task shares information with – is regularised
by – the others. Specifically, we will jointly learn the tasks
with Multi-Task Gaussian Process Regression (MTL-GPR).

3.1. Improving Forgotten Faces with MTL-GPR

Single Task Modelling: GP regression can be applied to
cross-modal/memory-gap problems such as those in Eqs. 2-
4, but learning a non-linear projection. Denoting now fea-
tures in input and target conditions as x and y respectively,

our database provides training pairs D = {y,x}. For any
query point x∗ the GPR prediction for y∗ is:

p(y∗|x∗, D) ∼ N (kT
∗K
−1y,k∗∗ − kT

∗K
−1k∗) (5)

where matrix K is the covariances at all pairs of train
points, vector k∗ is the train-test covariances, k∗ =
[κ(x∗, x1)...κ(x∗, xN )] and k∗∗ = κ(x∗, x∗). We take
the most common squared-exponential kernel κ(x, x′) =
exp(− 1

2l2 (x − x
′)2), and the kernel hyper parameter l can

be tuned by gradient on the marginal likelihood [19].
Multi Task Modelling: In our problem there are 10 dis-
tinct mapping tasks, which we learn together in a MTL-
GPR framework. Following [3], we learn GP regression
with predictions for tasks l and k correlated as:

< fl(x)fk(x
′) > = Kf

lkκ(x, x
′) (6)

Here l and k index any two conditions in our memory-gap
database, and Kf is the 10 × 10 PSD matrix of inter-task
similarities. Standard GP predictions can then be made us-
ing this covariance. Importantly, with this approach, the key
task similarity matrixKf can also be learned along with the
kernel hyper parameters l via the marginal likelihood [3].

3.2. Matching Forgotten Sketches to Photos

Correcting Inaccurate Memory: For any task provided
by our database, reconstruction is performed by computing
the GP posterior of each target feature. For example, to
improve an unviewed sketch u → v, we would compute
the predictive distribution p(xv

∗|xu
∗ , D) ∼ N (µx∗ , σ

2
x∗), as

given by Eq. 5. The new sketch would then be given by
the mean of the posterior normal µx∗ , and the confidence of
each feature dimension by the corresponding variance σ2

x∗ .
Matching across Memory or Domain Gap: With this
framework matching can be performed by calculating the
likelihood of each mugshot in the gallery under the poste-
rior predictive distribution of the probe sketch. For exam-
ple, after training on our memory gap database D, we can
use model u → p to match a forensic sketch xu

∗ against a
database of mugshots Xp = {xp

i }Ni=1 as follows:

• Compute the distribution over the expected photo cor-
responding to the forensic sketch: p(xp|xu

∗ , D).

• Pick the photo with maximum likelihood un-
der this predictive photo distribution: i∗ =
argmax

i
p(xp

i |xu
∗ , D).

• In practice, we model each dimension of the target in-
dependently with GPR, so this is equivalent to i∗ =
argmax

i

∑
k(x

p
ik − µx∗k)

2/σ2
x∗k

. Where xpik, µx∗k and

σ2
x∗k

respectively are the k−th dimension of the target
photo, posterior predicted photo mean and variance.



4. Memory gap database

In this section we describe our memory gap database and
its creation procedure in more detail1. 100 subjects are cho-
sen from mugshots.com, which releases mugshots of real
criminals. For each subject one frontal face photo is se-
lected, and four types of sketches are drawn:

Viewed: Sketches are drawn while the artist looks directly
at the mugshot photos.
1 hour: Mugshot photos are viewed by the artist, and
sketches are drawn one hour later. Thus, compared to
viewed sketches, the sketch is ‘corrupted’ by one hour
worth of memory transience.
24 hours: Mugshot photos are viewed by the artist, and
drawn 24-hours later.
Unviewed: Sketches are drawn by an artist based on the de-
scription of an eyewitness who has seen the mugshot photo
immediately before (but does not view it during the sketch-
ing). The artist does not see the photo. In this case, the
memory gap is negligible, but it is the only condition in the
database where the communication gap of imperfect com-
munication between the eyewitness and artist exists.

The reason for this design of the collection procedure is
so that the modality and communication gaps can be iso-
lated (in photo-viewed and viewed-unviewed respectively)
from the memory gap (24h to 1h to viewed). This poten-
tially enables specific models to be built to address each
contributing factor of the forensic sketch challenge.

To build the memory gap database, over 20 art students
are selected to contribute as both sketch artists and eyewit-
ness. Each artist is asked to draw all four kinds of sketches
for each subject. This way the sketches for each mugshot
do not have inter-artist variability, but the drawing order is
such that forensic sketches are fully unviewed.

5. Experiments

5.1. Datasets and Settings

Databases: We study three databases: The contributed
Memory Gap Database (MGDB), where we have also an-
notated each image with 40 binary facial attributes from
the ontology provided by [18]; a Forensic Composite
Database with 51 forensic composite-photo pairs [7], and
the Forensic Sketch and Mugshot Database (FSMD). The
latter consists of two parts: 195 forensic sketch-photo pairs
[2, 12] and a large background gallery of mugshots to search
against, in order to replicate a real-world scenario where
a law-enforcement agency would query a large gallery of
mugshot images with a forensic sketch. We use the same
195 sketch-photo pairs as [12, 18]. The mugshot gallery
used by [11, 12] was not released publicly, so we simulate

1Available to download at http://sketchx.eecs.qmul.ac.uk/downloads.html

this as best as possible by downloading 10,030 mugshots
from mugshots.com (the same source used by [12]).

Memory-Aware Model Training: All sketch and photo
conditions (t=photo, viewed, 1 hour, 24 hour and unviewed)
are used to exhaustively construct the 10 possible recon-
struction tasks. For each task, sketches corresponding to
two-thirds of subjects serve as training data, and the oth-
ers serve as testing data. The 2/3s training subjects and 10
tasks are used to jointly train 10 models via MTL-GPR. We
explore performance on the testing split of Memory Gap
Database, before transferring to FSMD for final evaluation.

Overall ten regression tasks were trained: 1) viewed
sketch to photo, 2) 1 hour sketch to photo, 3) 24 hour sketch
to photo, 4) unviewed sketch to photo, 5) 1 hour to viewed
sketch, 6) 24 hour to viewed sketch, 7) unviewed to viewed
sketch, 8) 24 hour to 1 hour sketch, 9) unviewed to 1 hour
sketch and 10) unviewed to 24 hour sketch. Some of these
are illustrated in Fig. 1.

Features and settings: We normalise all photo and sketch
images to 256×196 and align them by normalising on inte-
rocular distance. Each image is then represented with HoG
features. We compute dense HoG feature over a regular
grid (16×16 step size), which results in a feature vector of
dimension 5,952 for each image. For each image, 40 at-
tributes are also detected using SVM detectors trained using
the ground-truth attributes on the training split [18].

Baselines: In addition to our MTL-GPR memory-aware
model, we also consider alternative regression methods that
could potentially model the gaps across database contexts:
Nearest Neighbour (NN): Direct matching. Ignore the gap.
Linear Regression (LR): Linear (L2 regularised) regres-
sion is the simplest explicit mapping approach.
Polynomial Support Vector Regression (SVR): SVR was
used in [26] to accomplish sketch-photo synthesis.
Polynomial Multi-Task Learning: We use the [24] imple-
mentation of the popular GO-MTL [13] multi-task learner.
By exploiting task relatedness, this may perform better than
SVR. In initial experiments we found polynomial MTL sig-
nificantly better than linear, so we report the former.
(Single Task) Gaussian Process Regression (GPR) [19]:
Compared to the others, GPR provides a non-parametric
probabilistic prediction with an estimate of uncertainty that
can be used for matching as in Sec 3.2.
Sequential GPR: As mentioned in Sec 3, this is the intu-
itive baseline of applying a number of the 10 GPR models
in sequence to correct distinct error sources.

5.2. Memory-Aware Model Analysis

In this section, we analyse the MTL-GPR reconstruction
of faces, as represented by HoG features2. To help inter-

2The analysis could in principle be done with pixels, but this would be
computationally expensive due to higher dimensionality.
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Figure 2. Illustration of facial regions.
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Figure 3. Learned reconstruction reduces sketch/photo gap for
each task in MGDB database: RMSE averaged across full face.

Table 1. RMSE of sketch/reconstruction vs photo according to re-
gions, averaged across all ten tasks in MGDB.

Region Photo v.s. Original Sketch Photo v.s. Projected Sketch
External 0.20± 0.013 0.16±0.025
Chin 0.20± 0.014 0.16±0.023
Internal 0.18± 0.003 0.16±0.015
Mouth 0.17± 0.007 0.16±0.012
Eyes 0.18± 0.003 0.15±0.023
Nose 0.18± 0.011 0.14±0.018

pret the results, we also divide the facial hog feature maps
into external regions and internal regions: external, inter-
nal, eyes, nose, mouth and chin [25], as shown in Fig. 2.
To investigate whether our memory model helps to bridge
the gap between photo and forensic sketch, we calculated
RMSE between sketch/reconstructed sketch and the corre-
sponding photos. The results are shown broken down by
facial region and averaged over tasks (Tab. 1) and aver-
aged over all regions broken down by tasks (Fig. 3). From
these we can see that: (i) Each learned projection task in the
MGDB database reduces the sketch-photo RMSE. (ii) This
demonstrates that sketches drawn at different delays con-
tain some systematic shift that it is possible to reverse, or
it would not be possible to learn a model that consistently
improves RMSE. (iii) Reconstruction consistently improves
RMSE for each distinct semantic facial region.

5.3. Face matching: Memory gap database.

In this section we quantitatively evaluate face matching
performance on the test split of the memory gap database.
As outlined in Sec 5.1, we compare a variety of baselines
to our proposed MTL-GPR and report the rank 1 (perfect
match) accuracy for each of the 10 tasks in Tab. 2. The
row and column give the MGDB image pair (training task).
The column gives the MGDB sketch input for testing, and

the task is always to match against photos using the corre-
sponding training model.

Efficacy of memory-aware models: From Tab. 2, we
can draw the conclusions: (i) Sketch reconstruction with
linear regression does not consistently improve on direct
NN matching, suggesting that a linear projection is insuffi-
cient. (ii) Every non-linear approach to bridging the modal-
ity/memory gap performs better than direct NN matching
with no memory gap model, but among the baseline mem-
ory gap models, there is no clear winner or loser. (iii) Our
MTL-GPR is the clear winner overall, often with significant
margins over the next best (e.g., 87% vs 57% in 24 → v
setting). (iv) That MTL-GPR outperforms regular GPR
demonstrates that there is common information in each of
the distinct tasks that can be extracted and shared. (v) In
some cases the gain from an explicit un-forgetting model is
vast: In the 24 → v setting, performance triples from 29%
to 87% comparing NN matching with MTL-GPR.

Significance of Bayesian Memory Gap Model: One of
the reasons for the GP methods’ good performance is their
ability to account for reconstructed feature reliability in
matching (Sec 3.2). We demonstrate this in Tab. 3, where
we compare performance with and without the use of the
reconstruction variance. Clearly accounting for reconstruc-
tion reliability significantly benefits performance.

Qualitative Analysis: The average variance map across
the database is shown in Fig. 5(right). The model con-
fidently predicts both internal (eyes, mouth) and external
(hair, chin) facial regions [25], while giving less weight to
skin regions (forehead, cheeks), where texture may not be
predictable from the sketch.

The MTL-GPR framework also aims to discover task re-
latedness. The learned task relatedness matrix Kf is shown
in Fig. 5(left). The clear block structure here shows that
the tasks with sketches as target context are much more re-
lated to each other than those with photos as the targets.
The 24→ 1 task is also noticeable as sharing structure with
many of the other sketch predictors (cross structure within
the block).

5.4. Applying Memory-Aware Models to Forensic
Sketch Matching

Matching on Forensic Sketch Database: All ten learned
memory-aware models are transferred to the forensic
sketch database, which includes 195 forensic sketch-photo
pairs. Few experiments have been done on forensic sketch
database, except [18] which focused on using attributes to
bridge the sketch/photo gap. To compare directly with [18],
we evaluate our models on the same 1/3 test split.

The results are shown in Tab. 4, from which we make
the following observations: (i) All our reconstruction mod-
els perform significantly better than 9% with HoG matching
alone, and almost all outperform the 21% of [18]. (ii) Com-
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Figure 4. Qualitative results of matching in forensic sketch database. The memory reconstruction model trained on 24 → 1 hour sketches
of MGDB is transferred to forensic sketch database. Reconstruction variance improves matching by focusing on reliable features. These
good sketches were both retrieved at Rank 1 of 10,225 (10,030+195). Bad sketches were retrieved at Rank 1592 and 1800 respectively.

Table 2. Photo-sketch matching on the memory gap database (Rank 1 accuracy, %). Comparing MTL-GPR, GPR, Polynomial MTL,
Polynomial SVR, Linear Regr. and NN. Sketch input is given by column and matched with the model trained on the corresponding cell of
MGDB. Average accuracies over 15 random splits of 68 training and 32 testing subjects. See supplementary for standard deviations.

Accuracy Viewed 1 Hour 24 Hour Unviewed
MG G- PM PS LR NN MG- G- PM PS LR NN MG G- PM PS LR NN MG G- PM PS LR NN

Photo 99 88 88 90 53 71 96 70 65 56 39 51 90 55 50 52 32 31 86 35 35 38 34 21
Viewed - - - - - - 90 58 63 66 52 51 86 57 44 46 26 31 73 33 32 38 24 21
1 Hour - - - - - - - - - - - - 69 41 44 45 26 31 63 32 29 35 18 21
24 Hour - - - - - - - - - - - - - - - - - - 42 30 30 32 18 21

Table 3. The importance of Bayesian memory modelling: Rank 1
MGDB match results (%) without/with reconstruction confidence.
Average accuracies over 15 random splits of 68 training and 32
testing subjects. See supplementary for standard deviations.

Accuracy Viewed 1h 24h Unviewed
photo 86 / 99 85 / 96 60 / 90 50 / 86
Viewed - 56 / 90 43 / 86 40 / 73
1h - - 38 / 69 36 / 63
24h - - - 28 / 42

Table 4. Matching results (Rank 1 accuracy, %) on forensic sketch
database (1/3 test split) using MTL-GPR / STL-GPR. Compare:
21% from [18] and 9% by direct HoG matching. Average accura-
cies over 15 random splits of 68 training and 32 testing subjects.
See supplementary for standard deviations.

Accuracy Viewed 1h 24h Unviewed
Photo 22 / 35 22 / 34 15 / 40 18 / 41
Viewed - 65 / 48 40 / 50 33 / 48
1h - - 78 / 48 54 / 40
24h - - - 65 / 42

Table 5. Matching results (Rank 1 accuracy, %) on forensic sketch
database (1/3 test split) using sequence of STL-GPR models.
u→ 24 u→ 24→ 1 u→ 24→ 1→ v u→ 24→ 1→ v → p
54 28 20 13
24→ 1 24→ 1→ v 24→ 1→ v → p 1→ v → p
56 39 16 16

paring STL-GPR and MTL-GPR, the models trained with
photo targets perform worse when learned jointly, i.e., they
suffer negative transfer from the sketch targets. However,
the models trained with sketch targets generally perform
better, i.e., they successfully share information about bridg-
ing the memory gap. (iii) The best model overall is MTL-
GPR’s 24→ 1, suggesting that the biggest single contribu-
tor to the forensic sketch gap in practice is the longer term

Figure 5. Qualitative results of MTL-GPR model. Left: Estimated
task relatedness Kf . Right: Average reconstruction variance.

forgetting between 1 and 24 hours. The second best is also
memory related 1→ v.

An intuitive alternative way to exploit the tasks learned
in MGDB for forensic sketch matching is to apply the mod-
els in sequence to correct the various sources of error in
forensic sketches. We conduct this experiment for a variety
of possible STL-GPR model sequences (Sec 3). The results
in Tab. 5 show that while all outperform the 9% of direct
matching, none of the multi-step configurations outperform
the best single task of 24→ 1. Which is itself outperformed
by our MTL-GPR 24→ 1 in Tab. 4. Based on this analysis,
we focus on the contribution of the two MTL-GPR memory
models 1 → v and 24 → 1, which we denote Early and
Late, in the final large-scale benchmark experiments.

Matching on Forensic Sketch and Mugshot Database:
We now address the full problem of matching forensic
sketches to a large database of mugshot photos. We com-
pare the results of our Early and Late-Memory MTL-GPR
models to the results of the state of the art LFDA [12] (who
also reported the results of a state of the art commercial sys-



Table 6. State of the art comparison. Accuracy (%) of matching 49
good forensic sketches against corresponding photos and 10,030
FSMD database mugshots. ∗ Not directly comparable, used a dif-
ferent 53 sketch probe set.

Accuracy Rank 1 Rank 10 Rank 50
MTL-GPR Early-Mem 23 23 33
MTL-GPR Early-Mem+Attr 25 25 35
MTL-GPR Late-Mem 33 33 39
MTL-GPR Late-Mem+Attr 38 42 45
LFDA [12] 17 23 33
LFDA [12]+ gender +race 19 27 45
FaceVACS (reported by[12]) 2 4 8
KPS [11]∗ 4 9 21
Deep Features [9] 2 6 15
DFD [15] 6 13 19

Table 7. Accuracy (%) of matching 51 forensic composites against
corresponding photos and 10,030 FSMD database mugshots.

Accuracy Rank 1 Rank 10 Rank 50
HOG 6 14 20
DFD [15] 2 4 4
MTL-GPR Late-Mem 14 18 26

tem FaceVACS), KPS [11], and DFD [15]. To provide an
additional baseline, we also take the best publicly available
(photo) Deep face recognition model [9] and use it to ex-
tract features for matching. As [12] demonstrated the value
of filtering by soft biometrics, we also further combine our
models with predicted attributes (trained on memory gap
database) with score-level fusion.

In order to compare directly with [12], who break down
results by “good” and “bad” quality sketches, we show re-
sults in Tab. 6 focusing on a good quality subset of sketches.
In Fig. 6, we provide a cumulative match characteristic
(CMC) curve, including results for both all 195 sketches
as well as the 49 good quality sketches. From the results we
can see that: (i) Our memory-gap model significantly sur-
passes state of the art performance, demonstrating that the
model learned on our database can dramatically improve
real forensic sketch matching, (ii) Of the memory-aware
models, the Late-Memory model trained on the 1-24 hour
memory gap performs better, reflecting forensic psychology
conclusions that the first day’s forgetting is significant [7],
(iii) Including predicted facial attributes improves perfor-
mance further, (iv) Using modern deep features with direct
matching now outperforms the commercial FaceVACS re-
sult, but it is significantly worse than both LFDA [12] and
ours: indicating that deep features alone are insufficient to
address forensic sketch matching.

Qualitative Examples: Some qualitative examples of our
matching process using the forensic database are shown
in Fig. 4. Photos and sketches are represented with HoG
features (visualised by HOGgles [21]). The learned mem-
ory reconstruction model predicts the mean and variance of
photo-HOGs. Photos are chosen by their likelihood under
the predicted Gaussian distribution, allowing matching to
take into account the prediction reliability of each feature.

Figure 6. CMC curves for matching Good (49) / All (195) forensic
sketches against corresponding photos and 10,030 FSMD database
mugshots.
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Matching on Forensic Composite Database: Although
our model is trained on sketch rather than software com-
posite faces, we also evaluate whether the learned model
is general enough to improve forensic composite matching.
Tab. 7 shows the results of retrieving 51 composites from
among the same mugshot gallery. Clearly our model still
makes a significant impact on retrieval performance, despite
the sketch-composite domain shift.

6. Conclusions

We investigated two questions: Whether it is possible
to improve facial sketches whose quality is impacted by a
large delay between seeing the face and making the sketch;
and whether such models can be used to improve practical
forensic sketch recognition. We were able to demonstrate
that it is indeed possible to improve facial sketches drawn
after a time-delay, and that this translates into the signifi-
cantly improved state of the art performance on the impor-
tant task of forensic sketch matching.

One limitation of our current work is that each HoG di-
mension is modelled independently, so cross-pixel correla-
tion is not exploited. In future, we would explore richer in-
formation sharing architectures, such as local patches, CRF
smoothing, and multi-task among neighboring pixels. Sec-
ondly, we ultimately exploited the contributions of cross-
modal and communication gaps only implicitly via MTL
sharing. A richer framework more explicitly modelling the
contributing factors should be explored.
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