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Distributed Scheduling for Low-Delay and

Loss-Resilient Media Streaming with Network

Coding
Anooq Muzaffar Sheikh, Student Member, IEEE, Attilio Fiandrotti, Member, IEEE, Enrico Magli, Senior

Member, IEEE

Abstract—Network coding has been shown to be very effective
for collaborative media streaming applications. A pivotal issue
in media streaming with Network Coding (NC) lies in the
packet scheduling policy at the network nodes, which affects
the perceived media quality. In this paper we address the
problem of finding the packet scheduling policy that maximizes
the number of media segments recovered in the network. We
cast this as a distributed minimization problem and propose
heuristic solvers that make the proposed framework robust to
infrequent or inaccurate feedback information. Moreover, the
proposed framework accounts for the properties of layered and
multiple description encoded media to provide graceful quality
degradation in case of packet losses or lack of upload bandwidth.
Experimental results on a local testbed as well as PlanetLab
suggest that the our scheduling framework achieves better media
quality, lower playback delay and lower bandwidth consumption
than a random-push scheme.

Index Terms—Distributed Scheduling, P2P, media streaming,
Network Coding

I. INTRODUCTION

Network Coding (NC) [1] has emerged as a recent break-

through in multicast communications. Let us consider a sce-

nario where a single source node must distribute a message

to multiple receivers through some intermediate nodes. The

intermediate nodes, instead of simply forwarding the received

packets, transmit linear combinations of the received packets

to the receivers. Once a receiver has collected enough linearly

independent packets, it solves a system of linear equations

and recovers the message. If the network nodes are allowed

to recombine the received packets, then maximum network

throughput can be achieved as demonstrated in [2].

NC finds application to a wide range of multimedia-related

problems [3] including low-delay media communications such

as live media streaming and videoconferencing. Such applica-

tions are particularly challenging because they entail distribut-

ing bandwidth demanding media contents to populations of

cooperating users with tolerable lags that range from a few

seconds to fractions of the second.

While previous research has demonstrated the benefits of

NC in terms of reduced communication delays, comparatively

little attention has been given to the design of bandwidth-

efficient packet scheduling schemes. In random-push schedul-
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ing, nodes flood their neighbors in the network with coded

packets until a stop message is received. Our previous re-

search [4], [5], [6], [7] has demonstrated that random-push

scheduling does enable low-delay communications, however

that happens only at the price of increased bandwidth require-

ments. However, due to the lack of synchronization among

nodes, part of the transmitted packets is received after the

the generation has already been recovered, thus wasting part

of the available bandwidth. The purpose of this paper is to

address this problem, developing bandwidth-efficient schedul-

ing schemes to enable practical low-delay NC. In particular,

in this paper, we introduce a distributed push-based packet

scheduling framework for low-delay media communications,

which enables each network node to select the transmission

policy that maximizes the number of generations recovered in

the network. The main features of our framework are that 1)

it accounts for the nodes decoding status, the packet playback

deadlines, and the status of the network links; 2) it allows one

to employ multiple description and layered coded media to

achieve graceful quality degradation; 3) it is robust to outdated

or infrequent feedback information.

We evaluate our framework on two platforms, namely a

discrete events testbed and a real peer-to-peer media streaming

application running on the PlanetLab distributed testbed. We

show that the proposed distributed scheduler performs close to

a centralized scheme and achieves better media quality than a

random-push reference that is oblivious of the nodes and links

status.

The remainder of this paper is organized as follows. In

Section II we describe the basics of media streaming with NC

and we overview the existing literature on packet scheduling.

In Section III we describe the proposed distributed scheduling

framework. In Section V, we experimentally evaluate our

framework in terms of delivered media quality and bandwidth

consumption for different network scenarios. Finally, conclu-

sions are drawn in Section VI.

II. BACKGROUND AND RELATED WORK

The theoretical foundations of NC were originally intro-

duced by Ahlswede et al. in their pioneering work [2]. Chou

et al. [8] first proposed a practical NC scheme suitable

for real networks, where the node topology and the coding

functions at the nodes are not known and communications

between nodes take place asynchronously. They proposed to
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divide the information stream in chunks called generations

and each generation is subdivided into k blocks of symbols

(simply blocks in the following) of identical size. Each time the

source transmits a packet for a generation, it randomly draws

a subset of blocks and generates a linear combination thereof

that is transmitted together with the list of combined blocks

(encoding vector) in the form of a network packet. We call the

number of linearly independent packets received by a node for

a generation the rank of the generation. Once the rank of a

generation is equal to k, we say that the generation has full

rank. At this point, the node solves a system of linear equations

(e.g., via Gaussian elimination) and recovers the generation.

In practical NC applications, a receiver must typically collect

k′ > k packets because non all received packets are innovative.

The random-push scheduling mechanism was proposed by

Wang and Li [6] with their R2 architecture [9] for live video

streaming. In their scheme, the network nodes proactively push

random recombinations of the received packets to randomly

selected recipient nodes in the network, hence the definition

of random-push NC. As soon as a node decodes a generation

it signals its neighboring nodes about this event by sending

a stop message, after which the nodes stop sending packets

for the specific generation. The benefits of the random-push

approach are, among others, reduced buffering times and sus-

tained throughput. A mathematical analysis on P2P streaming

systems with NC is given in [10]. UUSee [11], represents

a large scale deployed multimedia streaming system based

on the design of R2 [9]. SonicVoD [12] also represents a

large scale implementation of a media streaming service that

utilizes NC to distribute video contents in a mesh push-based

design. In [13] a media streaming protocol is proposed using

NC in a mesh-based P2P network. In particular, a specific

network topology is used to group peers interested in the

same video segment and NC is employed over the segments

individually for improved resilience. Although NC possesses

several benefits for video streaming, however, the coding

operations at the intermediate nodes may introduce a delay

that is detrimental for live video streaming. The authors in

[14] propose to overcome this issue by appropriately selecting

and placing a limited number of high performance nodes in

the network for NC operations, while the other nodes simply

relay the packets they receive.

Scalable media streaming refers to the coding technique

which fragments a single high-quality media-stream to n
substreams. Typically the substreams are formed by arranging

the media content in classes of different importance having

unequal error protection, or in classes of equal importance

having equal error protection. With the reception of each

additional substream the quality of the media stream increases

gracefully. Multiple Description Coding (MDC) also allows

to partition a single media stream into descriptions which

can be decoded independently. Each description guarantees

a basic level of reconstruction quality. Reception of additional

descriptions allows to improve the reconstructed video quality.

A number of papers have proposed the use of NC with SVC

and MDC [3], where NC is performed on each substream

independently or among different substreams. For example

the authors in [15], propose a prioritized video streaming

system with NC that divides the video content into classes of

priority to provide unequal error protection. NC packets for

each class are formed separately and are served to network

nodes with different capabilities. [16] employs layered coding

in a tree-based P2P network to improve throughput using

path diversity. In [17] NC is used with H.264/SVC, where

encoded packets for a layer i are formed by linear combination

of symbols from layer i and its preceding layers. A similar

approach is used in [18], where a NC scheme is constructed

in such a way to deliver the base layer with higher decoding

probability. In [19] NC has been used for error protection

purposes in a video streaming application. The source node

distributes packets coded with rateless codes to other nodes in

the network. Network nodes decode and forward the received

packets and also forward linear combinations thereof for era-

sure correction purposes if the available bandwidth permits. A

similar approach is used in [20], which also takes into account

the linear independence of the symbols used for creating the

NC encoded packets. NC for P2P media streaming has also

been studied from the perspective of peer heterogeneity. For

example [21] focuses on peer upload bandwidth by modeling

the P2P system in a multi-rate multicast optimization problem.

The solution is obtained using linear programming and leads

to maximum aggregate rate assignment among the peers. The

authors in [22] propose to use SVC with NC to adapt

to peer heterogeneity. In their application “Chameleon”, the

symbols selected for encoding belong to the same layer to

allow peers to subscribe to specific number of layers based

on the bandwidth capacity. Nonetheless, as is the case with

SVC, subscription of the base layer is mandatory to decode

the enhancement layers. Moreover two-bit buffermaps are

intelligently used to exchange and signal the decoding status

of the peers, which aids effective content dissemination. The

authors in [15] address P2P video streaming by dividing the

video in different classes of priority. Peers request for packets

belonging to specific priority class to the neighboring peers.

The transmitter peers respond to the request with encoded

packets by solving an optimization problem with the aim to

assign optimal rate to each class and minimize the average

distortion at the requesting peer. The authors in [23] study

the use of rate allocation in MDC with prioritized NC, while

in [24] they propose the use of feedback mechanism for rate

allocation of the descriptions to maximize the video quality.

Regarding packet scheduling mechanisms for media stream-

ing with NC, in our previous work [4], we evaluated the

performance of the random-push mechanism for low-delay

streaming by reducing the buffering time at the nodes. The

results suggest that the random-push mechanism is suboptimal

at allocating the upload bandwidth because recipient nodes

may end up receiving more packets than are required to decode

the generation, resulting in wasted bandwidth. Authors in [11]

suggest an early signaling method to stop transmitter nodes

from sending packets for generations close to decoding, result-

ing in only sufficient number of packets required for decoding.

Some studies focus on the availability of media segments in

the network, where a media segment owned by few nodes is

highly prioritized to form the NC packets. For example [25]

proposes a scheduling scheme for live streaming application
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that prioritizes scarce segments that have an earlier playback

deadline. However they do not consider the video quality per-

ceived at the client nodes and the heterogeneous changes in the

network conditions. In [26] a scheduling scheme is proposed

to recover from packet losses using a push-pull approach in

a multi-tree topology called random multicast trees. However

in this case the packet scheduling mechanism is dependent

on the proposed tree-based network topology. SPANC [27],

presents a optimized scheduling model to minimize the packet

delivery delay in a tree-based topology. It was shown that an

appropriate packet scheduling at the network nodes can reduce

the time required to recover the media contents, albeit in this

scheme NC is used only for erasure-correction purposes. [22]

uses H.264/SVC with NC to provide adaptive video quality

to nodes in a mesh topology. Packet scheduling is based on

subscription of recipient nodes to transmitter nodes for specific

layers and exchange of buffermaps. The packet scheduling

mechanism is however heavily dependent on the proposed

application architecture.

In our previous work [5] we proposed to address the

issues highlighted in [4] with a distributed packet scheduling

approach, which showed promising results in terms of better

media quality for reduced bandwidth requirements. In this pa-

per we broaden the scope of the proposed scheduling scheme

by accounting for the inter-layer dependencies of scalable and

multiple description coded media, and by accounting for the

rateless codes properties. Also, while in our previous work we

evaluated a preliminary version of our scheduler on a synthetic

testbed only, in this paper we perform an extensive evaluation

using a real P2P application both on a controlled conditions

testbed and on the PlanetLab.

III. PROPOSED SCHEDULING MODEL

In this section, we define a cost function that accounts

for the bandwidth budget required at a network node to

enable another node to recover a generation. Then, we for-

mulate the problem of finding the packet scheduling policy

that maximizes the number of generations recovered in the

network under a maximum available bandwidth constraint

as a distributed optimization problem that is independently

solved by each network node. Finally, we show how to solve

such problem in a way that is robust to out-of-date feedback

and concurrent optimization at each node in the network and

we describe a practical signaling protocol for delivering the

required feedback information.

A. Media and Network Model

We model the media stream distributed to the network nodes

as the bi-dimensional arrays of generations shown in Figure 1.

Each generation is identified within the media stream by a

temporal index t ∈ [1, T ] and a substream index s ∈ [1, S]:
in the following we use the notation (t, s) to indicate the

generation with temporal index t and substream index s. Each

generation (t, s) is subdivided in kt,s blocks of symbols, where

generations with identical temporal index t have identical

playback duration. However, without loss of generality, in the

following we assume that generations with identical quality

Fig. 1. Media stream model for single stream media, multiple-descriptions
and scalable-coded media streams as a stack of substreams for one generation
T = 1. Decoding dependencies between substreams are illustrated with
arrows.

index s are subdivided in an identical number of blocks ks
and all generations have identical playback duration of Gt

seconds.

Such media model is suited to describe traditional media

coding formats as well as multiple descriptions and multiple

layers (scalable) encoded media as follows. In the case of

single layer media, we have only one substream (i.e., S=1),

and each generation can be decoded independently from the

others by the media player as soon as enough innovative,

i.e., linearly independent, packets are recovered. In the case

of multiple descriptions media, each description is modeled

as a separate substream and each generation can be decoded

independently from the others by the player, where recovering

multiple generations with identical temporal index increases

the playout quality. In the case of scalable media streams, each

layer is modeled as a separate substream and enhancement

substreams (s > 1) can be decoded by the player only if

the dependencies between substreams illustrated in the figure

with the use of arrows are met. In order to account for such

dependencies, we say that a substream s can be decoded by

the player only if its predecessors have been recovered too and

we indicate as s′ the set of substreams that are predecessors

of substream s. For example for the scalable coded media, if

S = 3 as in Figure 1 and s = 3, we indicate the ancestor of

generation (t, s) as the set {t, s′}, where s′ = {1, 2}.

Fig. 2. Example of a network with N = 5 nodes and the parameters used
in the model.

Each node is assigned an integer number i as unique

identifier within the network, where i = 0 for the source node

and i > 0 for the remaining nodes, and the i-th node in the

network is indicated as Ni in the following. The overlay of

network nodes is represented as the graph (N , E) composed
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of the nodes N = {N1, ...,NN} and the edges E , where the

edge Ei,j ∈ E is the directed link that connects peer Ni to Nj ,

has packet error probability ei,j and delay di,j . For any node

Ni, we define Ai ⊂ N as the neighborhood of Ni, that is the

set of nodes that are connected to Ni and exchange packets

with it, where |Ai| is the size of the neighborhood of Ni. We

indicate as rj,t,s the rank of generation (t, s) at Ni, so the

number of packets that Nj must collect to recover (t, s) is

equal to ks− rj,t,s. Generations with identical temporal index

t must be played out at the same instant, however each node

may be slightly misaligned in the playout position within the

media stream. Therefore, we indicate the playout deadline of

generations with temporal index t at node Nj as hj,t. We say

that generation (t, s) is successfully recovered at node Nj if

the node receives enough innovative packets to recover (t, s)
(plus all its predecessor {(t, s′)} if any) before the generation

playout deadline. The key notations used in the rest of this

section are summarized in Table I.

S Number of substreams in the media

s Substream index, s ∈ [1, S]
s′ Set of predecessors of s

N Number of nodes in the network

Ni Network node i, i ∈ [1, N ]
Gt Temporal duration of generations

rj,t,s Rank of generation (t, s) at node Nj

hj,t Decoding deadline of generations with temporal index t at Nj

ei,j Packet error rate on link from Ni to Nj

di,j Delay on link from Ni to Nj [ms]

TABLE I
KEY NOTATIONS USED IN THE MEDIA AND NETWORK MODEL.

B. Decoding Cost Formulation

We define the decoding cost Zi,j,t,s as the number of

packets that node Ni must transmit to Nj to enable Nj to

recover generation (t, s) before the playout deadline hj,t. Such

cost function is computed as explained below.

At any moment, the number of innovative packets that nodeNj

must receive to recover generation (t, s) is equal to ks− rj,t,s
as discussed above. Due to the random packet combinations

at the network nodes, not all packets received by Nj are

however innovative. Any generation belonging to substream

s is composed of ks blocks of symbols, and all their possible

combinations span over a space of approximate size 2ks in

the considered binary network coding scenario. Any linear

combination of the rj,t,s packets already received at Nj is

not innovative, and the this set of “seen” combinations spans

over a space of approximate size 2rj,t,s . Hence, any packet

received by Nj is innovative only if does not fall in such set

of seen combinations, which happens with probability

1−
2rj,t,s

2ks
=

2ks−rj,t,s

2ks
. (1)

So, accounting for the probability that some of the packets

received by Nj are not innovative, the expected number of

packets that Nj must collect to recover (t, s) is equal to

ks − rj,t,s
2ks−rj,t,s

2ks

= (ks − rj,t,s)
2ks

2ks−rj,t,s
.

When dealing with scalable coded media, Nj recovers (t, s)
only if all the predecessors s′ have been recovered as well. So,

the number of packets that Nj must receive to recover (t, s)
is equal to

∑

x∈{s,s′}

(kx − ry,t,x)
2kx

2kx−ry,t,x
.

Due to the errors on the links, each packet from Ni to Nj is

lost with probability ei,j . Eventually, accounting for the error

rate of the links too, the number of packets that Nj must

receive from Ni to recover the generation is equal to

Zi,j,t,s =

∑
x∈{s,s′}(kx − rj,t,x)

2kx

2kx−rj,t,x

1− ei,j
. (2)

Finally, it should be noted that generations close to the

decoding deadline should be allocated more transmission

opportunities to account for an urgency principle. To this end,

we weight the decoding cost of each generation at each node

by their corresponding decoding deadlines. Accounting also

for the transmission delay di,j , our time-weighted decoding

cost function is

Ci,j,g,s = (hj,t − di,j)Zi,j,t,s. (3)

Finally, the minimization of such cost function is the object

of the optimization framework described in the next section.

C. Cost Minimization

Periodically, the opportunity to transmit one packet arises

for each node of the network, and each node selects the

packet scheduling policy that maximizes the expected number

of generations timely recovered in the network. Let bi,j,t,s
indicate the transmission of one packet for generation (t, s)
from node Ni to Nj , where bi,j,t,s = 1 if the transmission

takes place and 0 otherwise. Let us now hypothesize that

a central coordinator exists in the network: the problem of

finding the optimal policy at each node Ni, for i 6= j, can be

casted at a central coordinator in the form of the minimization

problem

minimize

N∑

i=1

∑

Nj∈Ai

∑

∀t

∑

∀s

bi,j,t,sCi,j,t,s (4)

subject to

∑

Nj∈Ai

∑

∀t

∑

∀s

bi,j,t,s ≤ 1 ∀i
(5)

bi,j,t,s ≤ ri,t,s ∀i, j, t, s (6)

where i 6= j. The constraint (5) means that at each trans-

mission opportunity node Ni is allowed to transmit only one
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packet to one its neighbors for a single generation. Moreover,

the transmission takes place only if Ni has already received

packets to transmit for (t, s) (i.e., ri,t,s > 0).

This work deals however with networks of totally uncoordi-

nated nodes, so we target a totally distributed packet schedul-

ing scheme rather than a centralized strategy. Therefore, we

recast the problem in (4) into N independent problems that

each network node can solve independently. In detail, each

node Ni solves the following problem

minimize
∑

∀Nj∈Ai

∑

∀t

∑

∀s

bi,j,t,sCi,j,t,s (7)

subject to (5) and (6).

Such problem can be solved selecting by nodeNi the neighbor

Nj and the generation (t, s) with lowest associated cost Ci,j,t,s

as we show in the following.

IV. PRACTICAL SCHEDULER IMPLEMENTATION

The minimization problem in (7) can be solved optimally

when i) the network nodes have up-to-date feedback available

at each transmission opportunity (perfect feedback), and ii) it

does not happen that multiple nodes solve the optimization

problem (7) concurrently. Perfect feedback is however expen-

sive to provide due to the associated cost in terms of signaling

bandwidth, if feasible at all. Also, feedback messages could

be delayed or lost altogether due to the delays and the losses

on the links. Moreover, in uncoordinated networks the nodes

autonomously grant themselves transmission opportunities, so

it may happen that multiple nodes attempt to transmit a packet

at the same time. If multiple nodes concurrently solve (7), the

outcome is a sub-optimal allocation of the available network

bandwidth, even under perfect feedback hypothesis. In this

section, we present two robust scheduling algorithms that

solve the optimization problem (7) dropping the requirements,

respectively, for perfect feedback and coordinated transmission

opportunities. Both algorithms are based on an improved

version of the feedback protocol described in detail in [4] that

we briefly overview in the following.

A. Feedback Signaling

Every Gt seconds, the source parses one generation of the

media stream (the source position) and distributes encoded

packets to the network. The generation currently played out

at a node is the playback position of the node and is updated

every Gt seconds. Initially, each node buffers tb seconds of

the media stream, so a node playback position always lags
tb
Gt

generations behind the source position. Figure 3 illustrates

the case of node N2 playing out generation (5, 1) while

the source is seeding generation (10, 1), (buffering time is

equal to 5 generations). Generations encompassed between

the source position (included) and the playback position of

a node (excluded) are the decoding region of the node, i.e.,

the generations for which the node is interested in receiving

packets. We define as decoding status of the node, the vector

of integer numbers indicating the ranks of the generations in

the node decoding region plus the playout deadline of the

earliest generation in the decoding region. For the example

scenario in Figure 3, the node decoding status is composed

of the vector [r2,6,1, . . . , r2,10,1] plus the relative decoding

deadline h2,6. The nodes broadcast to their neighbors feedback

information consisting of i) the node decoding status ii) the

measured packet loss rate on the incoming links. The feedback

information is encoded as a vector of few integer numbers that

is exchanged by the nodes using two mechanisms.

i) Explicit feedback: periodically, a node transmits a keepalive

message to its neighbors, so that its neighbors can tell if the

node has gone offline due to a network failure. Keepalive

messages carry updated feedback information in piggyback

mode, so each time a node receives a keepalive message, it

also receives updated feedback information from the neighbor.

Moreover whenever a node decodes a generation (t, s) it

broadcasts a stop message to all its neighbors to indicate that

it has decoded the generation and no longer wishes to receive

packets for that generation.

ii) Embedded feedback: in addition, each encoded media

packet carries an updated feedback information from the

transmitter in piggyback mode, so to increase the frequency

at which feedback is spread in the network without further

loading the network with extra feedback packets.

As the feedback information consists in a few integer numbers

only, embedding feedback in every media packet results in

a negligible bandwidth increase for an improved feedback

precision, as we show later on in the experimental section.

Fig. 3. Sample status of node Nj , for j = 2 and S = 1. The source
seeds generation t = 10, the node plays out generation t = 5 and buffers
generations t ∈ [6, 10]. Next played out generation (t = 6) deadline is h2,6.

B. Asynchronous Distributed Scheduler

The Asynchronous Distributed Scheduling (ADS) algorithm

is meant to solve (7) in a way that is robust to out-of-

date or missing feedback and is presented in pseudo-code

as Algorithm 1. The algorithm is executed at each node Ni

every time the node is granted a transmission opportunity and

the algorithm output is the scheduling policy that represents

the optimal solution to (7). Each policy is indicated in the

following as the tuple π = {j, (t, s), Z, C}, where j is the

identifier of the recipient node Nj , (t, s) identifies the genera-

tion in the media stream and Z and C are the expected number

of missing packets and the time-weighted costs function in

(2) and (3) respectively. The node computes then a list of

all the possible scheduling policies, and policies that do not

meet the constraints in (5) and (6) are discarded from the

list. At this point, the the list is sorted in increasing time-

weighted cost C order, and in the following we indicate as
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πx = {jx, (t, s)x, Zx, Cx} the x-th policy in the list starting

from the top (e.g., π1 is the policy at the top of the list

and C1 is the lowest cost among all policies). The policy at

the top of the list is the solution with lowest expected cost

to our optimization problem and hence the optimal solution.

However, due to imperfect feedback, feedback information

might be outdated and, for example, nodes may transmit

packets to Nj for a generation that Nj has already recovered.

Therefore, Ni draws the integer number x ∈ [1,m∗] with

uniform probability and the x-th policy from the top of the

list is selected. The packets received so far by the node for

generation (t, s)x are randomly recombined as described in

Section II and a packet is eventually transmitted to node

jx. Finally, Ni updates the expected rank of (t, s) at Nj

accounting for the probability that the transmitted packet is

innovative (1) and is not lost on the channel (1− ei,j).

Algorithm 1 Asynchronous Distributed Scheduler - ADS

1: list feasible scheduling policies π = {j, t, s, Z, C}
2: sort list by increasing cost C
3: draw x ∈ [1,m∗] from uniform p.d.f.

4: update expected rank of Njx

5: return optimal policy πx

Since in the asynchronous network the occurrence of a

transmission opportunity is not synchronized among the trans-

mitter nodes, selecting a tuple from x ∈ [1,m∗] is beneficial

for the following reasons: i) the algorithm prioritizes recipient

nodes that are close to achieve a full rank for transmission,

hence multiple nodes might choose the same recipient for

packet transmission, which would result in surplus packets; ii)

feedback cannot be sent very frequently, therefore the feedback

information at the nodes is slightly outdated; iii) it may happen

that a recipient node achieves full rank immediately after

sending a feedback message. To explain this, consider the

example of a recipient node N5 in a fully connected graph of

50 nodes, that requires only 10 packets to decode its generation

(i.e., Z = 10 for simplicity of illustration we assume no

packet losses on links). At time t = 1 node N5 sends a

feedback message to all its neighbors. The occurrence of a

transmission opportunity for 10 of N ′
5s neighbors occurs in

the time interval t = [1.01 − 1.02], at which they transmit a

packet to N5. At this point node N5 decodes the generation

and broadcasts this information to all its neighbors. However

a transmission opportunity arises for the remaining 40 nodes

in the time interval t = [1.02 − 1.03] before the message

broadcasted by N5 reaches the remaining transmitter nodes.

Thus the remaining transmitter nodes also transmit toN5 albeit

N5 had already decoded the generation, so resulting in the

delivery of surplus packets at N5. Conversely, if we consider

the ADS scheduler with m∗ = 5 then every transmitter

node will select among the top 5 scheduling policies with

uniform probability. Therefore, irrespective of the time the

transmitter nodes receive the feedback message from N5, out

of 50 neighbors of N5 on average only 10 would transmit a

packet to N5. Hence, allowing N5 to recover the generation.

By selecting a tuple x ∈ [1,m∗] the amount of surplus packets

sent to N5 are greatly reduced. The selection of m∗ depends

on the number of transmission policies in the costs list C i.e.,

the size of the list of cost function |C|, which is a function

of the number of neighbors |Ai| of the node, the number

of generations in a the decoding region tb
Gt

and the number

of substreams S in the media stream. The value of m∗ is

therefore bounded by 1 ≤ m∗ ≤ |C|. If m∗ is selected closer

to the lower bound i.e., 1, the scheduler would select π1 as

the transmission policy that may result in delivery of surplus

packets, as explained earlier. However, if m∗ is selected closer

to the upper bound i.e., |C|, the selection of the scheduler

would more likely be towards a random-push scheduler. In

the experimental section we experiment with different values

of m∗ to find the optimal value and discuss in more detail.

C. Synchronous Distributed Scheduler - SDS

The Synchronous Distributed Scheduling algorithm (SDS)

solves (7) by exploiting unique identifiers of the nodes in the

network to cope with the issue of concurrent optimizations.

We recall that i is the integer number that uniquely identifies

node Ni in the network. The algorithm is executed each time

nodeNi is granted a transmission opportunity and is described

in pseudo-code as Algorithm 2. The algorithm first computes

a list of all the possible scheduling policies compatible with

constraints (5) and (6) and sorts the list in increasing C cost.

We indicate the x-th policy from the top of the list as πx =
{jx, (t, s)x, Zx, Cx}, so that π1 indicates the policy at the top

of the list and so on. Variable σ is initialized to zero at the

first iteration of the algorithm and is updated at the end of

each iteration of the algorithm while cycle.

At the first iteration, we have x = 1, so node Ni tests

the condition i ≤ σ + ⌈Z1⌉ and checks if it is enabled to

transmit a packet to N 1
j for generation (t, s)1. If the condition

is met, the algorithm returns π1 as the optimal policy and Ni

transmits a packet for generation (t, s)x to Njx . Otherwise,

the algorithm updates the variable σ = σ + ⌈Z1⌉, x is

incremented by one and the algorithm iteration. At the second

iteration, we have x = 2 so the algorithm tests the condition

i ≤ ⌈Z1⌉ + ⌈Z2⌉ and checks if it is allowed to transmit a

packet to N 2
j , hence selecting policy π2. Again, if the check

fails, σ is updated as σ ← σ+⌈Z2⌉ and the algorithm iterates

again until the condition i ≤
∑x

q=1⌈Zq⌉ is met at some

iteration. By imposing this condition, the maximum number

of network nodes that will concurrently transmit a packet to

Njx for generation (t, s)x is upper bounded by Zx, which is

the number of packets required by Njx to recover (t, s).
To clarify the issue addressed by the SDS algorithm and

how the algorithm solves it, let us consider as an example a

fully connected graph composed of N = 17 nodes where the

links are affected by an average packet losses rate of 10% as

illustrated (in part) in Figure 4. For the sake of simplicity, we

assume that the stream is composed by just one generation

(i.e., , T = 1 and S = 1) of k = 100 symbols and the

playback deadline of the nodes minus the delay is 1 (i.e., ,

hj,t−di,j = 1∀i, j), which allows us to drop the substream and

generation appendices from the rank notation. Let us assume

that nodes {N1, . . . ,N15} (transmitters, in the following) have

already recovered the generation, whereas nodes N16 and N17
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Algorithm 2 Synchronous Distributed Scheduler - SDS

1: list all feasible scheduling policies π = {j, t, s, Z, C}
2: sort list by increasing cost C
3: σ ← 0; x← 1
4: while true do

5: if i ≤ σ + ⌈Zx⌉
6: update expected rank of Njx

7: return optimal policy πx

8: end if

9: σ ← σ + ⌈Zx
i ⌉; x← x+ 1

10: end while

(receivers) have not recovered the generation yet. Node N16

has rank r16 = 96, so it requires k−r16 = 4 packets to recover

the generation; node N17 has rank r17 = 92, so it requires

8 packets to recover the generation. Let us assume that the

exact decoding status of all the network nodes is known at the

transmitters and that a transmission opportunity arises at the

same time for all transmitters. For each transmitter, the figure

shows the set of transmission policies (just two policies in the

list, in this example) listed in increasing time-weighted cost

(3) order. At all transmitters, N16 is the receiver with lowest

associated decoding cost, so all 15 transmitters would send a

packet to it. Therefore, N16 would recover the generation but

a total of 15-4 = 9 transmission opportunities would be wasted

transmitting surplus packets, while N17 would not be able to

recover the generation.

Conversely, the SDS algorithm avoids a suboptimal allocation

of the available transmission bandwidth operating as follows.

We recall that each node is identified by the integer number

i, that the iterations of the algorithm are numbered using the

variable x and in the following the cost of the x-th policy

from the head is indicated as Zx. At the first iteration (x = 1),

the condition i ≤ σ + ⌈Z
(x)
i ⌉ is evaluated at each transmitter

to decide whether the node shall send the packet to N16,

which is at the head of the list. The check at line 5 of

Algorithm 2 results true only at nodes {N1, . . . ,N5}, so these

five transmitters send one packet each toN16 and the algorithm

terminates. Accounting for the losses on the links, the total

number of packets transmitted to N16 by {N1, . . . ,N5} is

5;one greater than k − r16 = 4, so N16 is expected to

recover the generation. The check at line 5 of Algorithm 2 is

instead false at transmitters N6 . . .N15, so at these nodes no

transmission occurs and the algorithms iterates. At the second

iteration (only transmitters N6 . . .N15), we have x = 2 and

σ = Z1, so the check is true at all transmitters, which send a

packet each to N17 and the algorithm terminates. Accounting

for the losses on the links, the expected number of packets

received by N17 is 9 > 8, so N17 is expected to recover the

generation too.

D. Considerations on Computational Complexity

Finally, we briefly discuss the computational complexity

of the algorithms described above. At each transmission op-

portunity, a node invokes the algorithm, whose complexity

largely lies in the sorting of the list of transmission policies,

Fig. 4. Illustration of the SDS scheduler operations for a toy network: both
receivers are able to recover the generation thanks to a correct allocation of
the transmission opportunities.

which in turn depends on the list length. The number of

transmission policies depends on the number |Ai| of neighbors

of the node, the number of generations in a the decoding

region tb
Gt

and on the number of substreams S in the media

stream and is upper bounded by |Ai|
tb
Gt

S. Such parameters

drive however not only the complexity of the scheduler, but

also the quality of the media recovered at the nodes. For

example, lower tb reduces the scheduler complexity, but it also

reduces the time available to recover a generation and hence

impairs the expected media quality. Our experiments revealed

however that the probability that a random-push scheduler

transmits surplus packets for a generation increases with the

rank of the generation. Therefore, we argue that the complexity

associated with the proposed scheduling algorithms can be

reduced with little penalty if the nodes allocate some trans-

mission opportunities to distribute packets for the generation

currently seeded by the source, which is the most far from

full rank, to random recipients in the network while optimized

transmissions are reserved for generations close to full rank.

The trade-off between performance and complexity of our

schedulers is experimentally evaluated in the next section.

V. EXPERIMENTAL RESULTS

In this section, we experiment with our robust scheduling

algorithms streaming a network-coded media sequence to a

set of cooperating nodes arranged in an unstructured graph

with cycles where the links are affected by packet losses and

delays. We measure both the quality of the media received by

the network nodes and the efficiency of the packet scheduling

scheme at allocating the limited upload bandwidth available in

the network. The quality of the media recovered at the network

nodes is measured in terms of Continuity Index (CI), i.e.,

the fraction of generations timely recovered in the network.

The bandwidth allocation efficiency is measured in terms

of overhead with respect to the media encoding bandwidth,

i.e., as the extra bandwidth required to achieve a given CI

with respect to the media bandwidth. In the following we
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compare with a random-push reference scheduler (RND, in the

following) similar to [9], where each network node transmits

a packet to a random neighbor for a random generation

each time a transmission opportunity arises. We consider two

different network scenarios with the purpose to evaluate the

resilience of our robust scheduling algorithms, respectively, to

concurrent optimizations and imprecise feedback. Table II lists

the notations used in the rest of this section.

N Number of nodes in the network

Ni i-th network node, i ∈ [1, N ]
|Ai| Ni neighborhood size

RTT Average round trip time between nodes

Cv Encoding bandwidth of test media

Cs Upload bandwidth of the source node

Cn Upload bandwidth of the other nodes

TABLE II
KEY NOTATION USED FOR THE EXPERIMENTS.

A. Synchronous Network

We experiment streaming a network-coded media sequence

to a set of cooperating nodes arranged into an unstructured

graph with cycles where the nodes are deterministically

granted transmission opportunities.

In the first experiment, we compare our distributed sched-

uler with a centralized oracle (ORC, in the following) that

always knows the up-to-date decoding status of all nodes

and selects the globally optimal scheduling policy solving

problem 4. We stream a single-layer (S = 1) media sequence

encoded at constant bitrate Cv = 500 kbit/s, where each

generation is subdivided in k = 100 blocks of symbols

and accounts for 1 Mbit of the media sequence, i.e., each

generations accounts for Gt = 2 seconds of media sequence.

The test network is composed by N=100 nodes with con-

strained upload bandwidth Cn kbit/s and one source node

that distributes encoded packets at a rate of Cs = 2Cn

kbit/s. The network links are affected by an average 10%

packet loss rate and each node broadcasts an explicit feedback

message every 10 media packets transmitted. Figure. 5 reports

the CI measured at the network nodes as a function of the

upload bandwidth Cn. The ORC scheme enables all nodes

to seamlessly recover the media stream when the upload

bandwidth is just enough to compensate the losses on the links,

i.e., Cn = 1.1Cv, and represents the upper bound to the media

quality. The figure shows that SDS and ORC curves almost

overlap, proving that our distributed framework enables nearly

the same performance as the centralized counterpart. The

figure also shows that the ADS scheduler achieves lower media

quality than the SDS scheduler, albeit the two algorithms

share the same theoretical framework. Our analysis showed

that the ADS may waste the transmission opportunity when

multiple nodes select the same policy at the same time due

to the deterministic transmissions scenario, that the heuristic

implemented in the SDS scheduler avoids instead. As a result,

the ADS scheduler requires an upload bandwidth equal about

1.28 times the media bandwidth (i.e., about 640 kbit/s in this

setup) to achieve a CI close to 1. Finally, the RND scheduler

achieves a much lower CI because it does not take into account

the status of the nodes nor the links, and the nodes waste

many transmission opportunities transmitting surplus packets

(it requires Cn to be about 1.35 times Cv, i.e., about 675

kbit/s, to achieve a CI close to 1).
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Fig. 5. Media quality as a function of upload bandwidth (N = 100,
|Ai| = N ). Our distributed scheduler performs nearly as well as a centralized
scheduler reference.

In the second experiment, we evaluate the media quality

at the network nodes as the number of nodes in the network

N increases. As N increases, organizing the nodes in a fully

connected graph becomes undesirable due to the associated

signaling cost, which grows with the square of the neigh-

borhood size |Ai|. Moreover the complexity of the scheduler

also increases linearly with |Ai|. On the other hand a greater

neighborhood size |Ai| allows the scheduler to have complete

knowledge of the decoding status of the network nodes to form

an optimal scheduling policy. In this experiment, we limit each

node to include in its neighborhood at most |Ai| =
N
4 nodes

drawn at random in the network and evaluate the media quality

achieved. Each node independently selects the optimal policy

at each transmission opportunity using the SDS scheduler,

which the previous experiment showed to perform close to

a centralized reference. The output bandwidth of the nodes

is set to Cn = 1.15 Cv , as the previous experiment showed

being enough for the SDS scheme to achieve a CI close to

1. Figure. 6 shows the results of the experiments. The CI

achieved by the RND scheduler never exceeds 0.7, while the

SDS scheduler achieves a CI close to 1 and its performance is

equivalent to that of the ORC scheduler for all N . The figure

shows that even for large network sizes the SDS scheduler

effectively avoids the transmission of surplus packets, resulting

in a better bandwidth utilization and improved CI.

In the third experiment, we evaluate the trade-off between

complexity and performance of our scheduling framework.

In Section IV, we suggested that part of the transmission

opportunities of a node can be reserved to distribute packets

for the generation seeded by the source to reduce the number

of times the scheduler is invoked, with little penalty in

terms of media quality. Therefore, here we experimentally

assess the minimum number of optimized transmissions that

a node must afford before the media quality starts to degrade.

Moreover, we also assess how much the neighborhood of

a node |Ai| can be shrunk before the media quality starts

to degrade. We experiment with the SDS scheduler in the
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Fig. 6. Media quality as a function of the number of network nodes N
(upload bandwidth Cn = 1.15 Cv).

same conditions as for the experiments reported in Figure. 5

and set Cn = 1.15 Cv . Figure. 7 shows the results of the

experiment. When the number of optimized transmissions is 0,

all nodes transmit packets for the generation currently seeded

by the source, many transmission opportunities are wasted

transmitting surplus packets and hence the SDS scheduler

performs similarly to the RND reference in Figure. 5. As

the number of optimized transmissions increases, the nodes

waste fewer and fewer transmission opportunities transmitting

surplus packets and so the CI increases. When the number of

optimized transmission further increases between 7% and 13%

of the total, the network nodes are able to seamlessly recover

the media. Figure. 8 represents the amount of bandwidth

wasted by transmitting surplus packets as a function of the

optimized transmissions. The figure confirms that with the

increase in the number of optimized transmissions, the amount

of surplus bandwidth drops rapidly. In Figure. 8 at 7% and

13% of optimized transmissions, there is still some surplus

bandwidth while in Figure. 7 the CI achieved by optimizing

7% and 13% of the transmissions is 1 for |Ai| = N and

|Ai| =
N
4 , respectively. This is because the node bandwidth

Cn = 1.15 Cv is set slightly higher than the theoretical

limit to cope with 10% of packet losses. If the number

of optimized transmissions is increased further the surplus

bandwidth finally becomes negligible. Moreover the amount

of surplus bandwidth when |Ai| =
N
4 is slightly higher than

the case when |Ai| = N , this is because of two reasons i)when

|Ai| = N , the nodes have knowledge of the decoding status of

all the nodes in the network that helps to form the scheduling

policies optimally and ii) when the neighborhood size |Ai| is

decreased from N to N
4 , the probability of transmitting surplus

packets increases with the decrease in the amount of optimized

transmissions; this trend is also shown in the figure that as

the number of optimized transmissions is increased beyond

12% the difference in the amount of surplus bandwidth for

|Ai| = N and |Ai| =
N
4 is decreased greatly. The experiments

show that the our scheduling framework enables seamless

media recovery just by optimizing a small fraction of the

total transmissions, hence reducing the scheduler impact on

the node complexity.

In this experiment, we stream a two layer (S=2) scalable

coded media sequence where the base layer is encoded at 375

kbit/s and the enhancement layer is encoded at 125 kbit/s
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Fig. 7. Media quality as a function of the number of optimized transmissions
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(that is, Cv = 500 kbit/s), yielding a base layer of k1=75

blocks of symbols per generations and an enhancement layer

of k2=25 blocks per generation. We experiment with the SDS

scheduler and compare the performance with the reference

RND scheduler: as the base layer accounts for 75% of the

media encoding bandwidth, the RND scheduler allocates 75%

of the node upload bandwidth Cn to the base layer and the

rest to the enhancement layer. Figure. 9 reports the CI as a

function of Cn

Cv
for both layers (enhancement layer generations

are accounted as recovered only if the corresponding base

layer generation is recovered as well). The figure includes the

RND and SDS curves for a single stream media as reported

in Figure. 5 to assess the benefits of scalable coding over

single-stream coding. The RND reference fails to exploit

the advantages offered by scalable coding: not only RND is

unable to deliver full quality media to all network nodes (EL-

RND), but the CI achieved for the base layer (BL-RND) is

just slightly more than the CI achieved by the single stream

media (RND). Conversely, our scheduler exploits the rate-

adaptation properties of layered media to deliver reduced

quality media when the available bandwidth is scarce. When

the available bandwidth is enough to compensate the packet

losses (Cn

Cv
> 1.1), our scheduler (EL-SDS) delivers better

CI than a random push scheduler distributing a single layer

media (RND). When the upload bandwidth is not enough to

compensate the packet losses (Cn

Cv
< 1.1), the EL-SDS curve

remains below the SDS curve because, due to smaller gener-

ations (k2 < k1 < k), the network code is less efficient and

it takes more bandwidth to achieve identical CI. Despite the
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lower network code efficiency, almost all nodes are however

able to recover a low-quality version of the media (BL-SDS)

even when the upload bandwidth is not enough to account for

the packet losses (Cn

Cv
< 1.1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5

C
o

n
ti
n

u
it
y
 I

n
d

e
x

Node upload bandwidth (Cn/Cv)

SDS
RND

BL - SDS
EL - SDS
BL - RND
EL - RND

Fig. 9. Media quality as a function of the upload bandwidth for scalable
media streams.

Finally, we consider the case of a media sequence encoded

as two independently decodable descriptions where each de-

scription is encoded at 250 kbit/s (i.e., Cv = 500 kbit/s),

yielding generations of k1 = k2 = 50 blocks. The reception of

any description allows a node to recover a base quality version

of the generation, whereas reception of both generation allows

the node to recover a full quality media. As in the previous

experiment with scalable coded media, we experiment with

the SDS algorithm and the RND reference and we compare

with the single description sequence reported in Figure. 5.

Since each description is of equal importance to the end

of recovering the full quality sequence, in this experiment

the RND scheduler evenly allocates the upload bandwidth to

the two descriptions. Figure. 10 shows the media quality at

the nodes as a function of Cn

Cv
and its analysis demonstrates

similar findings to the results of the previous experiments with

scalable coded media. The RND reference hardly allows the

nodes to achieve a CI close to 1 for both descriptions (2D-

RND), and the CI achieved by the nodes that recover at least

one description (1D-RND) is systematically lower than the CI

achieved for the single stream media (RND). On the contrary,

our scheduler allows all network nodes to achieve a CI of 1

for at least one description (1D-SDS), even when the upload

bandwidth is not sufficient to compensate the losses on the

network. Moreover, it delivers full quality media (2D-SDS)

to all nodes, despite smaller generations, only with a slight

increase in the bandwidth required to deliver full quality single

description reference (SDS).

B. P2P Media Streaming

The second scenario we consider is a P2P media streaming

using the ToroStream protocol [4]. We briefly overview the

the protocol. The network nodes are organized into an unstruc-

tured graph by a central tracker. The tracker maintains a list of

all the nodes in the network and listens to join requests from

the nodes. The tracker replies to the join requests by sending a

list of nodes selected randomly. Then a handshake procedure

starts between the nodes to become neighbors. After every 10

seconds each node removes some of its neighbors and a new
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Fig. 10. Media quality as a function of the upload bandwidth for a multiple
descriptions encoded sequence.

list of neighbors is assigned to it by the tracker. Moreover

if a node does not receive any packet (data or keepalive

message) from its neighbor for a given amount of time it

is removed from the neighborhood and is considered offline.

The links connecting the nodes are affected by an average

10% packet loss rate and each node updates its neighbors

about its decoding status and the measured packet loss rate

on the incoming links every 1 second broadcasting an explicit

feedback message. Moreover, each node keeps in its buffer

up to 10 generations that have already been played, in order

to help its neighbors that are behind playback to recover the

generations.

Differently from the previous scenario, the uncoordinated

nature of P2P networks mitigates the problem of concurrent

optimizations. However, the limited feedback precision due to

packet losses and delays on the links and the churning of the

network nodes is a challenge for our scheduling framework.

Therefore, we modified the ToroStream so that, at each trans-

mission opportunity, each node selects the transmission policy

using the ADS scheduling algorithm.

As in the previous experiments, the source node streams a

5 minutes long media sequence encoded at Cv = 500 kbit/s

subdivided in generations of k=100 blocks for a generation

time of Gt = 2 seconds. The initial buffering time of the

network nodes tb is equal to 6 seconds, i.e., the decoding

region of each node encompasses 3 generations of media.

Our reference is the same random-push scheduler (RND)

considered in the previous experiments that transmits a packet

to a random node for a random generation at each transmission

opportunity.

In the first experiment, we consider a network composed

of N=100 nodes where each node has a neighborhood size

|Ai|=50 nodes. We experiment with the ADS scheduler for

different values of the m∗ parameter m∗ ∈ [1, 10, 30] and

compare with the RND reference. The logs of the experiment

show that the average value of the size of costs list is

|C| = 47.9. Thus the value of m∗ is bounded by 1 ≤ m∗ ≤ 47.

Figure. 11 shows the media quality at the nodes as a function

of Cn

Cv
. The ADS scheduler performs better with m∗ = 10 as

compared with other value of m∗. The performance of ADS-

m∗ = 1 is comparable to the performance of ADS-m∗ = 10.

However when Cn

Cv
= 1.10, ADS-m∗ = 1 selects π1 as

the transmission policy at all the nodes, that results in some
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Fig. 11. Media quality as a function of the upload bandwidth (N = 100,
|Ai| = 50).

surplus packets and a drop in the CI. Whereas if the value

of m∗ is increased to m∗ = 30, initially the performance

of the ADS scheduler drops very low for Cn ∈ [1.10, 1.11].
This is because when m∗ is increased to a value close the

|C|, the scheduler acts and performs towards a random-push

scheduler, resulting in a inefficient bandwidth utilization. A

comparison of the ADS-m∗ = 10 and RND graphs shows that

the ADS-m∗ = 10 delivers better media quality than the RND

reference and enables all nodes to recover the media sequence

when the upload bandwidth is just sufficient to compensate

the 10% packet loss rate on the links. The reason for better

media quality lies in the improved efficiency in utilizing the

available bandwidth, as illustrated in Figure. 12, which shows

the bandwidth wasted for the transmission of surplus packets.

For the RND reference, the surplus bandwidth increases with

Cn and it amounts up to 50 kbit/s, i.e., almost 10%, of

Cn. Conversely, the ADS surplus bandwidth remains below

4 kbit/s, i.e., it is about 1% of Cn and one order of magnitude

smaller than for the RND reference.
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Fig. 12. Bandwidth wasted transmitting surplus packets (the lower, the
better).

In the next experiment we evaluate the performance of the

ADS and RND schedulers reducing the neighborhood size |Ai|
to 25 nodes, while using the same network settings as in the

previous experiment. Since the previous experiment showed

that setting m∗ = 10 showed better results for the ADS

scheme, again we select m∗ = 10 for this and the following

experiments. The benefits of small neighborhoods are smaller

signaling bandwidth and lower scheduling complexity. On

the other hand, a greater neighborhood size |Ai| enables the

ADS scheduler to form an optimal scheduling policy, because

every transmitter node in this case has information about the

decoding status of more nodes in the graph. Figure. 13 shows

the CI as a function of the node bandwidth Cn. The figure

shows that when Cn = 1.10 Cv the CI achieved by the ADS

scheduler is about 0.98 while the RND scheduler achieves a CI

of about 0.85. For the RND scheduler the minimum required

node bandwidth Cn to achieve a CI of 1 is Cn = 1.14 Cv. The

experiment suggests that even when the neighborhood size is

reduced the ADS scheduler gives a performance close to the

ideal case, while also reducing the computations necessary for

the sorting process.
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|Ai| = 25).

Next, we evaluate the performance of both schedulers with

more constrained network conditions by setting |Ai| = 25
and increasing the round trip time to RTT = 25ms. With

the introduction of some delay on the links all the packets

exchanged among nodes get delayed. For the ADS scheduler

this entails that the feedback parameters used for the packet

scheduling optimization are not the true ones; therefore, this

setting also tests the sensitivity of the scheduler to inaccuracy

of the parameters. For the RND scheduler, increasing the delay

should also affect the performance since the message sent by

a recipient node when it decodes a generation is also delayed.

Figure. 14 represents the performance results in terms of CI as

a function of the node upload bandwidth in the network. When

Cn = 1.10 Cv , the ADS scheduler achieves a CI equal to 0.91

while the RND scheduler achieves a CI of about 0.84. A CI

of 1 is achieved by the ADS scheduler at Cn = 1.12 Cv,

while for the RND scheduler it takes Cn = 1.15 Cv to

achieve a CI of 1. The figure shows that even with the increase

in RTT and smaller neighborhood size, the proposed ADS

scheduler decodes more than 90% of the content when the

node bandwidth Cn is just sufficient enough to cope with

the packet losses (i.e., Cn = 1.10 Cv) and outperforms the

reference RND scheduler by effective bandwidth utilization.

Moreover for the same network settings we experiment by

varying amount of explicit keepalive messages for the ADS

scheduler and evaluate the effect on the CI. We recall that apart

from explicit keepalive messages every packet transmitted by

the nodes also contain the node decoding information. Fig-

ure. 15 shows the media quality achieved as a function of Cn

Cv

for explicit feedback message frequencies of [500, 1000, 2000

and 4000]ms. The figure shows that, since the information
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Fig. 14. Media quality as a function of upload bandwidth (RTT = 25 ms,
N = 100, |Ai| = 25).

carried by the explicit feedback messages is also carried by

all packets exchanged by the nodes, sending explicit feedback

messages less frequently has little impact on the CI. The figure

shows that the proposed ADS scheduler requires very little

amount of explicit feedback information for optimization of

the scheduling policies, resulting is less overhead.
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Fig. 15. Media quality by ADS-m∗ = 10 as a function of upload bandwidth
for different rates of explicit feedback messages (RTT = 25 ms, N = 100,
|Ai| = 25). Reducing the amount of explicit feedback messages has little
impact on CI.

Next, we experiment with a low-delay media streaming

scenario by reducing the maximum allowed buffering time

tb of the nodes. A decrease in the buffering time is very

desirable from the users perspective. However, achieving a

high CI with reduced buffering time requires increased upload

bandwidth due to the lower efficiency of the push mechanism.

Moreover, reducing the buffering time requires to reduce k,

which increases the encoding overhead k′/k. The experimental

setup consists of the source node that streams to N = 100
nodes a media sequence with Bv = 500kbps and correspond-

ing k = 25 and generation time Gt = 500ms. We set the

buffering time of the nodes equal to the generation time, i.e

(tb = Gt = 500ms); this means that the nodes only buffer

one generation before playback of the stream; rather than 3 as

in the previous experiments. Figure. 16 represents the results

of the experiment in terms of CI as a function of the upload

bandwidth of the node. With 10% average packet losses at
Cn

Cv
= 1.10, the CI achieved by the ADS scheduler is about

0.75, while the RND scheduler achieves a CI of about 0.70.

To achieve a CI equal 1 the ADS scheduler requires an upload

bandwidth ratio of Cn

Cv
= 1.32, while the requirement for the

RND scheduler is Cn

Cv
= 1.45 to achieve a CI equal 1. The

ADS scheduler requires about 10% less bandwidth than the

RND scheduler to provide a continuous media playback. The

figure shows that the ADS scheduler is suitable for low-delay

communications and provides better media quality to the users

with reduced buffering times in comparison with the RND

scheduler.
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Fig. 16. Low-delay media streaming scenario with Ct = tb = 500ms
(N = 100, |Ai| = 50).

Finally, we experiment a low-delay video-conferencing sce-

nario using the Planetlab network [28]. Planetlab is a network

composed of hundreds of Internet nodes in different locations

and enables us to experiment using a real P2P network

with delays, packet erasures and out-of-order delivery. We

experiment using 25 Planetlab nodes in a fully connected

graph and we further reduce the maximum allowed buffering

time tb of the nodes to 250ms. The source node streams

a media sequence encoded at Cv = 500kbps, which yields

a generation size of k = 13. Each node sends an explicit

feedback message (i.e., a keepalive message) containing its

updated decoding status to its neighboring nodes each second.

We set the bandwidth of the source node Cs = 2.5Mbps
thus on average each node receives 20% of the media content

from the source node. Figure. 17 shows the media quality

achieved at the nodes as a function of Cn

cv
for the ADS and

the RND schemes. Due to the packet losses on the Internet and

out of order delivery of the messages, the bandwidth required

to achieve a CI close to 1 has increased with respect to the

previous experiment in Figure. 16. At Cn

Cv
= 1.88 the ADS

scheduler allows the nodes to recover about 96% (i.e., CI

= 0.96), while the nodes using the RND scheduler require
Cn

Cv
= 3.3 to achieve a similar media quality, thus the ADS

scheduler requires less bandwidth than the RND scheduler

to provide the same media quality. The experiment suggests

that on a real network with more tight network parameters

of reduced buffering time and reduced network size the ADS

scheduler still outperforms the RND scheduler, resulting in

a improved user experience and better bandwidth utilization

than the RND scheduler.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we target the packet scheduling problem for

media streaming with NC in unstructured random graphs. We
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Fig. 17. Media quality achieved on the Planetlab network towards a video-
conferencing scenario with Gt = tb = 250ms and N = 25.

formulated the packet scheduling problem as an optimization

model to maximize the media quality delivered to the nodes

using a push-based approach. The model utilizes the decod-

ing status of the nodes to estimate the amount of packets

required by the node to be able to decode a generation, taking

into account the decoding overhead, packet loss probability

and delay on the links. To solve the problem we propose

two algorithms that are robust to imprecise and infrequent

feedback information from the recipient nodes, and solve the

optimization problem in linear time. We perform numerous

experiments with the proposed algorithms and a reference

random-push scheduler in different network scenarios and

conditions including packet losses and delays on the links.

Our experiments, including real-world tests using PlanetLab,

with the proposed algorithms and a reference random-push

scheduler show that the proposed algorithms provide improved

user experience in terms of media quality, delay and bandwidth

requirements, while only using little amount of feedback

information from the recipient nodes.
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