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Abstract 

The performance of the massively parallel direct multifrontal solver Watson Sparse Matrix Package 

(WSMP) for solving large sparse systems of linear equations arising in implicit finite element method 

on unstructured (free) meshes in solid mechanics was evaluated on one of the most powerful super-

computers currently available to the open science community-the sustained petascale high perfor-

mance computing system of Blue Waters. We have performed full-scale benchmarking tests up to  

65,536 cores using assembled global stiffness matrices and load vectors ranging from 11-40 million 

unknowns extracted from “real-world” commercial implicit finite element analysis (FEA) applica-

tions. The results show that a direct multifrontal factorization method with a hybrid parallel imple-

mentation in WSMP performs exceedingly well on a petascale high-performance computing (HPC) 

system, and delivers superior factorization time and parallel scalability,  thus opening the door for the 

high fidelity modeling of complex industrial structures and assemblies in real scale.  
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1. Introduction  

1.1 High Performance Computing in Engineering  

 

Across a range of engineering fields, the use of simulation and computational models is pervasive 

for designing engineered systems. High Performance Computing (HPC) systems play an essential role 

in simulations and modeling. Researchers and manufacturing teams depend on HPC to create safe cars 

and energy-efficient aircraft as well as effective communication systems and efficient supply chain 

models. Availability of advanced HPC technologies has also fundamentally altered the investigative 

paradigm in the field of biomechanics. While emerging peta-scale computing is already a strategic 

enabler of large-scale simulations in many scientific areas such as astronomy, biology and chemistry 

[1-3], paradoxically for many engineers and researchers, the existing hardware and software often 

cannot be used to solve their problems. On one hand, current HPC systems in production often lack 

the computational power, network bandwidth and data storage needed for solving tomorrow’s real-

world engineering challenges. On the other hand, even the most powerful hardware will fail to deliver 

on its full potential unless matched with appropriate algorithms designed specifically for such envi-

ronments. Sparse matrix factorization, a critical algorithm in many science, engineering, and optimi-

zation applications, has traditionally had difficulty tuning to and leveraging the ever increasing com-

putational power of HPC [4]. 

The main objective of this work is to demonstrate that the multifrontal sparse factorization algorithm 

with hybrid parallelization, such as the one in the WSMP solver code, can scale efficiently in today’s 

large-scale supercomputers, opening a new horizon of high fidelity and robust finite element simula-

tions in the engineering academic and industrial realms. 

 



1.2 Sparse Linear Solvers in Implicit Finite Element Methods, Background 

and Previous Work  

 

Solving linear system of equations: 

              (1)  

                                            

is responsible for 70-80% of the total computational time in many problems in computational science 

and engineering. When discretizing continuous solid mechanics problems with implicit finite element 

method, the associated matrix A is sparse, symmetric and often positive definite. A single solution of 

equation (1) suffices for linear problems. For nonlinear problems, however, within each quasi-static 

time step, a system of nonlinear equations is linearized and solved with a Newton-Raphson (NR) iter-

ation scheme [5,6], which requires several linear solver solutions of global equilibrium iterations 

(subscript i) as follows: 

   t+Δt t+Δt t+Δt

i-1 i-1 i-1K Δu = R   .      (2)                   

Here  t+Δt

i-1Δu  is the incremental change to the solution vector (displacements in mechanical prob-

lems), and  t+Δt

i-1R  is the residual error vector. A linear solver is used to solve equation (2) for 

 t+Δt

i-1Δu , which is used to update the solution vector in equation (3), until convergence is achieved 

everywhere at time t+Δt  (i.e., when the update vector is sufficiently small). 
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The tangent stiffness matrix 
t+ΔtK    is defined in equation (5) from the consistent tangent operator, 

also known as the material Jacobian, [J], which is defined in equation (4) for mechanical problems, 

taking 
t tˆ   as a guessed mechanical strain increment, based on the current best displacement in-

crement. 
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    t+Δt T

V

K = B J B dV   
.

       (5)                       

Here    B N  x  contains the spatial derivatives of the element shape functions  N .  

There has been considerable interest in the development of numerical algorithms for solving large 

sparse linear systems of equations and their efficient parallel implementation on HPC systems for 

more than three decades. The algorithms may be grouped into two broad categories: direct methods 

and iterative methods.  

Iterative method algorithms repeatedly apply a sequence of operations at each step attempting to 

improve upon its current approximation to a solution. Krylov subspace methods are an important class 

of iterative methods. This class includes the Conjugate Gradient (CG) method [7,8] and its variants, 

which are robust for Symmetric Positive Definite (SPD) matrices. In solving the large systems in fi-

nite element method, combining a Krylov subspace method such as CG with a preconditioner is es-

sential to accelerating the convergence rate and avoiding divergence of solution especially for ill-

conditioned linear systems.  

The most widely used direct methods [9] are variants of Gaussian elimination and involve the ex-

plicit factorization of the system matrix A (or, more usually, a permutation of A) into a product of 

lower and upper triangular matrices L and U. In the symmetric case, U = DL
T
, where D is a block 

diagonal matrix with 1 × 1 and 2 × 2 matrix blocks. The ordering phase reorders the rows and col-

umns such that the factors have reduced  fill-in. Symbolic factorization phases analyze the matrix 

structure to determine an optimal pivoting sequence and strategy for optimal factorization. Forward 

elimination (numerical factorization) is by far the most computationally expensive part in solving a 

sparse linear system and the primary focus of this work. Numerical factorization is followed by back-

ward substitution that completes the solution process for each given right-hand side b.  

For some tough (ill-conditioned) linear systems that arise in a number of application areas with 

finer unstructured computational meshes on irregular geometries and model coupling (e.g. multi-

scale, multi-physics concurrent modeling), explicit time discretization imposes a constraint on the 



maximum time step directly proportional to the grid edge length. Increasing the level of detail of the 

geometric models inevitably leads to shorter time steps in explicit schemes. Implicit methods with 

iterative solvers often diverge, or finding and computing a good preconditioner for use with an itera-

tive method can be computationally more expensive than using a direct method. Therefore, implicit 

methods with direct solvers are often the only feasible methods.  

In the case of nonlinear problems, moreover, the matrix structure does not change for the linear 

solvers within each NR non-linear iteration in the equation (2). Ordering and symbolic factorization 

phases are performed only for the first NR iteration for each step. For every subsequent nonlinear 

iteration, only the factorization and backward-solve need to be called with direct solvers. Further-

more, in a modified NR [5] the reordering/analysis and factorization is done only once during the first 

iteration. The tangent stiffness matrix [K] on the left hand side of equation 1 is retained and is not 

changed during the subsequent iterations. Only the right hand side vector is updated during each itera-

tion and solved with extremely cheap backward solve until convergence is achieved. The savings in 

computational time per iteration compensates for the lower convergence rate compared to the full NR 

method. 

The main advantages of direct methods are their generality and robustness.  A significant weak-

ness of direct methods, however, is that the matrix factors are often significantly denser than the orig-

inal matrix, and for large problems such as those that arise from discretization of three dimensional 

partial differential equations, insufficient memory for both forming and then storing the factors can 

prevent the use of direct methods. The limitation on CPU computing power and memory requirements 

had made the use of direct solvers uneconomical in the past, resulting in broad use of iterative solvers. 

The recent rise of terascale and petascale computational resources has greatly increased the efficiency 

and practicality of using direct solvers for large sparse systems.   

Kilic et al. [10] showed that direct solvers provide a faster solution than iterative solvers in im-

plicit structural dynamics with ill-conditioned coefficient matrices. Multifrontal parallel distributed 

symmetric and unsymmetric solvers [11] in MUMPS were evaluated by Amestoy [12].  Gould et. 

al.[13] assessed the performance of direct solvers for symmetric matrices. The solvers were executed 



on a single processor for matrices of order greater than 10,000. Parallel performance of both direct 

and iterative solvers on proprietary IBM HPC platforms with matrices of 1-2 million unknowns were 

studied by Gupta et al. [14]. Wozniak et al. [15] have analyzed theoretically and experimentally the 

performance of multi-frontal direct solvers on distributed memory parallel machines. A general com-

parison of several sparse linear solvers on a modern multi-core HPC cluster with large sparse matrices 

originating from practical 3D FEA discretization has recently been performed lately by Koric et al. 

[16], showing that Watson sparse matrix package (WSMP) [17, 18] is the only direct solver that has 

shown sufficient scalability and robustness to tackle problem sizes of tens of millions of ill-

conditioned FEA equations on many thousands of processor cores.  

Besides global matrix solver methods, direct sparse methods are also used in domain decomposi-

tion methods, such as Finite Element Tearing and Interconnecting FETI [19-20] and its dual prime 

follow up FETI-DP [21]. The global problem is partitioned in local subproblems, which are solved 

independently of each other, often by direct methods. Besides the implementation complexity of these 

methods, solving some additional coarse global problem such as the primal Schur matrix in FETI-DP 

is the price for decoupling computations to introduce parallelism. The Schur matrix is a distributed 

matrix with a very low ratio of rows per processor, thus the amount of communication is extremely 

high in contrast to the computation that can be done locally and is mostly responsible for observed 

decreasing computational efficiency of the FETI-DP implementation on large number of domains 

[21].  

 

2. WSMP: A Hybrid Shared and Distributed-Memory Parallel Solver  

The Watson Sparse Matrix Package, WSMP [17,18], is a high-performance, robust, and easy-

to-use software package for solving large sparse systems of linear equations. It has been under con-

stant improvement and development for over two decades, and can be used as a serial package, in a 

shared-memory multicore environment, or as a scalable parallel solver in a message-passing environ-

ment. A distinctive aspect of WSMP is that it exploits both shared-memory (SMP) and distributed-



memory parallelism using Pthreads and MPI, respectively, while mostly shielding the user from the 

details of the architecture. 

WSMP can perform either Cholesky (LL
T
) or LDL

T
 factorization on symmetric sparse matri-

ces. A highly scalable parallel algorithm is used for this step. The parallel symmetric factorization in 

WSMP is based on the multifrontal algorithm [11,23]. Cholesky (A = LL
T
 ) factorization [11] is the 

simplest of direct methods applicable to the important class of linear systems with symmetric posi-

tive-definite (SPD) coefficient matrices. The algorithmic descriptions and experimental results in this 

paper pertain to sparse Cholesky factorization only. However, the basic approach is applicable to oth-

er factorization variants for symmetric indefinite and unsymmetric matrices fully supported in 

WSMP.  Given a sparse matrix and the associated elimination tree, the multifrontal algorithm can be 

recursively formulated as follows. 

 

2.1 Multifrontal Algorithm in WSMP 

 

Consider an N x N matrix A. The algorithm performs a postorder traversal of the elimination 

tree associated with A. There is a frontal matrix F
i
 and an update matrix U

i
 associated with any vertex 

i. The row and column indices of F
i
 correspond to the indices of row and column i of L, the lower 

triangular Cholesky factor, in increasing order. In the beginning, F
i
 is initialized to an s x s matrix, 

where s is the number of nonzeroes in the lower triangular part of column i of A. The first row and 

column of this initial F
i
 is simply the upper triangular part of row i and the lower triangular part of 

column i of A. The remainder of F
i
 is initialized to all zeroes. 

After the algorithm has traversed all the subtrees rooted at a vertex i, it ends up with a (m+k) 

x (m+k) frontal matrix F
i
, where m+k is the number of nonzeroes in the lower triangular part of col-

umn i in L. The row and column indices of the final assembled F
i
 correspond to m+k (possibly) non-

contiguous indices of row and column i of L in increasing order. If i is a leaf in the elimination tree of 

A, then the final F
i
 is the same as the initial F

i
. Otherwise, the final F

i
 for eliminating vertex i is ob-



tained by merging the initial F
i
 with the update matrices obtained from all the subtrees rooted at i via 

an extend-add operation. The extend-add is an associative and commutative operator on two update 

matrices such the index set of the result is the union of the index sets of the original update matrices. 

After F
i
 has been assembled, a single step of the standard dense Cholesky factorization is performed 

with vertex i as the pivot. At the end of the elimination step, the column with index i is removed from 

F
i
 and forms the column i of L. The remaining m x m matrix is called the update matrix U

i
 and is 

passed on to the parent of i in the elimination tree.  

We assume that the supernodal tree is binary in the top log p levels. The portions of this bina-

ry supernodal tree are assigned to the nodes using a subtree-to-subcube strategy illustrated in Figure 

1(b), where eight nodes are used to factor the example matrix of Figure 1(a). The subgroup of nodes 

working on various subtrees are shown in the form of a logical mesh labeled with P. The frontal ma-

trix of each supervertex is distributed among this logical mesh using a bitmask based block-cyclic 

scheme. Figure 1(b) shows such a distribution for unit block size. This distribution ensures that the 

extend-add operations required by the multifrontal algorithm can be performed in parallel with each 

node exchanging roughly half of its data only with its partner from the other subcube. Figure 1(b) 

shows the parallel extended process by showing the pairs of nodes that communicate with each other. 

Each node sends out the shaded portions of the update matrix to its partner. The parallel factor opera-

tion at each supervertex is a pipelined implementation of the dense block Cholesky factorization algo-

rithm. Often, each MPI process is multithreaded, and the portion of multifrontal factorization assigned 

to each process if further parallelized.  

The multithreaded algorithm for numerical factorization is similar to its message-passing 

counterpart. There are, however, significant differences in implementation. Just like the message-

passing algorithms, tasks at each subroot of the elimination tree are assigned to independent groups of 

processors until each processor ends up with its own subtree. The most important difference is that a 

mapping of rows and columns to core processors based on the binary representation of the indices is 

not used in the SMP implementation because all core processors can access all rows and columns with 

the same overhead. This lifts the restriction that the subtree assigned to a group of P processors be 



binary in its top log2 P levels. In the portion of the elimination tree that is executed in the SMP mode, 

therefore, the number of threads assigned to work on a subtree at a branching point is roughly propor-

tional to the amount of work associated with that subtree. This ensures a high degree of load-balance. 

Since the relative ratio of work in a subtree with respect to its siblings in the factorization and solve 

phases is different, moreover, the mapping of subtrees to subgroups of processors in these two phases 

can be different - a flexibility that is not available in the message-passing portion of the code where 

the same subtree-to-subcube mapping is used in both factorization and triangular solves. 

 

Figure 1: (a) An example symmetric sparse matrix. The nonzeroes of A are shown with symbol “x”  
in the upper triangular part and nonzeroes of L are shown in the lower triangular part with _fill-ins 
denoted by the symbol “o”. (b) The process of parallel multifrontal factorization using 8 nodes. At 
each supervertex, the factored frontal matrix, consisting of columns of L (thick columns) and up-
date matrix (remaining columns), is shown. (c) Computation at a typical supernode. 

 



3. Test Cases and Computing Platform 

 
CAD models of solid geometries are commonly used to design parts and assemblies and create 

their corresponding part drawings for manufacturing. Conveniently, these models can be imported 

into FE packages for subsequent numerical analysis. While structured meshing with hexahedral ele-

ments exhibit higher convergence rate and accuracy, it frequently requires user intervention and is 

labor intensive. Automatic unstructured mesh generation with tetrahedral elements is quick and often 

preferred under a tight industrial project schedule. In biomechanics, however, finite element meshes 

generated from computed tomography (CT), are almost always consisting of tetrahedral elements due 

to complex geometry of bone segments. Comparisons between linear T4 and quadratic T10 tetrahe-

dral elements, [24-25], have shown that linear element should be avoided due to their stiff nature and 

volumetric and shear locking. 

 

The global stiffness matrices A, and the load vectors b used in this study are extracted from a 

commercial FEA software NX Nastran [26] via a DMAP procedure. They represent real industrial 

CAD geometries and loads, and are automatically meshed with T10 elements. Figures 2 and 3 show 

two of those geometries: A symmetric machine part cutter with asymmetrical loads, and a header part 

of a Charge Air Cooler (CAC) with complex geometry whose elements have higher aspect ratios and 

therefore a higher condition number. The element size control has produced different levels of auto-

matic refinement. No additional intervention was applied to improve these unstructured meshes to 

emulate a standard accelerated FEA workflow. Table 1 summarizes the three (3) test matrices varying 

from 11 to 40 million degrees of freedom (DOFs). The condition number, as a direct indicator of ill-

conditioning, is driven mainly by irregular element shapes discretizing complex details of the geome-

tries, and it varies from 10
6
 to 10

7
 for the mildly ill-conditioned cutter meshes to 10

9
 for the M11 sys-

tem extracted from the CAC mesh. The size of the largest system, with over 40 million DOFs and 3.3 

billion nonzeros, is the largest ever to be benchmarked with direct solver on this scale as best as we 

can discern from our review of existing literature 

 



 

Table 1 Test matrix characteristics 

Matrix Source Model Dimension Nonzeros Condition Number 
M11 CAC 11,562,627 937,454,416 6.80E+09 
M20 Cutter 20,056,050 1,634,926,088 2.70E+07 
M40 Cutter 39,979,380 3,290,344,248 5.80E+07 

 

 

 

 

The hardware we used is the sustained peta-scale system of Blue Waters [27] hosted at the Uni-

versity of Illinois’ National Center for Supercomputing Applications (NCSA). Blue Waters is one of 

the most powerful supercomputers currently available for the open science community. Sponsored by 

the US National Science Foundation (NSF) and installed at the National Center for Supercomputing 

Applications (NCSA) in Illinois, Blue Waters is also the largest machine to date ever built by Cray. 

Blue Waters consists of traditional Cray XE6 compute nodes (each containing two AMD Interla-

gos processors with 16 floating point cores/XE6 node) and accelerated XK7 compute nodes (each 

containing a single AMD Interlagos processor with 8 floating point cores and a single Nvidia Kepler 

GPU) in a single Gemini interconnection fabric. The solver library is ported and tuned to take full 

advantage of increased memory bandwidth and SSE instructions of XE6 architecture and is linked 

with AMD ACML math library for Basic Linear Algebra Operation (BLAS) [28] operations.  

 

 

 

Figure 2. Finite element mesh of the M20 and M40 cutter models 



 
 Figure 3. Finite element mesh of the M11 CAC model 

 

 

 

4. Results and Discussion 

Table 2 shows factorization time, parallel Speedup and performance for all 3 cases,  We have 

started benchmarking all three (3) cases with the minimum number of nodes that can fit the largest 

M40 case, which is 64 nodes with 1 thread per node for the total of 64 threads. For other runs we have 

fully utilized 8 or 16 floating point units on XE6 nodes by spawning one or two MPI ranks per node 

each with 8 threads. In fact, we have compared the jobs with two MPI ranks per node with 8 threads 

per MPI rank against the comparable jobs on twice as many nodes with a single MPI rank per node 

and 8 threads and found no significant differences in performance. This indicates that WSMP does not 

suffer from memory access bandwidth saturation on Blue Waters.  

LL
T
 factorization wall clock time (on the log scale) for all cases is given in Figure 4. It took less 

than 18 seconds to factor the largest M40 matrix on 65,536 cores opening the possibilities to solve 

large scale linear and nonlinear FEA problems extremely efficiently. Parallel Speedup, equation (6), 

Figure 5, is defined as the ratio of sequential wall clock time over wall clock time on p cores, and is a 

direct indicator of how much benefit we get by solving the systems in parallel, and how well the solv-

ers scale on parallel computers.  



 

 

1
p

T
S

T p
         (6) 

An ideal Speedup is assumed for all the cases on the minimum number of nodes (cores) that can 

fit M40, (Sp = 64 on 64 cores). Based on this assumption, sequential wall clock times are calculated 

for each problem size and then equation (6) is used to calculate Speedup on larger core counts. Note 

that this assumption is close to reality since the factorization in WSMP indeed scales ideally or even 

super-linearly on lower number of cores for multi-million equation problem sizes given enough 

memory is provided [16].  

All three test cases experience a small super-linear Speedup (Sp > p) at 256 and 512 cores, while 

it extends to 1024 cores for M40. On these scales computation is still more important than communi-

cation, and with more nodes more cache is available and therefore more data is stored to cache than to 

memory. Thus, the memory access time is dramatically reduced, which causes the extra speedup in 

addition to that from the actual computation. Scaling wider incurs more communication and synchro-

nization overheads, especially for the smaller problem M11, that  lowers the Speedup to under-linear 

(ideal) values. Nevertheless, the Speedup remains high for larger problems. This is particularly the 

case for the M40 case where Sp reaches 13,179 and 76.4 TFlops (Figure 6) at the largest number of 

threads (cores) 65,536 used in this study. This indicates that the factorization algorithm in WSMP is 

exceedingly well-parallelized, while the load is well-balanced among the MPI ranks and their threads. 

This is also due to the Cray’s proprietary Gemini interconnect between XE6 nodes of Blue Waters, 

having lower latency and better bandwidth than the interconnect fabric found on most modern Linux 

x86 clusters. Figure 7 shows the total measured data traffic to and from Gemini interconnect when 

solving the largest M40 case. A sharp increase in the interconnect traffic by over 30 times is observed 

going from 64 to 4096 nodes indicating that communication becomes more important than computa-

tion on the large scale. 

The results for the M20 and M11 cases on 65,536 cores are not shown since the workload as-

signed to each processing element significantly decreases for these cases reaching the scalability limit 



– that is, the point at which the wall clock time stops decreasing. In general, it is harder to achieve 

good strong-(fixed-size) scaling at larger process counts since the communication overhead for many 

parallel algorithms increases in proportion to the number of processing cores used. Even though the 

commercial FEA codes nowadays can directly solve larger then M40 problems on the latest HPC 

hardware, the M40 scaling on 65,536 Blue Waters cores represents, to the author’s best knowledge, 

the highest sparse matrix factorization parallel scaling reported to date in the literature.  

In Figure 8, we also compare the peak memory used per MPI rank for all  3 test cases.. It takes at 

least 64 nodes to fit the M40 under the 64 GB RAM available on XE6 nodes signifying that the HPC 

clusters with smaller number of nodes would need more memory per node to directly solve large FEA 

problems with tens of millions of equations (DOFs). The memory usage significantly drops to 9 

GB/MPI rank, 18GB/node,  on 4096 nodes (65536 cores) showing that the systems larger than M40 

can be solved with WSMP on Blue Waters or other similar modern large HPC systems. Theoretical 

computational complexity of sparse matrix factorization in 3D problems is O(N
2
) [9]. Since M40 is 

roughly twice as large then M20, and since they are both discretizing the identical domain, the theo-

retical computational cost of factoring M40 should be approximately four times higher than for M20.  

Figure 9 shows the ratio of factorization times for M40 over M20 as a function of number of parallel 

threads. As both problems are scaled wider, the superior parallel efficiency of M40 over M20 signifi-

cantly reduces the computational complexity of sparse matrix factorization.  

Finally from Figure 5, the transition from superliner/ideal to sublinear speedup incurs a visible 

drop in the speedup values for all 3 test cases. This speedup gradient is somewhat recovered at larger 

scales and until the scalability limits are approached for each case when the speedup starts gradually 

dropping again. Since the transition happens for M40 at 2048 cores, and later then for M20 which is 

already partially recovered at that scale, the difference between the M40 and M20 speedups is small-

est at 2048 cores, and thus a local maximum is present in Figure 9 at 2048 cores. The partial speedup 

recovery at around and larger than 128 nodes (2048 cores)  is due to a stricter 3D node topology en-

forced in Gemini interconnect [27] that uses more of fast X and Z directional links for larger node 

jobs compared to the slower Y-directional links preferred by small node count jobs. This is another 



proof that a fast interconnect is a crucial requirement for efficient sparse matrix factorization on large 

scale. 

 

 

 

 

 

Table 2, Factorization times in seconds, Speedup and Performance in TFlop/sec 

Threads 
M11 

Time          Sp           Perf 

M20 
Time         Sp             Perf. 

M40 
Time         Sp           Perf. 

64 121 64 0.29 891.3 64 0.39 3645 64 0.39 

128 57.9 136.1 0.62 457 124.8 0.78 1696 137.6 0.85 

256 28.4 272.6 1.21 215.3 265 1.67 857 272.2 1.67 

512 15.7 527.1 2.28 113 504.8 3.13 421 554.1 3.38 

1024 10.8 717 3.1 73.5 775.7 4.95 223.1 1045.6 6.38 

2048 7.6 1019 4.5 43 1326.6 8.33 147.2 1684.8 9.62 

4096 4.8 1596.7 6.9 31.1 2034.2 11.9 76.3 3057.4 18.36 

8192 3.7 2070.6 8.78 17.6 3233.8 20.0 45.5 5166.7 30.9 

16384 3.1 2458.4 10.4 12.6 4527.4 27.7 33 7060.5 41.1 

32768    11.8 4813.9 29.73 22.7 10272 59.99 

65536       17.7 13179.7 76.40 

 

 



 

Figure 4. Factorization times  

 

  

 

                                   Figure 5 Parallel speedup 



 

                                       Figure 6. Factorization Performance 

 

 

Figure 7. Total Data Sent and Received from Interconnect for M40 

 

0
20
40
60
80

100
120
140
160
180

Send Received

D
at

a 
[T

B
] 

64 Nodes

2048 Nodes

4096 Nodes



 

Figure 8. Peak memory consumption per MPI rank  

 

 

Figure 9. Observed Reduction of Computational Complexity for Parallel Sparse Factorization 

 

 

5. Conclusions 

The factorization performance of the highly scalable direct sparse linear solver WSMP is evaluat-

ed on the sustained peta-scale HPC system of Blue Waters. The test systems are extracted via a com-
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mercial finite element code from practical solid mechanics engineering problems that are discretized 

with 3D unstructured meshes.   

WSMP has shown enough scalability and robustness to solve more than 40 million equations on 

more than 65,000 of cores with 76.4 TFlops of sustained performance. Its hybrid MPI/Pthreads im-

plementation can take full advantage of large amounts of distributed memory, modern multicore pro-

cessors, and low latencies and increased bandwidth of leading interconnect network technologies. As 

the communication surpasses computation with an increased number of MPI domains and nodes, the 

overall performance of WSMP remains high. A relatively inexpensive symbolic factorization phase 

computes the static structure of the factors to enable the subsequent numerical factorization to proceed 

with efficient use of floating point and integer operations. The multifrontal technique ensures that 

most floating point computation is performed by cache friendly level 2 and level 3 basic linear algebra 

subprograms (BLAS) [28]. 

Since iterative solvers are not robust enough to handle a variety of problems in a general purpose 

finite element program, hybrid multifrontal direct solvers are already default solvers in most of com-

mercial general purpose FEA codes, and their usage will increase as the size, speed, and availability 

of multi/many core CPUs, memory, and interconnect network grows in HPC. Analysis of system data 

from the past decade of the top HPC systems [29] indicate that the scale of computing used in the 

cutting edge HPC systems, such as Blue Waters, is approximately 5 years ahead of that used by the 

leading industrial adopter. Thus, this exciting technological advance will pave the way to higher fidel-

ity and complexity simulation studies in many fields of engineering.  

In our future work, we plan to solve larger than M40 FEA problem sizes on Blue Waters with 

WSMP as a standalone solver or implemented in open source FEA codes such as FEAP [30], or Alya 

[31].  In recent years, substantial efforts were undertaken to adapt linear sparse solvers for evolving 

GPU systems. Work is also underway to port WSMP to the GPU-accelerated Cray XK7 nodes of Blue 

Waters.   

 

 



Acknowledgments 

The authors would like to thank the Private Sector Program and the Blue Waters sustained-petascale 

computing project at the National Center for Supercomputing Applications (NCSA). Blue Waters is 

supported by the National Science Foundation (award numbers OCI 07-25070 and ACI-1238993) and 

the state of Illinois.  

 

 

 

References  

 

 
[1] P.  Mösta, C. D. Ott, D. Radice, L.  F. Roberts, E. Schnetter,  R.  Haas,  A large-scale dynamo and 

magnetoturbulence in rapidly rotating core-collapse supernovae, Nature, 528 (2015), pp. 376-379.  

 

[2] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A. M. Gronenborn, K. 

Schulten, C. Aiken, and  P. Zhang, Mature HIV-1 capsid structure by cryo-electron microscopy and 

all-atom molecular dynamics. Nature, 497(2013), pp. 643-646. 

 

[3] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, P. Gibbon, A massively parallel, multi-

disciplinary Barnes–Hut tree code for extreme-scale N-body simulations, Computer physics commu-

nications 183(2015), pp. 880-889. 

 

[4] Y. Lee, P. C. Diniz, M. W. Hall, R. Lucas, Empirical Optimization for a Sparse Linear Solver: A 

Case Study, International Journal of Parallel Programming, 33(2005), pp. 165-181.  

 

[5] C. O. Zienkiewicz CO, L. T. Taylor,The Finite Element for Solid and Structural Mechanics, 6
th
 

ed.,  Butterwoth-Heinemann Elesevier, 2005 

 

 

[6] S. Koric and B.G. Thomas, Efficient thermo-mechanical model for solidification processes, Inter-

national Journal for Numerical Methods in Engineering 66(2006)  pp. 1955-1989.  

 

[7] J. Dongarra, I. Duff,D. Sorensenand H. Van Der Vorst, Numerical Linear Algebra for High-

Performance Computers,Society for Industrial and Applied Mathematics, Philadelphia, 1998.  

 

[8] S. Yousef ,Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia: Society for Indus-

trial and Applied Mathematics, 2003  

 

[9] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms),Society for 

Industrial and Applied Mathematics, Philadelphia, 2006. 

 

[10] S. A. Kilic,F. Saied F, A. Sameh, Efficient iterative solvers for structural dynamics problems 

Computers and Structures 82(2004)pp. 2363-2375. 

 

[11] I.  S. Duff and J.  K. Reid, The multifrontal solution of indefinite sparse symmetric linear equa-

tions. ACM Transactions on Mathematical Software 9(1983) pp. 302–325. 



 

 

[12] P.R. Amestoy, I.S. Duff, J.-Y. L'Excellent, Multifrontal parallel distributed symmetric and un-

symmetric solvers Comput. Methods Appl. Mech. Engrg. 184 (2000), pp. 501-520 

 

 

[13] N. I. M Gould,J.A. Scott,Y.  Hu,A Numerical Evaluation of Sparse Direct Solvers for the Solu-

tion of Large Sparse Symmetric Linear Systems of Equations, ACM Trans. Math. Softw., 33(2006) 

pp.1-32. 

 

[14] A. Gupta, S. Koric, T. George, Sparse Linear Solvers on Massively Parallel Machines, in: 

ACM/IEEE Conference on High Performance Computing SC 2009, Portland, Oregon, USA Novem-

ber 2009. 

 

 

[15] M. Wozniak, M. Paszynski, D. Pardo, L. Dalcin, V. M. Calo, Computational cost of isogeometric 

multi-frontal solvers on parallel distributed memory machines, Computer Methods in Applied Me-

chanics and Engineering 284(2015) pp. 971-987. 

 

[16] S. Koric,Q.  Lu, and E. Guleryuz, Evaluation of massively parallel linear sparse solvers on un-

structured finite element meshes, Computers and Structures 141(2014) pp. 19-25.  

 

[17] A. Gupta, G. Karypis, V. Kumar, Highly scalable parallel algorithms for sparse matrix factoriza-

tion , IEEE Transactions on Parallel and Distributed Systems. 8 (1994) pp. 502-520  

 

[18] A. Gupta. WSMP: Watson sparse matrix package (Part-I: direct solution of symmetric sparse 

systems). IBM TJ Watson Research Center, Yorktown Heights, NY, 2015. 

 

 

[19] C. Farhat, F-X. Roux,  An unconventional domain decomposition method for an efficient parallel 

solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13(1992)  pp. 379–396 

 

[20] C. Farhat, K. Pierson, M. Lesoinne, The second generation FETI methods and their application to  

the parallel solution of large-scale linear and geometrically non-linear structural analysis problems, 

Comput. Meth. Appl. Mech. Eng. 184 (2000) pp. 333-374  

 

[21] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: a dual-primal unified 

FETI method. I. A faster alternative to the two-level FETI method. Internat. J. Numer. Methods En-

grg. 50 (2001) pp. 1523-1544 

 

[22] A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposition methods with an 

application to biomechanics. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift 

für Angewandte Mathematik und Mechanik 90(2010) pp. 5–32. 

 

[23] W. Joseph, H. Liu,The multi frontal method for sparse matrix solution: Theory and practice, 

SIAM Review,34(1992) pp. 82–109.  

 

[24] K. Polgar, M. Viceconti, JJ. Connor,  JJ.,  A comparison between automatically generated linear 

and parabolic tetrahedra when used to mesh a human femur. Journal of Engineering in Medicine.  

215(2001) pp. 85-94.  

 

[25] O. Cifuentes ,A. Kalbag, Performance study of tetrahedral and hexahedral elements in 3-D finite 

element structural analysis, Finite Elements in Analysis and Design. 12(1992)pp. 313-318..  

 



[26] NX Nastran User’s Manual, Version 8.0, Siemens PLM Software, Plano, TX, 2012. 

 

[27] Blue Waters. Sustained Petascale Computing, NCSA, University of Illinois 

http://www.ncsa.illinois.edu/BlueWaters 2015. 

 

[28] J. Dongarra, J. Ducroz,I. Duff and S. Hammarling,. A set of level 3 basic linear algebra subpro-

grams, ACM Trans. Math. Softw. 16(1990)pp. 1–17.  

 

[29] J. P. Wolf, D. L. Crawford, A Livermore Perspective on the Value of Industrial Use of HPC at 

National Laboratories, in: A. Osseyran, M. Giles editors. Industrial Applications of High-Performance 

Computing, CRC Press, 2015, pp. 205-222  

 

[30] FEAP-A Finite Element Analysis Program, Berkley,  http://www.ce.berkeley.edu/projects/feap 

2015 

 

[31] Alya System, Barcelona Supercomputing Center,  http://www.bsc.es/alya 2015 

 

 

http://www.ncsa.illinois.edu/BlueWaters%202015
http://www.ce.berkeley.edu/projects/feap
http://www.bsc.es/alya

