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ABSTRACT

There has been an explosion of academic literature on stega-
nography and steganalysis in the past two decades. With a
few exceptions, such papers address abstractions of the hid-
ing and detection problems, which arguably have become
disconnected from the real world. Most published results,
including by the authors of this paper, apply “in laboratory
conditions” and some are heavily hedged by assumptions
and caveats; significant challenges remain unsolved in order
to implement good steganography and steganalysis in prac-
tice. This position paper sets out some of the important
questions which have been left unanswered, as well as high-
lighting some that have already been addressed successfully,
for steganography and steganalysis to be used in the real
world.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Information hiding; H.1.1 [Models and Principles]: Sys-
tems and Information Theory—Information theory
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1. INTRODUCTION
Steganography is now a fairly standard concept in com-

puter science. One occasionally reads, in mainstream media,
of criminals hiding information in digital media ([1, 4], see [3]
for other links) and, recently, of malware using it to conceal
communications with command and control servers [5]. In
the 1990s, the possibility of digital steganography served as
an argument in debates about regulating cryptography, and
it allegedly convinced some European governments to liber-
alize the use of cryptography [31]. We also read of the desire
for certain privacy-enhancing technologies to use stegano-
graphy to evade censorship [67]. If steganography becomes
commonly used, so should steganalysis, though the concept
is not as well recognized in nonspecialist circles.

However, where details of real-world use of steganography
are known, it is apparent that they bear little resemblance
to techniques described in modern literature. Indeed, they
often suffer from flaws known to researchers for more than
a decade. How has practice become so disconnected from
research? The situation is even more stark in steganaly-
sis, where most researchers would agree that their detectors
work well only in laboratory conditions: unlike steganogra-
phy, even if practitioners wanted and were technically able to
implement state-of-the-art detectors, their accuracy would
be uneven and unreliable.

The starting point for scientific research is to make a
model of the problem. The real world is a messy place,
and the model is an abstraction which removes ambiguities,
sets certain parameters, and makes the problem amenable to
mathematical analysis or empirical study. In this paper we
contend that knowledge is the most important component
in a model of the steganography and steganalysis problems.
Does the steganographer have perfect knowledge about their
source of covers? Does the steganalyst know the embedding
method used by the steganographer? There are many ques-
tions of this type, often left implicit in early research.



By considering different levels of knowledge, we identify
a number of models of the steganography and steganalysis
problems. Some of them have been well-studied but, natu-
rally enough, it is usually the simplest models which have
received the most attention. Simple models may (or may
not) provide robust theoretical results giving lower or upper
bounds, and they increase our understanding of the funda-
mental problems, but they are tied to the laboratory. In this
paper we identify the models which bring both steganogra-
phy and steganalysis nearer to the real world. In many cases
the scientific community has barely scratched their surface,
and we highlight open problems which are, in the view of
the authors, important to address in future research.

At the present time, steganography and steganalysis re-
search divides into two cover types: digital media (primarily
compressed and uncompressed images, but also video and
audio) and network traffic (timing channels and the content
of web traffic). The authors of this paper have their interest
mainly in the former, and we contend that steganography
and steganalysis is significantly more sophisticated in this
domain than in network channels. Although network-based
steganography is perhaps closer to real-world implementa-
tion, we will argue that the field needs to learn lessons from
digital media steganography.

Many of the principles in this paper apply to any type of
cover, but we shall be motivated by some general properties
of digital media: the complexity of the cover and the lack of
perfect models, the relative ease of (visual) imperceptibility
as opposed to undetectability, and large capacity per object.
When, in examples, we refer to spatial domain we mean un-
compressed images, and DCT or transform domain refers to
JPEG-compressed images, both grayscale unless otherwise
mentioned.

The paper has a simple structure. In section 2 we discuss
current solutions, and open problems, relevant to applying
steganography in the real world. In section 3 we do the same
for steganalysis.

The Steganography Problem

We briefly recapitulate the steganography problem, refining
Simmons’ original Prisoners’ Problem [92] to the contempo-
rary definition of steganography against a passive warden.

A sender, often called Alice but who will throughout the
paper be known as the steganographer, wishes to send a
covert communication or payload to a recipient. She pos-
sesses a source of covers drawn from a larger set of possible
communications, and there exists a channel for the commu-
nications (for most purposes we may as well suppose that
the communication is unidirectional). The channel is moni-
tored by an adversary, also known as an attacker or Warden
but for the purposes of this paper called the steganalyst, who
wishes to determine whether payload is present or not.

One solution is to use a channel that the adversary is
not aware of. This is how traditional steganography has re-
portedly been practiced since ancient times, and most likely
prevails in the Internet age [46]. Examples include tools that
hide information in metadata structures, at the end of files
where standard parsers ignore it [103], or modifying network
packet headers such as TCP time stamps [37]. (See [74] for
a systematic discussion.)

However, this approach is not satisfactory because it relies
on the adversary’s ignorance, a form of“security through ob-
scurity”. In Simmons’ formulation, inspired by conservative

assumptions typical in cryptology, the steganalyst is granted
wide knowledge: the contents of the channel is perfectly ob-
servable by both parties, writable by the steganographer,
and (for the “passive Warden” case which dominates this
paper) read-only by the steganalyst. To enable undetecta-
bility, we must assume that cover messages run through the
channel irrespective of whether hidden communication takes
place or not, but this is something that we will need to make
more precise later. The intended recipient of the covert pay-
load is distinguished from the steganalyst by sharing a se-
cret key with the steganographer (how such a key might be
shared will be covered in section 2.5).

As we shall see later, this model is still imprecise: the War-
den’s aims, the parties’ knowledge about the cover source,
and even their knowledge about each others’ knowledge, all
create different versions of the steganography and steganal-
ysis problems.

We fix some notation used throughout the paper. Cover
objects generated by Alice’s source will be denoted by X,
broken down where necessary into n elements (e.g. pixels in
the spatial domain pixels, or DCT coefficients in the trans-
form domain) X1, . . . , Xn. The objects emitted by the ste-
ganographer – which may be unchanged covers or payload-
carrying stego objects – will be denoted Y, or sometimes Yβ

where β denotes the size of the payload relative to the size of
the cover (the exact scaling factor will be irrelevant). Thus
Y0 denotes a cover object emitted by the steganographer.

In parts of the paper we will assume a probability distri-
bution for cover and stego objects (even though, as we argue
in section 2.1, this distribution is unknowable precisely): the
distribution of Yβ will be denoted Pβ , or if the distribution
depends on other parameters θ then P θ

β . Thus P0 is the dis-
tribution of cover objects from the steganographer’s source.

2. STEGANOGRAPHY
Steganographic embedding in a single grayscale image

could be implemented in the real world, with a high de-
gree of undetectability against contemporary steganalysis, if
practitioners were to use today’s state of art. In this section
we begin by outlining that state of art, and highlighting the
open problems for its further improvement. However, the
same cannot be said of creating a steganographic channel in
a stream of multiple objects — which is, after all, the es-
sential aim for systems supporting censorship resistance —
nor for robust key exchange, and our discussion is mainly of
open problems barely treated by the literature.

We begin, in section 2.1, with some results which live
purely in the laboratory. They apply to the security model
in which the steganographer understands her cover source
perfectly, or has exponential amounts of time to wait for
a perfect cover. In section 2.2 we move closer to the real
world, describing methods which help a steganographer to
be less detectable when embedding a given payload. They
require, however, the steganographer to know a tractably-
optimizable distortion function, which is really a property
of her enemy. Such research was far from the real world
until recently, and is moving to practical applicability at
the present time. But it does not tell the steganographer
whether her size of payload is likely to be detectable; some
purely theoretical research is discussed in section 2.3, which
gives rules of thumb for how payload should scale as prop-
erties of the cover vary, but it remains an open problem to
determine an appropriate payload for a given cover.



In section 2.4 we modify the original steganography model
to better account for the repeated nature of communications:
if the steganographer wants to create a covert channel, as
opposed to a one-shot covert communication, new consid-
erations arise. There are many open research problems in
this area. Section 2.5 addresses the key exchange between
the steganographer and her participant. The problem is
well-understood with a passive warden opponent, but in the
presence of an active warden it may even be impossible.

Section 2.6 briefly surveys other ways in which weaknesses
may arise in practice, having been omitted from the model,
and section 2.7 discusses whether the steganographer can
encourage real-world situations favourable to her.

2.1 The laboratory: perfect steganography
One can safely say that perfectly secure steganography is

now well understood. It requires that the distribution of
stego objects be identical to that of cover objects.

In a model where the covers are sequences (usually of fixed
length) of symbols from a fixed alphabet, the steganographer
fully understands the cover source if they know the distribu-
tion of the symbols, including any conditional dependence
between them. In such a case, perfect steganography is a
coding problem and the capacity or rate (the number of
bits per cover symbol) of perfectly secure steganography is
bounded by the entropy of the cover distribution. Construc-
tions for such coding have been proposed, including the cases
of a distortion-limited sender (the sender is limited in how
much the cover can be modified) and even a power-limited
active Warden (the Warden can inject a distortion of limited
power), for i. i. d. and Markov sources [101].

However, such a model of covers is necessarily artificial.
The distinction between artificial and empirical cover sources
has been proposed in [14] and is pivotal to the study of ste-
ganography in digital media. Artificial sources prescribe a
probability distribution from which cover objects are drawn,
whereas empirical sources take this distribution as given
somewhere outside the steganographic system, which we
could call reality. The steganographer can sample an em-
pirical distribution, thereby obtaining projections of parts of
reality; she can estimate salient features to devise, calibrate,
and test models of reality; but she arguably can never fully
know it. The perfect security of the preceding construc-
tions rests on perfect knowledge of the cover source, and
any violation of this assumption breaks the security proof.
In practical situations, it is difficult to guarantee such an
assumption. In other words, secure steganography exists for
artificial sources, but we can never be sure if the artificial
source exists in practice. More figuratively, artificial chan-
nels sit in the corner of the laboratory farthest away from
the real world. But they can still be useful as starting points
for new theories or as benchmarks.

Perfect steganography is still possible, albeit at higher
cost, with empirical cover sources. If (1) secure crypto-
graphic one-way functions exist, (2) the steganalyst is at
most equally limited in her knowledge about the cover source
as the steganographer, and (3) the cover source can be effi-
ciently sampled, then perfect steganography is possible (the
rejection sampler), but embedding requires an exponential
number of samples in the message length [14, Ch. 3]. Some
authors work around the inconvenient embedding complex-
ity by tightening the third assumption and requiring that
sampling is efficient conditional to any possible history of

transmitted cover objects [41, 85, 44], which is arguably as
strong as solving the original steganography problem.

2.2 Optimal embedding
If the steganographer has to use imperfect steganography,

which does not preserve exactly the distribution of objects,
how should she embed to be less detectable? Designing ste-
ganography for empirical cover sources is challenging, but
there has been great progress in recent years. The stega-
nographer must find a proxy for detectability, which we call
distortion. Then message embedding is formulated as source
coding with a fidelity constraint [91] – the sender hides her
message while minimizing an embedding distortion [58, 79,
39]. As well as providing a framework for good embedding,
this permits one to compute the largest payload embeddable
below a given embedding distortion, and thus evaluate the
efficiency of a specific implementation (coding method).

There are two challenges here: to design a good distortion
function, and to find a method for encoding the message to
minimize the distortion. We consider the latter problem
first.

Early steganographic methods were severely limited by
their ability to minimize distortion tractably. The most pop-
ular idea was to embed the payload while minimizing the
number of changes caused (matrix embedding [21]). Count-
ing the embedding changes, however, implicitly assumes that
each change contributes equally to detectability, which does
not coincide with experimental experience.

The idea of adaptive embedding, where each cover element
is assigned a different embedding cost, dates to the early days
of digital steganography [31]. A breakthrough technique was
to use syndrome-trellis codes (STCs) [29], which solve cer-
tain versions of the adaptive embedding problem. The de-
signer defines an additive distortion between the cover and
stego objects in the form

D(X,Y) =
X

i

ρi(X, Yi), (1)

where ρi ≥ 0 is a local distortion measure that is zero if
Yi = Xi, and then embeds her message using STCs, which
minimize distortion between cover and stego objects for a
given payload.

STCs only directly solve the embedding problem for dis-
tortion functions that are additive in the above sense, or
where an additive approximation is suitable. Recently, sub-
optimal coding schemes able to minimize non-additive dis-
tortion functions were proposed, thereby modelling interac-
tions among embedding changes, using the Gibbs construc-
tion. This can be used to implement embedding with an ar-
bitrary distortion that can be written as a sum of locally sup-
ported potentials [27]. Unfortunately, such schemes can only
reach the rate-distortion bound for additive distortion mea-
sures. Moving to wider classes of distortion function, along
with provably optimal and practical coding algorithms, is
an area of current research.
Open Problem 1 Design efficient coding schemes for non-
additive distortion functions.

How, then, to define the distortion function? For the ste-
ganographer, the distortion function is a property of her
enemy, the steganalyst. If she were to know what steganal-
ysis she is up against then it would be tempting to use
the same feature representation as her opponent, defining
D(X,Y) = ||f(X) − f(Y)||, where f is the feature extrac-



tion function. Such a distortion function, however, is non-
additive and non-local in just about all feature spaces used
in steganalysis, which typically include histograms and high-
order co-occurrences, created by a variety of local filters.
One option is to make an additive approximation. Another,
proposed in [27], is to create an upper bound to the distor-
tion function, by writing its macroscopic features as a sum of
locally-supported functions (for example, the elements of a
co-occurrence matrix can be written as the sum of indicator
functions operating on pairs of pixels). In such a case, the
distortion function can be bounded, using the triangle in-
equality, leading to a tractable objective function for STCs.

Even if the coding problem can be solved, such embed-
ding presupposes knowledge of the right distortion function.
An alternative is to design a distortion function which re-
flects statistical detectability (against an optimal detector),
but this is difficult to do, let alone the constraints of our
current coding techniques. First attempts in these direc-
tions adjusted parameters of a heuristically-defined distor-
tion function, to give the smallest margin between classes
in a selected feature space [28]. However, unless the feature
space is a complete statistical descriptor of the empirical
source [61], such optimized schemes may, paradoxically, end
up being more detectable [65], which brings us back to the
main and rather difficult problem: modelling the source.

Open Problem 2 Design a distortion function relating to
statistical detectability, e.g. via KL divergence (sect. 2.3).

Design of heuristic distortion functions is currently a highly
active research direction. It seems that the key is to assign
high costs to changes to areas of a cover which are “pre-
dictable” from other parts of the stego object or other in-
formation available to the steganalyst. For example, one
may use local variance to compute pixel costs in spatial do-
main images [97]. The embedding algorithm HUGO [79]
uses an additive approximation of a weighted norm between
cover and stego features in the SPAM feature space [78],
with high weights assigned to well-populated feature bins
and low weights to sparsely populated bins that correspond
to more complex content. An alternative distortion func-
tion called WOW (Wavelet Obtained Weights) [40] uses a
bank of directional high-pass filters to assign high distortion
where the content is predictable in at least one direction. It
has been shown to resist steganalysis using rich models [35].
A further development is published in these proceedings.

One can expected that future research will turn to com-
puter vision literature, where image models based on Markov
Random Fields [102, 87, 94] are commonly trained and then
utilized in various Bayesian inference problems.

In the domain of grayscale JPEG images, by far the most
successful paradigm is to minimize the distortion w.r.t. the
raw, uncompressed cover image, if available [58, 86, 100,
43]. In fact, this “side-informed embedding” can be applied
whenever the sender possesses a higher-quality “precover”
that was quantized to obtain the cover. Currently, the most
secure embedding method for JPEG images that does not
use any side information is the heuristically-built Uniform
Embedding Distortion [39] that substantially improved the
previous state of the art: the nsF5 algorithm [36].

Open Problem 3 Distortion functions which take account
of side information.

We conclude by highlighting the scale of research advances
seen in embedding into grayscale (compressed or uncom-

pressed) images. The earliest aims to reduce distortion at-
tempted to correct macroscopic properties (e.g., an image
histogram) by compensating embedding changes with ad-
ditional correction changes, but in doing so made them-
selves more detectable, not less. We have progressed through
a painful period where distortion minimization could not
tractably be performed, to the most recent adaptive meth-
ods. However, we know of no literature addressing the par-
allel problems:

Open Problem 4 Distortion functions for colour images
and video, which take account of correlations in these media.

Network steganography has received substantial attention
from the information theory community through the analy-
sis of covert timing channels [6, 98], which uses delays be-
tween network packets to embed the payload. However, the
implementations are usually naive, using no distortion with
respect to delays of normal data [16, 12]. The design of the
embedding schemes focuses mainly on robustness with re-
spect to the network itself, because network steganography
is an active steganography problem. To the knowledge of the
authors, the only work that considers a statistical distortion
between normal and stego traffic is provided in [9].

2.3 Scaling laws
In this section we discuss some theory which has rele-

vance to real-world considerations. These results rest on
some information theory: the data processing theorem for
Kullback-Leibler (KL) divergence [69]. We are interested
in KL divergence between cover objects and stego objects,
which we will denote DKL(P0||Pβ). Cachin [17] described
how an upper bound on this KL divergence implies an up-
per bound on the performance of any detector; we do not
repeat the argument here. What matters is that we can ana-
lyze KL divergence, for a range of artificial models of covers
and embedding, and obtain interesting conclusions.

As long as the family of distributions P θ

β satisfies certain
smoothness assumptions, for fixed cover parameters θ the
Taylor expansion to the right of β = 0 is

DKL(P θ

0 ||P
θ

β ) ∼ n

2
β

2Iθ(0), (2)

where n is the size of the objects and Iθ(0) is the so-called
Fisher information. This can be interpreted in the follow-
ing manner: in order to keep the same level of statistical
detectability as the cover length n grows, the sender must
adjust the embedding rate so that nβ2 remains constant.
This means that the total payload, which is nβ, must be
proportional to

√
n. This is known as the square root law

of imperfect steganography. Its effects were observed exper-
imentally long before it was formally discovered first within
the context of batch steganography [50], experimentally con-
firmed [57], and finally derived for sources with memory [30],
where the reader should look for a precise formulation.

The law also tells us that the proper measure of secure
payload is the constant of proportionality, Iθ(0), the Fisher
information. The larger Iθ(0), the smaller the secure pay-
load that can be embedded and vice versa. When prac-
titioners design their steganographic schemes for empirical
covers, one can say that they are trying to minimize Iθ(0),
and it would be of immense value if the Fisher information
could be determined for practical embedding methods. But
it depends heavily on the cover source, and particularly on
the likelihood of rare covers, which by definition is difficult



to estimate empirically, and there has as yet been limited
progress in this area, benchmarking [26] and optimizing [53]
simple embedding only in restrictive artificial cover models.

Open Problem 5 Robust empirical estimate of stegano-
graphic Fisher information.

What is remarkable about the square root law is that, al-
though both asymptotic and proved only for artificial sources,
it is robust and manifests in real life. This is despite the
fact that practitioners detect steganography using empirical
classifiers which are unlikely to approach the bound given
by KL divergence, and the fact that empirical sources do
not match artificial models. Beware, though, that it tells us
how the secure payload scales when changing the number
of cover elements, without changing their statistical proper-
ties — e.g. when cropping homogeneous images or creating
a panorama by simple composition — but not when a cover
is resized, because resizing changes the statistical properties
of the cover pixels by weakening (if downscaling without an-
tialiasing) or strengthening (if using a resampling kernel)
their dependencies.

We can still say something about resized images, if we
accept a Markov chain cover model. When nearest neigh-
bour resizing is used, one can compute numerically Iθ(0) as
a function of the resizing factor (which should be thought of
as part of θ) [64]. This allows the steganographer to adjust
her payload size with rescaling of the cover, and the theory
aligns robustly with experimental results.

Open Problem 6 Derivation of Fisher information for
other rescaling algorithms, and richer cover models.

Finally, one can ask about the impact of quantization.
This is relevant as practically all digital media are obtained
by processing and quantizing the output of some analogue
sensor, and a JPEG image is obtained from a raw image
by quantizing the real-valued output of a transform. For
example, how much larger payload can one embed in 10-
bit grayscale images than in 8-bit? (Provided that both bit
depths are equally plausible on the channel.) How much
more data can be hidden in a JPEG with quality factor
98 than quality factor 75? We can derive (in an appropriate
limit) Iθ(0) ∼ △s, where △ > 0 is the quantization step and
s is the quantization scaling exponent that can be calculated
from the embedding operation and the smoothness of the
unquantized distribution [32]. In general, the smoother the
unquantized distribution, the larger s is and the smaller the
Fisher information (larger secure payload). The exponent s
is also larger for embedding operations that have a smooth-
ing effect. Because the KL divergence is an error exponent,
quantization has a profound effect on security. The experi-
ments in [32] indicate that even simple LSB matching may
be practically undetectable in 10–12 bit grayscale images.
However, unlike the scaling predicted by the square root
law, since the result for quantization depends strongly on
the distribution of the unquantized image, it cannot quan-
titatively explain real life experiments.

2.4 Multiple objects
Simmons’ 1983 paper used the term “subliminal channel”,

but the steganography we have been describing is not fully
a channel: it focused on embedding a certain length payload
in one cover object. For a channel, there must be infinitely
many stego objects (perhaps mixed with infinitely many in-
nocent cover objects) transmitted by the steganographer.

How do we adapt steganographic methods for embedding in
one object to embedding in many? How should one allocate
payload between multiple objects? There has been very lit-
tle research on this important problem, which is particularly
relevant to hiding in network channels, where communica-
tion is naturally repeated.

In some versions of the model, this is fundamentally no dif-
ferent from the simple steganography problem in one object.
Take the case, for example, where the steganographer has
a fixed number of covers, and decides how to allocate pay-
load amongst them (the batch steganography problem posed
in [48]). Treating the collection as a single large object is
possible if the full message and all covers are instantly avail-
able and go through the same channel (e. g., stay on the same
disk as a steganographic file system). In principle, this re-
duces the problem to what has been said above. It is worth
pointing out that local statistical properties are more likely
to change between covers than between symbols within one
cover. However, almost all empirical practical cover sources
are heterogeneous (non-stationary): samplers and distortion
functions have to deal with this fact anyway. And knowing
the boundaries between cover objects is just another kind of
side information.

The situation is more complicated in the presence of real-
time constraints, such as requirements to embed and com-
municate before the full message is known or before all cov-
ers are drawn. This happens, for example, when tunnelling
bilateral protocols through steganographic channels. Few
publications have addressed the stream steganography prob-
lem (in analogy to stream ciphers) [31, 52]. One interesting
result is known for payload allocation in infinite streams with
imperfect embedding (and applies only to an artificial setup
where distortion is exactly square in the amount of payload
per object): the higher the rate that payload is sent early,
the lower the eventual asymptotic square root rate [52].

A further generalization is to replace the “channel” by a
“network”communications model, where the steganographer
serves multiple channels, each governed by specific cover
source conventions, and with realtime constraints emerging
from related communications. Assuming a global passive
steganalyst who can relate evidence from all communica-
tions, this becomes a very hard instance of a steganogra-
phy problem, and one that seems relevant for censorship-
resistant multiparty communication or to tunnel covert col-
laboration [10].

Open Problem 7 Theoretical approaches and practical
implementations for embedding in multiple objects in the
presence of realtime constraints.

2.5 Key exchange
A curious problem in a steganographic environment is that

of key exchange. If a reliable steganographic system exists,
can parties use that channel to communicate, without first
sharing a secret key? In the cryptographic world, Alice and
Bob use a public-key cryptosystem to effect a secret key
exchange, and then communicate with a symmetric cipher;
one would assume that some similar exchange would enable
communication with a symmetric stegosystem. However,
a steganographic channel is fundamentally different from a
traditional communications channel, due to its extra con-
straint of undetectability. This constraint also limits our
ability to transmit datagrams for key establishment.



Key exchange has been addressed with several protocols
and, paradoxically, negative results. The first protocol for
key exchange under a passive warden [7] was later aug-
mented to survive an active warden [8]. Here Alice and
Bob use a public embedding key to transmit traditional key
exchange datagrams: first a public encryption key, and then
a session key encrypted with that public key. These data-
grams are visible to the warden, but they are designed to
resemble channel noise so that the warden cannot tell if the
channel is in use. This requires a complete lack of observable
structure in the keys.

To prevent an active warden from altering the datagrams,
the public embedding key is made temporarily private: first
a datagram is sent with a secret embedding key, and then
this key is publicly broadcast after the stego object passes
the warden. In [22] it was argued that a key broadcast is not
allowed in a steganographic setting, but that a key could be
encoded as semantic content of a cover.

This may seem to settle the problem, but recent results
argue that these protocols, and perhaps any such protocols,
are practically impossible because the datagrams are sensi-
tive to even a single bit error. If an active warden can inflict
a few errors, we have a problem due to a fundamental differ-
ence between steganographic and traditional communication
channels: we cannot use traditional error correction, because
its presence is observable structure that betrays the exis-
tence of a message. In [71], it was shown that this fragility
cannot be fixed in general: most strings are a few surgical
errors away from a failed transmission; this allows key ex-
change to be derailed with an asymptotically vanishing error
rate. It is not clear who will have the upper hand in prac-
tice: an ever-vigilant warden can indefinitely postpone key
exchange with little error, but a brief opportunity to trans-
mit some uncorrupted datagrams results in successful key
transmission, whereupon the warden loses.

A final problem in steganographic key exchange is the
state of ignorance of sender and receiver, and the massive
computational burden this implies. Because key datagrams
must resemble channel noise, nobody can tell if or when they
are being transmitted; by the constraints of the problem,
neither Alice nor the warden can tell if Bob is participating
in a protocol, or innocently transmitting empty covers. This
is solved by brute force: Bob assumes that the channel noise
of every image is a public key, and sends a reply. Alice makes
similar assumptions, both repeatedly attempting to generate
a shared key until they produce one that works.

Open Problem 8 Is this monstrous amount of compu-
tation necessary, or is there a protocol with more efficient
guesswork to allow Alice and Bob to converge on a key?

2.6 Basic security principles
Finally, even when a steganographic method is secure, its

security can be broken if there is information leakage of the
secret key, or of the steganography software. We recall some
basic principles that should be followed by the steganogra-
pher, in order to avoid security pitfalls.
- Her embedding key must be long enough to avoid exhaus-
tion attacks [34], and any pseudorandom numbers generated
from it must be strong.
- Whenever she wants to embed a payload in several images,
she must avoid using the same embedding locations for each.
Otherwise the steganalyst can use noise residuals to estimate
the embedding locations, reducing the entropy of the secret

key [51]. One way to force the locations to vary is to add a
robust hash of the cover to the seed.
- She must act identically to any casual user of the commu-
nication channel, which implies hiding also the use of stega-
nographic software, and deleting temporary cover and stego
objects. An actor that performs cover selection by emitting
only contents that are known to be difficult to analyze (such
as textured images) can seem suspicious in itself.

Open Problem 9 How to perform cover selection, if at
all? How to detect cover selection?
- She has to beware of the pre- and post-processing opera-
tions that can be associated with embedding. Double com-
pression can be easily detected [80] and forensic details, such
as the ordering of different parts of a JPEG file, can expose
the processing path [38].
- She should benchmark her embedding appropriately. In the
case of digital images for example, it is not because the soft-
ware produces imperceptible embedding that the payload is
undetectable. Image quality metrics such as the PSNR and
psychovisual metrics are of little interest in steganography.
- Her device capturing the cover should be trusted, and con-
tents generated from this device should also stay hidden.
Covers must not be re-used.

Several general principles should be kept in mind when
designing a secure system. These include:
- The Kerckhoffs Principle, that a system should remain
secure under the assumption that the adversary knows the
system, although interpretations for steganography differ in
whether this includes knowledge of the cover source or not.
- The Usability Principle (also due to Kerckhoffs), that a
system should be easy for a layperson to use correctly. For
example, steganographic software should enforce a square
root law rather than expecting an end user to apply it.
- The Law of Leaky Abstractions [93], which requires us to
be aware of, for example, statistical models of cover sources,
assumptions about the adversary, or the abstraction of ste-
ganography as a generic communication channel. Even if we
have provable security within the model, reality may deviate
from the model in a way that causes a security weakness.
- The fact that steganographic channels are not communica-
tions channels in the traditional sense, and their limitations
are different. Challenges of capacity, fidelity, and key ex-
change must be examined anew.

Open Problem 10 Are there abstractions that hold for
steganography? Are its building blocks securely compos-
able?

2.7 Engineering the real world for
steganography

If we perfectly understood our cover sources, secure ste-
ganography would reduce to a coding problem. Engineering
secure steganography for the real world is so difficult pre-
cisely because it requires us to understand the real world
as well as our artificial models. If there is a consensus that
the real world needs secure steganography, a completely dif-
ferent approach could be to engineer the real world so that
parts of it match the assumptions needed for security proofs.
This implies changing the conventions, via protocols and
norms, towards more randomness in everyday communica-
tions, so that more artificial channels knowingly exist in the
real world. For example, random nonces in certain proto-
cols, or synthetic pseudorandom textures in video-games (if



implemented with trustworthy randomness) already provide
opportunities for steganographic channels. Adding more of
these increases the secure capacity ([23] proposes a concrete
system). But this approach creates new challenges, many
outside the domain of typical engineering, such as the so-
cial coordination problem of giving up bandwidth across the
board to protect others’ communication relations, or the dif-
ficulty of verifying the quality of randomness.

Open Problem 11 Technical and societal aspects of in-
ducing randomness in communications to simplify stegano-
graphy.

3. STEGANALYSIS
Approaches to the steganalysis problem depend heavily

on the security model, and particularly on the steganalyst’s
knowledge about the cover source and the behaviour of his
opponent. The most studied models are quite far from
real-world application, and (unlike steganography) most re-
searchers would agree that state of the art steganalysis could
not yet be used effectively in the real world.

Laboratory conditions apply in section 3.1, where we as-
sume that the steganalyst has perfect knowledge of (1) the
cover source, (2) the embedding algorithm used by the ste-
ganographer, and (3) which object they should examine.
This is as unrealistic as the parallel conditions in section
2.1, but the laboratory work provides a conservative attack
model, and still gives interesting insights into practice. Al-
most all current steganalysis literature adheres to the model
described in section 3.2, which weakens (1) so that the ste-
ganalyst can only learn about the cover source by empirical
samples; it is usually assumed that something similar to (2)
still holds, and (3) must hold. This line of steganalysis re-
search, which rests on binary classification, is highly refined,
but weakening even slightly the security model leads to dif-
ficult problems about learning.

In section 3.3 we ask how a steganalyst could widen the
application of binary classifiers by using them in combina-
tion, and in 3.4 by moving to a model with complete igno-
rance of the embedding method (and empirical knowledge
of the covers). Although these problems are known in ma-
chine learning literature, there have been few steganalysis
applications.

In section 3.5 we open the model still further, weaken-
ing assumption (3), above, so that the steganalyst no longer
knows exactly where to look: first, against one steganogra-
pher making many communications, and then when moni-
toring an entire network. This parallels section 2.4, and re-
veals an essentially game-theoretic nature of steganography
and steganalysis, which is the topic of section 3.6. Again,
there are many open problems.

Finally, section 3.7 goes beyond steganalysis, to ask what
further information can be gleaned from stego objects.

3.1 Optimal detection
The most favourable scenario for the steganalyst occurs

when the exact embedding algorithm is known, and there
is a statistical model for covers. In this case it is possible
to create optimal detection using statistical decision theory,
although the framework is not (yet) very robust under less
favourable conditions.

The inspected medium Y = (Y1, . . . , YN ) is considered
as a set of N digital samples (not necessarily independent),
and P θ

β the distribution of stego object Yβ , after embedding

at rate β. We are separating one parameter controlling the
embedding, β, from other parameters of the cover source θ

which in images might include size, camera settings, colour
space, and so on.

When the embedding rate β and all cover parameters θ

are known, the steganalysis problem is to choose between the
following hypotheses: H0 = {Y ∼ P θ

0 } vs H1 = {Y ∼ P θ

β }.
These are two simple hypotheses, for which the Neyman-
Pearson Lemma [70, Th. 3.2.1] provides a simple way to
design an optimal test, the Likelihood Ratio Test (LRT):
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0
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H1 if Λ(Y) =
P θ

β [Y]

P θ

0
[Y]

≥ τ,

(3)

with Λ the likelihood Ratio (LR) and τ a decision threshold.
The LRT is optimal in the following sense: among all the

tests which guarantee a maximum false-alarm probability
α ∈ (0, 1) the LRT maximizes the correct detection proba-
bility. This is not the only possible measure of optimality,
which we return to in section 3.6.

Accepting, for a moment, the optimal detection frame-
work, we can deduce some interesting “laboratory” results.
Assume that pixels from a digital image are i. i. d.: then the
statistical distribution P θ of an image is its histogram. If
cover samples follow a Gaussian distribution Xi ∼ N (µi, σ

2

i ),
it has been shown [107] that the LR for the LSB replacement
scheme can be written: Λ(Y) ∝

P

i
(yi − ȳi)(yi − µi)/σ2

i ,

where k̄ = k +(−1)k is the integer k with flipped LSB. This
LR is similar to the well-known Weighted Stego-image statis-
tic [33, 54] and justifies it post hoc as an optimal hypothesis
test. Similarly, the LR for the LSB matching scheme can be
written [18]: Λ(Y) ∝

P

i
((yi − µi)

2 − 1

12
)/σ4

i . This shows
that optimal detection of LSB matching is essentially based
on pixel variance. Particularly since LSB matching has the
effect of masking the true cover variance, this explains it has
proved a tougher nut to crack than LSB replacement.

However, the assumption that pixels can be modelled as
i. i. d. random variables is unrealistic. Similarly, the model of
statistically independent pixels following a Gaussian distri-
bution (with different expectation and variance) is of limited
interest in the real world.

The description of the steganalysis problem in the frame-
work of hypothesis testing theory emphasizes the practical
difficulties. First, it seems highly unlikely that the embed-
ding rate β would be known to a steganalyst, unless they
already know that steganography is being used. And when
β is unknown the design of an optimal statistical test be-
comes much harder because the alternative hypothesis H1 is
composite: it gathers different hypotheses, for each of which
a different most powerful test exists.

There are two approaches to overcome this difficulty: de-
sign a test which is locally optimal around a target embed-
ding rate [19, 107] (again these tests rely on a statistical
model of pixels); or design a test which is universally optimal
for any embedding rate [18] (unfortunately their optimality
assumptions are seldom met outside “the laboratory”).

Open Problem 12 Theoretically well-founded, and prac-
tically applicable, detection of payload of unknown length.

Second, it is also unrealistic to assume that the vector pa-
rameter θ, which defines the statistical distribution of the
whole inspected medium, is perfectly known. In practice,



these parameters are unknown and would have to be esti-
mated using a model. Here one could employ the Gener-
alized Likelihood Ratio Test (GLRT), which estimates un-
known parameters in the LRT by the method of maximum
likelihood. Unfortunately, maximum likelihood estimators
again depend on a particular models of covers, and further-
more the GLRT is not usually optimal.

Although models of digital media are not entirely convinc-
ing, a few have been used for steganalysis, e.g. [20], as well
as models of camera post-acquisition processing such as de-
mosaicking and colour correction [95]. Much is unexplored.

Open Problem 13 Apply models from the digital imaging
community, which do not require independence of pixels, to
the optimal detection framework.

However, it is sobering to observe that a well-developed
detector based on testing theory and Laplacian model of
DCT coefficients [106] performs poorly in practice compared
to the rather simple WS detector adapted to the JPEG do-
main [13]. As we have repeatedly stated, digital media ste-
ganography is a particularly difficult domain in which to
understand the covers.

3.2 Binary classification
Absent a model of covers, currently the best image stegan-

alyzers are built using feature-based steganalysis and ma-
chine learning. They rest on the assumption that the ste-
ganalyst has some samples from the steganographer’s cover
source, so that its statistical properties can be learned, and
also that they can create or otherwise obtain stego objects
from these covers (for example by knowing the exact em-
bedding algorithm). Typically, one starts by representing
the media using a feature of a much smaller dimensionality,
usually designed by hand using heuristic arguments. Then,
a training database is created from the cover and stego ex-
amples, and a binary classifier is trained to distinguish the
two classes.

Machine-learning steganalysis is fundamentally different
from statistical signal processing approaches because one
does not need to estimate the distribution of cover and stego
images. Instead, this problem is replaced with a much sim-
pler one: merely to distinguish the two classes. Thus, one
can build classifiers that use high-dimensional features even
with a limited number of training examples. When trained
on the correct cover source, feature-based steganalysis usu-
ally achieves significantly better detection accuracy than an-
alytically derived detectors (with the exception of LSB re-
placement).

There are two components to this approach: the features,
and the classification algorithm.

Image steganalysis features have been well-studied in the
literature. In the spatial domain, one usually starts by com-
puting noise residuals, by creating and then subtracting an
estimate of each cover pixel using its neighbours. The pixel
predictors are usually built from linear filters, such as local
polynomial models or 2-dimensional neighbourhoods, and
can incorporate nonlinearity using the operations of maxi-
mum and minimum. The residuals improve the SNR (stego
signal to image content). Typically, residuals are truncated
and quantized into 2T + 1 bins, and the final feature vec-
tor is the joint probability mass function (co-occurrence) or
conditional probability distribution (transition matrix) of D
neighbouring quantized residuals [78]. The dimensionality
of this feature vector is (2T + 1)D, which quickly grows

especially with the co-occurrence order D, though it can
somewhat be reduced by exploiting symmetry.

In the JPEG domain, one can think of the DCT coeffi-
cients already as residuals and form co-occurrences directly
from their quantized values. Since there exist dependen-
cies among neighboring DCT coefficients both within a sin-
gle 8 × 8 block as well as across blocks, one usually builds
features as two-dimensional intra-block and inter-block co-
occurrences [60]. It is also possible to build the co-occurrences
only for specific pairs of DCT modes [62]. A comprehensive
list of source code for feature vectors for raw and compressed
images, along with references, is available at [2]. The cur-
rent state of art in feature sets are unions of co-occurrences
of different filter residuals, so-called rich models. They tend
to be high-dimensional (e.g., 30 000 or more) but they also
tend to exhibit the highest detection accuracy [35, 63].

We note that, in parallel to the steganography situation,
steganalysis literature is mostly specialized to grayscale im-
ages: there exists only a little literature on steganalysis in
video, e.g. [15, 47], and for various kinds of network traf-
fic analysis [16, 104, 12]. The latter methods only use basic
statistics such as the variance of inter-packet delays or quan-
tiles of differences between arrival times. There is scope to
transfer lessons from grayscale image steganalysis to these
domains.
Open Problem 14 Design features for colour images and
video, which take account of correlations in these media, and
rich features for network steganalysis.

Another problem specific to steganalysis of network traffic
is the difficulty of acquiring large and diverse data sets.

The second component, the machine learning tool, is a
very important part. When the training sets and feature
spaces are small, the tool of choice is the support vector
machine (SVM) [88] with Gaussian kernel, and this was pre-
dominant in the literature to 2011. But with growing feature
dimensionality, one also needs larger training sets, and it be-
comes computationally unfeasible to search for hyperparam-
eters. Thus, recently, simpler classifiers have become more
popular. An example is the ensemble classifier [66], a col-
lection of weak linear base learners trained on random sub-
spaces of the feature space and on bootstrap samples of the
training set. The ensemble reaches its decision by combining
the decisions of individual base learners. (In contrast, deci-
sion trees are not suitable for steganalysis, because among
the features there is none that is strong alone.) When try-
ing to move the tools from the laboratory to the real world,
one likely needs to further expand the training set, which
may necessitate online learning such as the simple percep-
tron and its variants [72]. There has been little research in
this direction. Online learning also requires fast extraction
of features, which is in tension with the trend towards using
many different convolution filters.

Although highly refined, the paradigm of training a bi-
nary classifier has some limitations. First, it is essentially
a binary problem, which presupposes that the steganalyst
knows exactly the embedding method and payload size used
by their attacker. Dealing with unknown payload sizes has
been approached in two ways: quantitative steganalysis (see
section 3.7), or effectively using a uniform prior by creating
the stego training set with random payload lengths [77]. An
unknown embedding method is more difficult and changes
to the problem to either a multi-class classification (com-



putationally expensive [76]) or one-class anomaly detection
(section 3.4).

A more serious weakness is that the classifier is only as
good as its training data. Although it is possible, in the
real world, that the steganalyst has access to the stegano-
grapher’s cover source (e.g. he arrests her and seizes her
camera), it seems an unlikely situation. Thus the stegano-
grapher must train the classifier on some other source. This
leads to cover source mismatch, and the resulting classifier
suffers from decreased accuracy. The extent of this decrease
depends on the features and the classifier, in a way not yet
fully understood. It is fallacious to try to train on a large
heterogeneous data set as somehow“representative”of mixed
sources, because it guarantees a mismatch and may still be
an unrepresentative mixture.

Machine learning literature refers to the problem of do-
main adaptation, which could perhaps be applied to this
challenge.

Open Problem 15 Attenuate the problems of cover source
mismatch.

A final issue in moving machine-learning steganalysis to
the real world is the measure of detection accuracy. Popu-
lar measures such as min 1

2
(PFP + PFN ) correspond to the

minimal Bayes risk under equally likely cover and stego im-
ages, which is doubtful in practice. Indeed, one might expect
that real-world steganography is relatively rarely observed,
so real-world steganalysis should be required to have very
low false positive rates, yet steganalysis with very low false
positive rates has hardly been studied. Even having a re-
liable false positive rate would be a good start, and there
has been some research designing detectors with constant
false-alarm rate (CFAR) [68], but it relies on artificial cover
models and is also vulnerable to cover source mismatch. It
should be noted that establishing classification error proba-
bilities remains unsolved in general [90].

3.3 Adaptive classification
Suppose that, for different cover parameters θ, we have

trained different specialized binary classifiers. One possi-
bility is to select the optimal classifier for each observed
stego object. This approach has been used to tackle images
which have double JPEG compression, and those with dif-
ferent JPEG quality factors (in the absence of quantization-
blind features, such images have to be considered as coming
from completely different sources) [76]. A similar approach
specializing detectors to different covers has been pursued
in [42].

This is a special case of fusion, where multiple classifiers
have their answers combined in some weighted fashion. It
presupposes that the cover parameters θ can reliably be es-
timated from the observed stego image, and that training
data was available for all reasonable combinations of pa-
rameters. It is also very expensive in terms of training. In
machine learning this architecture is known as a mixture of
experts [105].

Open Problem 16 Apply other fusion techniques to ste-
ganalysis.

3.4 Universal steganalysis
It is not always realistic to assume that the embedder

knows anything about the embedding algorithm used by the
steganographer. Universal steganalysis focuses on such a

scenario, assuming that the steganalyst can draw empirically
from the cover source but is otherwise ignorant. Despite
being almost neglected by the community, such a problem is
important for deployment of steganalysis in the real world.

Universal steganalysis considers the following hypothesis
test: H0 = {Y ∼ P θ

0 } vs H1 = {Y ! P θ

0 }. We can dis-
tinguish two cases: either the cover source is entirely known
to the detector (θ is known and H0 is simple), or not (both
hypotheses are composite). The first version of the problem
is unrealistic in the real world, for the reasons we previously
cited. The second shows that detector design is about mod-
elling a cover source, and practical approaches resort to mod-
elling the distribution of cover images in a space determined
by steganographic features. In comparison with the binary
hypothesis testing scenario of section 3.2, this problem is
much more difficult, because learning a probability distri-
bution is unavoidably more difficult than learning a classi-
fier [96]. We must expect that universal steganalyzers have
inferior performance to targeted binary classifiers. In fact it
is not straightforward to benchmark universal steganalysis,
because there is no well-defined alternative hypothesis class
from which to test for false negatives.

Universal steganalysis can be divided into two types: su-
pervised and unsupervised. The former uses samples from
the cover-source to create the cover model, e.g. by using
one-class support vector machines [88] designed to solve the
above hypothesis test under a false positive constraint. This
approach has been investigated in [82, 73]. Obviously, the
accuracy of supervised steganalysis is limited if the training
data is not perfectly representative of the steganographer’s
cover source and, if mismatched, the accuracy might be as
bad as random guessing.

Unsupervised universal steganalysis tries to circumvent
the problem of model mismatch by postponing building a
cover model until the classification phase. It analyses multi-
ple images at once, assuming that most of them are covers,
and is therefore a form of outlier detection. To our knowl-
edge there is no literature dealing with this scenario in ste-
ganalysis, though there are works dealing with it on the level
of actors, treated in section 3.5.

Open Problem 17 Unsupervised universal steganalysis.

The accuracy of universal steganalysis is to a large ex-
tent determined by the steganographic features, and fea-
tures suitable for binary classification are not necessarily
right for universal steganalysis. The features should be sen-
sitive to changes caused by embedding, yet insensitive to
variations between covers (including perhaps unnatural but
non-steganographic processing techniques). Particularly in
the case of unsupervised learning, the latter condition re-
quires them to have low dimension, because unsupervised
learning cannot learn to ignore irrelevant noise. A small
number of features also facilitates training of supervised de-
tectors, as it decreases the required number of samples to
learn the probability distribution. An unstudied problem is
therefore:
Open Problem 18 Design of features suitable for universal
steganalysis.

3.5 Pooled and multi-actor steganalysis
So far, the security models have assumed that the stegan-

alyst has one object to classify, or if they have many then
they know exactly which one to look at. This is highly un-



realistic and if steganalysis is to move to the real world it
will have to address the problem of pooled steganalysis [48]:
combining evidence from multiple objects to say whether
they collectively contain payload. It is in opposition to the
steganographic channel of section 2.4.

Although posed in 2006, there has been little success in
attacking this problem. One might say that it is no different
to binary steganalysis: simply train a classifier on multiple
images. But there are many practical problems to overcome:
should the feature set be the sum total of features from indi-
vidual images (if so, this loses information), or concatenated
(in which case how does one impose symmetry under permu-
tation)? To our knowledge, there has been no such detector
proposed in the literature, except for simple examples stud-
ied when the problem was first posed [48, 49].

A related problem which, to the best of our knowledge, has
never been studied is sequential detection. When inspecting
VOIP traffic, for instance, it would be interesting to perform
online detection. The theoretically optimal detection is more
complex because time-to-decision also has to be taken into
account. The statistical framework of sequential hypothesis
tests should be applicable [99].

Open Problem 19 Any detector for multiple objects, or
based on sequential hypothesis tests.

We can widen the steganalysis model still further, to a
realistic scenario relevant to network monitoring, if the ste-
ganalyst does not know even which user to examine. In this
situation the steganalyst intercepts many objects each from
many actors (e.g. social network users); their problem is to
determine which actor(s), if any, are using steganography in
some or all of their images.

This is the most challenging version of steganalysis, but
recent work [56, 55] has shown that the size of the problem
can be turned to the steganalyst’s advantage: by calibrating
the behaviour of actors (as measured through steganalysis
features) by the behaviour of the majority, steganographers
can potentially be determined in an unsupervised and uni-
versal way. It amounts to an anomaly detection where the
unit is the actor, not the individual object. This can be
related to unsupervised intrusion detection systems [24].

This is a new direction in steganalysis and we say no more
about it here, but highlight the danger of false accusations:

Open Problem 20 Can steganographers be distinguished
from unusual (non-stego) cover sources, by a detector which
remains universal?

3.6 Game theoretic approaches
The pooled steganalysis problem exposes an essentially

game-theoretic situation. When a (batch) steganographer
hides all their payload in one object, a certain type of de-
tector is optimal; when they spread their payload in many
objects, a different detector is optimal. These statements
can be proved in artificial models and observed in practice.
Indeed, the same can be said of single images: if the embed-
der always hides in noisy areas, the detector can focus their
attention there, and vice versa. A parallel situation most
likely exists in non-media covers.

Game theory offers an interesting perspective from which
to study steganography. If both steganographer and stegan-
alyst know the cover source and are computationally uncon-
strained, the steganographer can embed perfectly; with a
shorter key if the steganalyst is computationally bounded.

If the steganographer is computationally bounded, but not
the steganalyst, the best she can do is to minimize the KL
divergence, subject to her constraints. Another way to frame
this is that she plays a minimax strategy against the best-
possible detector [45].

This may not add a lot of insight in the lab. But once
we step out into the real world, where knowledge of the
cover source is incomplete and computational constraints
defy finding globally optimal distortion functions or detec-
tors, then game theory becomes very useful. It offers a
wealth of solution concepts for situations where no maximin
or minimax strategies exist. A popular one is the notion of a
Nash equilibrium. It essentially says that among two sets of
strategies, one for the steganographer (choice of embedding
operation, distortion function, parameters etc.) and one for
the steganalyst (feature space, detector, parameters such as
local weights, etc.), there exist combinations where no player
can improve his or her outcome unilaterally. Although ex-
ploitation of game theory for steganography has just begun,
and we are aware of only four independent approaches [25,
49, 75, 89], it seems to be a promising framework which
allows us to justify certain design choices, such as payload
distribution in batch steganography or distortion functions
in adaptive steganography. This is a welcome step to replace
heuristics with (some) rigor in the messy scenarios of limited
knowledge and computational power, as we find them in the
real world.

However, game theory for steganography is in its infancy,
and there are substantial obstacles to be overcome, such as:

Open Problem 21 Find equilibria for practical covers, and
transfer insights of game-theoretic solutions from current toy
models to the real world.

3.7 Forensic steganalysis
Finally, what does the steganalyst do after detecting hid-

den data in an object? The next steps might be called foren-
sic steganalysis, and only a few aspects have been studied
in the literature.

If the aim of the steganalyst is to find targets for further
surveillance, or to confirm the existence of already-suspected
covert communication, circumstantial evidence such as sta-
tistical steganalysis is probably sufficient in itself. But for
law enforcement it is probably necessary to demonstrate the
content of a message by extracting it, in which case the first
step is to determine the embedding algorithm. This prob-
lem, largely neglected, has been studied in [81] for JPEG
images. The detection of different algorithms based on sta-
tistical properties will not be perfect, as methods with simi-
lar distortion functions and embedding changes are likely to
be confused, but this has not been studied for recent adap-
tive embedding methods.

Open Problem 22 Can statistical steganalysis recognize
different adaptive embedding algorithms?

Some identify a specific implementation by a signature,
effectively relying on implementation mistakes [11, 103], but
this is unsatisfactory in general.

Once the embedding method is known, the next step is
a brute-force search for the embedding key. Very little re-
search has been done in this area, though two complemen-
tary approaches have been identified: using headers to verify
the correctness of a key [84], and comparing statistics along



potential embedding paths [34] in which the correct key de-
viates from the rest.
Open Problem 23 Is there a statistical approach to key
brute-forcing, for adaptive steganography?

Additionally, forensic steganalysis includes estimation of
the length of the hidden message (quantitative steganaly-
sis). This knowledge is useful to prevent “plausible denia-
bility”, where the steganographer hides two messages, one
of which is not incriminating and can be disclosed if forced.
Such a scheme is uncovered if the total embedded payload
can be estimated. Quantitative steganalysis is a regression
problem parallel to binary classification, and the state of
the art applies regression techniques to existing steganalysis
features [83, 59].

4. CONCLUSIONS
Over the last ten years, ad-hoc solutions to steganogra-

phy and steganalysis problems have evolved into more re-
fined techniques. There has been a disparity in the rate of
progress: grayscale images have received most of the atten-
tion, which should be transferred to colour images, video,
other digital media, and non-media covers such as network
traffic. Such transfer would bring both steganography and
steganalysis closer to real-world implementation.

For steganography, we have stressed the distortion-mini-
mization paradigm, which only became practical with recent
developments in coding. There is no good reason not to use
such a technique: there are efficiencies from the coding, and
if there is a fear that current distortion functions might make
detection paradoxically easier, one can use this feedback to
redesign the distortion function, and continue the cycle of
development. We expect further advances in coding to widen
the applicability of such techniques.

For steganalysis, the binary classification case is well-deve-
loped, but there is a need to develop techniques that work
with unknown algorithms, multiple objects, and multiple
actors. Even the theoretical framework which we have high-
lighted, that of KL divergence as a fundamental measure of
security, has yet to be adapted to these domains.

Acknowledgments

The work of A. Ker and T. Pevný is supported by European
Office of Aerospace Research and Development under the
research grant numbers FA8655-11-3035 and FA8655-13-1-
3020, respectively. The work of S. Craver and J. Fridrich is
supported by Air Force Office of Scientific Research under
the research grant numbers FA9950-12-1-0124 and FA9550-
09-1-0666, respectively. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of
EOARD, AFOSR, or the U.S. Government.

The work of R. Cogranne is funded by Troyes University
of Technology (UTT) strategic program COLUMBO. The
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