

Edinburgh Research Explorer

Scientific Workflows: Moving Across Paradigms

Citation for published version:
Liew, CS, Atkinson, M, Galea, M, Ang, TF, Martin, P & van Hemert, J 2017, 'Scientific Workflows: Moving
Across Paradigms' ACM Computing Surveys, vol 49, no. 4, 66. DOI: 10.1145/3012429

Digital Object Identifier (DOI):
10.1145/3012429

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Computing Surveys

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2018

https://doi.org/10.1145/3012429
https://www.research.ed.ac.uk/portal/en/publications/scientific-workflows-moving-across-paradigms(774ef69e-a499-4bd2-a609-09f050e682ae).html

A

Scientific Workflows: Moving Across Paradigms

CHEE SUN LIEW, University of Malaya

MALCOLM P. ATKINSON and MICHELLE GALEA, University of Edinburgh

TAN FONG ANG, University of Malaya

PAUL MARTIN, University of Amsterdam

JANO I. VAN HEMERT, Optos Plc

Modern scientific collaborations have opened up the opportunity to solve complex problems that require
both multidisciplinary expertise and large-scale computational experiments. These experiments typically
comprise a sequence of processing steps that need to be executed on selected computing platforms. Execution
poses a challenge however due to a) the complexity and diversity of applications, b) the diversity of analysis
goals, c) the heterogeneity of computing platforms, and d) the volume and distribution of data.

A common strategy to make these in silico experiments more manageable is to model them as workflows,
and to use a workflow management system to organise their execution. This article looks at the overall chal-
lenge posed by a new order of scientific experiments and the systems they need to be run on, and examines
how this challenge can be addressed by workflows and workflow management systems. It proposes a taxon-
omy of workflow management system (WMS) characteristics, including aspects previously overlooked. This
frames a review of prevalent WMS used by the scientific community, elucidates their evolution to handle the
challenges arising with the emergence of the ‘fourth paradigm’ and identifies research needed to maintain
progress in this area.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.1.4 [Paral-
lel Architectures]: Distributed Architectures; D.2.11 [Software Engineering]: Software Architectures;
H.4.1 [Information Systems Applications]: Office Automation—Workflow management

General Terms: Algorithms, Design, Language, Measurement, Performance

Additional Key Words and Phrases: Data-intensive science, workflows, workflow management systems

ACM Reference Format:
Liew, C. S., Atkinson, M. P., Galea, M., Ang, T. F., Martin, P. and van Hemert, J. I. 2016. Scientific Workflows:
Moving Across Paradigms. ACM Comput. Surv. V, N, Article A (October 2016), 37 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

Author’s addresses: C. S. Liew and T. F. Ang, Faculty of Computer Science & Information Tech-
nology, University of Malaya, 50603 Kuala Lumpur, Malaysia; M. P. Atkinson, School of Informat-
ics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK; M. Galea, The Data
Lab, University of Edinburgh, 15 South College Street, Edinburgh, EH8 9AA; P. Martin, Informat-
ics Institute, University of Amsterdam, Science Park 904 1098XH Amsterdam, Netherlands; J. I.
van Hemert, Optos, Queensferry House, Carnegie Campus, Enterprise Way, Dunfermline KY11 8GR,
UK. Email: csliew@um.edu.my; Malcolm.Atkinson@ed.ac.uk; michelle.galea@ed.ac.uk; angtf@um.edu.my;
p.w.martin@uva.nl; jvanhemert@optos.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/10-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

A:2 Chee Sun Liew et al.

1. INTRODUCTION

Computational science has increasingly stood alongside experimental and theoretical
science in scientific discovery over the last five decades. However the phrase “Fourth
Paradigm” was coined by Jim Gray [Gray 2009] to draw attention to a new method-
ology in science that complements those three paradigms — one that addresses the
increasing importance of digital data in science.

Advances in computing technology fosters the use of simulations to perform complex
analyses in theoretical modelling; these simulations generate large volumes of data,
which are stored in databases and files. At the same time, the revolution in digital tech-
nology has increased the volume of observational data used in experimental science as
the extensive use of digital sensors has been coupled with highly automated data col-
lection, e.g. digital-imaging devices in astronomy and microarray DNA sequencers in
genomics [Interagency Working Group on Digital Data 2009]. The scientific commu-
nity is facing a massive data challenge, such as petabytes of live data streams1 and
petabytes of curated data2. The complexity and diversity of data pertinent to research
topics is also increasing rapidly, e.g., ELIXIR supporting European life scientists host
24 curated reference-data collections, each of which evolves and grows rapidly3.

With the 21st century, the fourth paradigm has emerged, known as data-intensive sci-
ence [Hey et al. 2009] or data-driven science, where scientists discover new knowledge
by systematically processing large volumes or complex collections of data captured in
experiments or generated by simulations. As Jim Gray observed [Gray 2009], most
astronomers do not look through the sophisticated and expensive new telescopes — in-
stead, they work at the end of a data pipeline, analysing derived information on their
own workstations. Computing software is used extensively to integrate and analyse
data in order to extract new knowledge. Data-driven science does not replace exist-
ing scientific methods; it complements existing paradigms—an iterative cycle to link
knowledge with observations [Kell and Oliver 2004].

The examples below highlight some projects from various scientific domains that are
dealing with large-scale distributed data:

Optical astronomy. The Pan-STARRS project4 for detecting potentially hazardous
objects in the Solar System is equipped with four 1.4 Gigapixel resolution digi-
tal cameras that capture more than 1 PB of raw data and generate 100 TB data
within its catalogue database each year. Everyday, a Load workflow creates about
700 new Load databases storing nightly detected objects, and once a week, a Merge
workflow merges 50,000 Load databases with 12 offline Cold databases using Tri-
dent [Simmhan et al. 2009]. These data may be analysed directly or used in combi-
nation with other observations, using standards mediated by the IVOA5.

Radio astronomy. LOFAR6, for observing the universe using very low frequency ra-
dio telescopes, is producing high-quality interferometric data on baselines ranging
from 100 m up to more than 1000 km, from 24 core stations (within a two km radius

1The SKA (www.skatelescope.org) will generate 2.5 to 7.5 PB of raw data/second [Broekema et al. 2012].
2The LHC (cms.web.cern.ch) preserves 30 PB of data per year [Chalmers 2014] and the Large Synoptic
Survey Telescope (www.lsst.org) will generate several petabytes of saved images and catalogues every year.
3ELIXIR services https://www.elixir-europe.org/services
4Panoramic Survey Telescope & Rapid Response System (Pan-STARRS): pan-starrs.ifa.hawaii.edu
5International Virtual Observatory Alliance (IVOA): www.ivoa.net
6Low Frequency Array (LOFAR): www.lofar.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.skatelescope.org
cms.web.cern.ch
www.lsst.org
https://www.elixir-europe.org/services
pan-starrs.ifa.hawaii.edu
www.ivoa.net
www.lofar.org

Scientific Workflows: Moving Across Paradigms A:3

in The Netherlands), 16 remote stations (within 100 km), and 8 international sta-
tions (including France, Germany, Sweden and the UK) [Heald et al. 2011]. The data
processing pipeline involves: correlating and reducing data from all of the stations
connected through a wide-area network using an IBM Blue Gene/P supercomputer;
real-time analysis and model tuning using a general purpose cluster; temporary
storage of the raw data; and archival of final data products for further use [Romein
et al. 2011] — this is both data-intensive and computationally complex.

Seismology. The VERCE project7 is delivering an e-Science environment to the seis-
mological community to exploit the increasingly large volume of seismological data.
It provides an integrated architecture for diverse data-intensive applications in data
analysis and modelling and the interconnection of community data infrastructures
with HPC infrastructures [Atkinson et al. 2015]. This is a framework for execut-
ing heterogenous tasks that process large volumes of data (e.g. 100 TB of raw data
to analyse the 2011 Tōhoku earthquake and 5 PB of simulation results to model
the corresponding subsurface processes), from geographical distributed and diverse
data sources, on Grid, Cloud and HPC computing resources.

Experimental biology. OME8 provides flexible data management and interoperabil-
ity tools for biological light microscopy, that deals with over 150 microscopy file
formats and distributed image processing. Its OMERO project [Allan et al. 2012]
provides tools for extracting measurements from microscopy images. OMERO uses
multiple storage schemes (i.e. binary image repositories, relational databases and
HDF59), middleware, and client applications (i.e. scripts written in Java, C and
Python, and for Web browsers) to enable diverse and complex biomedical research.

Environmental science. The study of the pattern of bird species occurrence to un-
derstand how they are influenced by environmental changes [Kelling et al. 2013] is
data-intensive. It involves merging data from different organisations (e.g. NASA10,
USGS11, NOAA12, AKN13 and citizen scientists), using a high-performance comput-
ing infrastructure to explore complex models and large volumes of data through
statistical analyses and visualisations, using VisTrails [Callahan et al. 2006].

The projects above, like many others, involve the challenges of data creation, ex-
ploration, exploitation and preservation in many scientific communities. The rapidly
growing and diverse data opens many new opportunities in business, research, design,
policy formulation and decision making, but these opportunities can only be exploited
if we improve our knowledge-discovery apparatus as we enter the data-intensive era.

Managing the data deluge not only requires larger storage space and more computa-
tional power. It also demands new advances, e.g. scalable data-processing algorithms
that can handle massive datasets, new data-management technologies for distributed
and heterogeneous data sources and new high-speed networks for transferring large
volumes of data [Gorton et al. 2008]. Many datasets (e.g. three dimensional spatial
time-series data in seismology) may be stored in DBMSs designed for efficient trans-
action processing and not for scientific data. Boncz et al. [2008] discuss how they
redesigned the database architecture in MonetDB, making use of modern technology

7Virtual Earthquake and seismology Research Community e-science environment in Europe: www.verce.eu
8Open Microscopy Environment (OME): www.openmicroscopy.org
9HDF5: www.hdfgroup.org/HDF5
10National Aeronautics and Space Administration (NASA): www.nasa.gov
11United States Geological Survey (USGS): www.usgs.gov
12National Oceanic and Atmospheric Administration (NOAA): www.noaa.gov
13Avian Knowledge Network (AKN): www.avianknowledge.net

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.verce.eu
www.openmicroscopy.org
www.hdfgroup.org/HDF5
www.nasa.gov
www.usgs.gov
www.noaa.gov
www.avianknowledge.net

A:4 Chee Sun Liew et al.

to avoid the performance bottleneck in main-memory access, whilst Stonebraker et
al. [2009] have specified a common set of requirements for new scientific database
systems, e.g. a new array data model and operators to process time-series. Budavári
et al. [2013] have developed the SkyQuery Language, extending SQL to better express
every aspect of cross-identification problems in large-scale astronomy archives.

The growing wealth of data (with increasingly diversity and complexity across all do-
mains) is not the only challenge that the scientific community is facing. Another chal-
lenge is the complexity and the heterogeneity of the computing systems that support
the experiments, the applications and the data. Some efforts are underway that at-
tempt cross-architectural implementation, e.g. Grid/Cloud [Deelman 2010; Deelman
et al. 2016; Kacsuk et al. 2014], but their integration processes are proving challeng-
ing. There are a number of reasons for this:

— It is not unusual to run experiments that read raw data from distributed file sys-
tems, metadata from the databases, and live data streams from remote sensors.
When collaborative work is involved, these resources may not be located at one site
nor managed by a single organisation. The data-integration process needs to deal
with different resource types and with a variety of access constraints.

— Even if the experiment only involves data stored in a file system, there are dif-
ferent storage solutions available. The Sphere parallel data processing engine can
efficiently perform massive parallel in-storage data processing on data stored in the
Sector file system (twice as fast as Hadoop MapReduce [Gu and Grossman 2009]).
However, it can not process data stored on a Gfarm file system14.

— There is a broad spectrum of applications, from arithmetically intensive to data
intensive. Each type of application is suitable to run on certain hardware archi-
tectures. For instance, a commodity cluster provides high computing power with
hundreds to hundreds of thousands of cores and usually is intrinsically attached
to a storage area network to store the data. This architecture is adapted to solve
compute-intensive problems. However, running data-intensive applications often
incurs higher communication costs and achieves lower performance because disk
I/O rates and network bandwidths become performance bottlenecks. In this case,
data-intensive computing machines, as described in [Dobos et al. 2013; Givelberg
et al. 2011; Norman and Snavely 2010], outperform commodity clusters.

— The execution context itself differs. For instance Pegasus is a popular workflow
management system (WMS) used to manage the execution of in silico experiments.
It works well with DAGMan and HTCondor15 [Litzkow et al. 1988; Thain et al. 2005]
handling batch processing, which stages in data and executable script onto a HPC
cluster and stages out the results after each tasks has been executed. In some con-
texts, many of the functions a data-driven researcher requires are packaged as
Web services, e.g., access to curated data collections (see ELIXIR above) or stan-
dard transformations. Some WMS, such as Taverna [Wolstencroft et al. 2013], are
designed to orchestrate the use of such services. A way to exploit coarse-grained
interoperability is to treat the workflows as “black boxes”, and orchestrate them by
nesting WMSs, as in the SHIWA platform [Korkhov et al. 2013].

This complexity and heterogeneity cannot be eliminated by unification of technologies
as there are powerful drivers for continued diversity. Forcing a community to abandon
their existing investments and converge on a common technology is unacceptable as it

14Gfarm file system: datafarm.apgrid.org
15HTCondor was known as “Condor” from 1988 until its name changed in 2012

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

datafarm.apgrid.org

Scientific Workflows: Moving Across Paradigms A:5

would destroy their research momentum. Much pooled intellectual effort and funds are
spent over many years to develop the operational practices and their associated data-
interchange standards. When boundary-crossing research links two such ‘islands’ of
homogeneity, neither can afford to disrupt its community to align with the other. Some
legacy systems are hard to replace or too expensive, e.g., methods use programs written
decades ago; it is infeasible to marshal experts to rewrite them.

Even if a community were to agree on a standard technology, the diversity will eventu-
ally reappear due to the independent evolution of technology in separate groups. The
Swift system was developed by the GriPhyN Virtual Data System (VDS)16—a collabo-
ration to automate the analysis of the large quantities of high-energy physics data via
a set of workflow tools. Initially VDS used the Chimera virtual data language [Foster
et al. 2002] to express the logical organisation of operations, Pegasus (see Sect. 3.1) as
its workflow planner, and HTCondor DAGMan as its execution engine. The Swift system
(see Sect. 3.4) has since grown to be a stand alone workflow system for petascale paral-
lel execution [Wilde et al. 2009], using its own SwiftScript for iterative operations, and
Falkon [Raicu et al. 2007] for task submission.

The third factor sustaining complexity and diversity is the socio-economic power of
identity. Cloud computing [Armbrust et al. 2010] has emerged as a new paradigm that
provides dynamic and scalable infrastructure for applications, computing and storage.
The key players in the industry have shown their interests and have populated this
niche in the Internet ecosystem, e.g. Amazon17, Google18, Microsoft19 and Rackspace20.
Each has their own strengths and market share. Brynjolfsson et al. [2010] examine the
cloud computing model in comparison with other utility models, such as electricity, and
conclude that cloud offerings will not be interchangeable across providers. This is cur-
rently a barrier for cross-platform experiments. Juve and Deelman [2010] discuss how
the scientific communities may adapt Cloud computing technologies, which primarily
target business needs. Zhao et al. [2014] identify the challenges of such adaptation and
share their experience in integrating the Swift into the Cloud. Cała et al. [2016] dis-
cussed their experience in porting a life-science workflows onto Microsoft Azure cloud,
and provided a balanced view of the key benefits and drawbacks we observed during
the migration. We argue in Section 4.1 that cross-platform working and interoperation
between workflows encoded in different notations should be facilitated.

Section 2 reviews the established characteristics of workflows from a data-intensive
viewpoint. It then discusses architectures for providing workflows and draws atten-
tion to some features not normally considered in order to establish a framework for
discussing workflow systems. Using this framework Section 3 analyses six workflow
systems and their utility for data-intensive scientific research. It concludes with a sum-
mary and an assessment of their data handling and optimisation strategies. Section 4
charts the anticipated development of scientific workflow languages as they handle
more computation and much more data. Three topics are addressed: a) how to tran-
scend technical and cultural boundaries while respecting community and individual
needs; b) how to empower scientists so that they can drive their own research agenda
only calling on other experts exceptionally, and c) possible technical developments tak-
ing account of external influences and trends. This anticipates a more complex and

16GriPhyN VDS: www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
17Amazon Elastic Compute Cloud (Amazon EC2): aws.amazon.com/ec2/
18Google App Engine: www.google.com/apps
19Microsoft Windows Azure: www.microsoft.com/windowsazure/
20Rackspace Cloud: www.rackspace.com/cloud/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
aws.amazon.com/ec2/
www.google.com/apps
www.microsoft.com/windowsazure/
www.rackspace.com/cloud/

A:6 Chee Sun Liew et al.

integrated context for scientific workflows with strong influences from advances in the
ways in which scientific data are stored and organised. The concluding section finishes
with a clarion call for a combined effort, not only from the scientific workflow com-
munity but also from the scientific data storage, archiving and curation communities
to develop an integrated approach to facilitating the fourth paradigm. This will re-
quire a formal framework, a pervasive campaign establishing interchange standards
and many carefully integrated advances in the engineering underpinning data han-
dling, data organisation and their interplay with workflow enactment. Above all it will
require logical and conceptual notations that enable a wide range of researchers in
science, biomedicine and engineering to take charge of their data-intensive methods.

2. WORKFLOWS

The emergence of computational and data-driven science as the third and fourth
paradigms increases the demand for modern technologies. With the help of data-
analysis experts who master statistical methods or data-mining techniques, domain
scientists21 try to discover new knowledge from simulation, observation and experi-
mental data. This often involves: a) moving data from data sources to computational
resources, b) cleaning, calibrating and normalising data, c) constructing a model us-
ing part of that preprocessed data, d) validating the model with the remaining data,
e) visualising the results, and f) moving the results to a storage system. Simulations
explore and test the implications of mathematical models of phenomena; they may be
included in workflows as a source of data. For example, for the recent discovery of
gravity waves [Abbott et al. 2016], the parameters describing the masses, momentum
and separation of the colliding black holes had to be adjusted until the output from
a simulation matched the detected signal – this used the Pegasus workflow system.
Similarly, to develop tomographic Earth models, through seismic inversion, the wave
propagations from many earthquakes have to be simulated, and the finite-element
models of wave velocity, have to be adjusted by adjunct wave propagation until the re-
sults match the seismic observations [French and Romanowicz 2015]. Such processes
can be modelled as workflows, which are defined here as a set of interrelated compu-
tational and data-handling tasks designed to achieve a specific goal.

2.1. Workflow characteristics

A workflow comprises three components: a list of tasks or operations, the set of de-
pendencies between the interconnected tasks (the flow), and the set of data resources
used to generate or terminate the flow22. In a graph representation, the tasks and data
resources are the vertices and the dependencies are the edges connecting vertices, as
shown in Figure 1. The edges can represent two kinds of dependency: control-flow and
data-flow [Shields 2007].

Control-flow graphs comprise tasks and precedence constraints. The tasks are oper-
ations and edges specify the order of operations. An example workflow in Figure 1
demonstrates a basic pattern. The two tasks in the data integration phase may be run
concurrently, while the tasks in the data-preparation stage form a sequence that runs
after these have both completed, wherein each task is executed before the tasks at the
arrow end of connecting edges. The sequence is then split but the arc from ExtractModel

21In commerce the person who grasps the business issues is called the “domain expert”; e.g. the marketing
strategist, financial controller or the logistics planner. In science an expert in the discipline fills that role.
22Data resources include data sources and data sinks (e.g. data stores and archives).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

Scientific Workflows: Moving Across Paradigms A:7

Data Integration Data Preparation Data Mining

testing set

training set Extract
Model

Evaluate
Model

Query

Split
Data

Read

DBMS

Select
Features

Pre-
process

Generate
Features

File
system

model

results

Fig. 1. Common workflow in scientific experiments.

to EvaluateModel ensures a model has been produced before it is evaluated. A workflow
graph can be directed cyclic (DCG) or directed acyclic (DAG). The main difference is
that DCG supports iteration and DAG does not. Bharathi et al. provide a characteri-
sation of scientific workflows structures [Bharathi et al. 2008] and van der Aalst et al.
describes basic workflow patterns [van der Aalst et al. 2003]. The Workflow Pattern
initiative catalogues more patterns [van der Aalst and ter Hofstede 2014].

In a data-flow graph, dependencies between tasks represent flows of data. Data move
along arcs, and are transformed by tasks. If Figure 1 denotes a data-flow graph, then
data from the Query operator (metadata) and data from the Read operator (raw images)
flow into the Preprocess operator. The Preprocess operator transforms every data item
(raw image), and transmits the results to the succeeding operator Generate Features.
Data-flow graphs permit the operators’ executions to overlap in a processing pipeline.

These workflow graphs are logical models, known as abstract workflows, defining the
steps to be taken in scientific experiments. Abstract workflows define the tasks and
their dependencies. To run the experiments the tasks need to be mapped to executable
software components, generating a concrete workflow. The workflow life-cycle has been
defined for both business and scientific domains [Deelman et al. 2009; Görlach et al.
2011; Ludäscher et al. 2009], each proposing their own sequence of phases. Görlach
et al. [2011] suggest three phases, while Ludäscher et al. [2009] suggest four phases,
with a “workflow preparation” phase staging data into computing resources prior to the
execution phase. Only Deelman et al. [2009] discuss a “provenance capture” phase, col-
lecting information for workflow reproducibility. However, they all make the following
observations, which apply for all forms of data-driven analysis:

— these phases are from the scientists’ perspective as they create and run workflows;
— scientists compose, operate, analyse and refine workflows;
— scientific workflows are exploratory, i.e. it is common to reuse workflows and refine

them using trial-and-error;
— scientific methods are often repeated, i.e. scientists re-run workflows with different

parameters and datasets; and
— run-time monitoring and diagnostics are important, i.e. scientists monitor progress

and may steer or decide to abort or suspend an execution.

Spinuso has pioneered the active use of provenance at run time to trigger responses
to conditions and to support job, data and research-campaign management [Spinuso
et al. 2016]. Making provenance immediately useful is a significant step in engaging
researchers [Myers et al. 2015].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

A:8 Chee Sun Liew et al.

2.2. Workflow architectures

A wide range of Workflow Management Systems (WMSs) have been developed, e.g. Pe-
gasus [Deelman et al. 2015], Kepler [Ludäscher et al. 2006], Taverna [Wolstencroft
et al. 2013], Triana [Taylor et al. 2007b], Swift [Zhao et al. 2007], Trident [Barga
et al. 2008], Galaxy [Blankenberg et al. 2010], ASKALON [Fahringer et al. 2007], WS-
PGRADE/gUSE [Kacsuk et al. 2012], Meandre [Llorà et al. 2008] and Apache Aira-
vata[Marru et al. 2011]. Studies [Taylor et al. 2007a; Goble and De Roure 2009; Görlach
et al. 2011] identify the following roles for workflows:

— support for collaborative research by enabling scientific communities to share au-
tomated and formalised processes such as data analysis,

— construction free from distracting details about workflow management and execu-
tion,

— the ability to automate workflow steps, i.e. their mapping and execution, and to
repeat in silico experiments,

— integrating resources from distributed and heterogeneous enactment platforms,
— handling large volumes of data and complex computations, and
— improving the execution through various optimisation strategies.

We summarise several studies that classify the architecture of WMSs; they propose
widely used taxonomies. We then introduce potential improvements.

Becker et al. [2002] identify three classes of business process: a) workflow-
supported organisational processes (facilitating human actions during those pro-
cesses), b) workflow-driven software processes (entirely automated computational
tasks) and c) hybrid processes (a mixture of the two). They add an organisational di-
mension, i.e. inter- and intra-organisation level. Grefen et al. [2006] describe a trans-
actional workflow model and discuss its support from the conceptual (specification lan-
guage) and the system (workflow architecture) points of view.

Over the last two decades, scientific communities have used workflow technolo-
gies to automate their computational experiments that exploit distributed and high-
performance computing infrastructures, e.g. Grids, and access data, Cloud and HPC
resources, which are often geographically dispersed and independently managed. Yu
et al. [2005] classify various approaches to mapping workflows onto Grids. They re-
view thirteen existing WMSs and suggest research directions. Deelman et al. [2009]
develop a general taxonomy of features for WMSs relevant to scientists, and use these
to characterise and compare the abilities of WMSs throughout the life-cycle.

A number of papers regarding specific aspects of WMSs have been published, including:

— Scheduling — Wieczorek et al. [2009] analyse five facets of workflow scheduling:
workflow model, scheduling criteria, scheduling process, resource model, and task
model; in each case giving an extensive taxonomy and a survey of related WMSs.

— Verification and validation to improve the correctness of Grid workflows. Chen et
al. [2008] propose a taxonomy for workflow verification: structure, performance and
resources, and validation of consistency between processes and specifications.

— Provenance — Provenance data are often specific to the WMS that gathers them
and prove difficult to integrate across systems. Many of the systems in Sect. 3 are
adopting W3C PROV23 to enable the interchange of provenance data [Groth et al.
2012]. Da Cruz et al. [2009] distinguish perspectives of provenance (i.e. capture,

23W3C PROV-Overview: www.w3.org/TR/prov-overview

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.w3.org/TR/prov-overview

Scientific Workflows: Moving Across Paradigms A:9

access, subject and storage), and provide a taxonomy of provenance. They survey
eleven provenance systems, including: Pegasus, Taverna, Kepler and Swift.

— Data publishing — Murphy et al. [2015] define data publishing as providing dis-
coverable, standard and trusted data repositories that allow scientists from differ-
ent disciplines to access, reuse and analyse the unique data sets over the longer
term. The published data should be well documented, identified, curated, interoper-
able and archived. The RDA/WDS Publishing Data Workflows Working Group24 will
analyse a representative range of workflows and standards for data publishing, in-
cluding deposit and citation, and recomend reference models and implementations
for application in new workflows. Garijo et al. [2012] propose the publication of the
workflows, components, and datasets as Linked Data [Heath and Bizer 2011] to
make scientific workflows more reusable and to increase the reproducibility of sci-
entific results [Garijo 2015]. EUDAT25 and DataONE26 are each developing a data
infrastructure compliant with Open Archival Information System (OAIS).

These studies improve our understanding of WMSs. However, they omit a few charac-
teristics from their taxonomies, which are illustrated in Figure 2.

Fig. 2. Architectural characterisations of WMSs.

Processing elements (PEs), the building blocks of workflows, are software components
that encapsulate a particular functionality to perform their task. Gannon distin-
guishes two types of workflow depending on the way a PE is implemented [Gannon
2007]: a) component-based workflows, also known as a task-based are accessed through
a specific interface, such as: a function call, an inter-process communication, or a job
submission—they may be written any language and need to be deployed explicitly dur-
ing enactment, b) PEs in service-based workflows are implemented as Web services,
which are self-contained and self-describing programs exposed via Web servers [Wang
et al. 2004], that are invoked and respond using Web-service protocols addressed to
already running instances.

24Research Data Alliance (RDA): www.rd-alliance.org
25EUDAT: www.eudat.eu B2 services.
26DataONE: www.dataone.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.rd-alliance.org
www.eudat.eu
www.dataone.org

A:10 Chee Sun Liew et al.

The coordination of the execution differs significantly in the two types of workflow. In
component-based workflows, the PEs are often standalone applications that receive in-
put data, perform their task, and produce a result. A WMS deploys and connects these
PEs together by fetching results, often as files, and supplying them as input to sub-
sequent components. In service-based workflows, the Web services are independent,
pre-deployed and potentially dispersed Web instances. A workflow is constructed by a
collection of Web services communicating with each other and with a WMS controller
through message passing, with an explicit coordination method.

The coordination method falls into two categories: orchestration and choreography.
Orchestration has a single controller and oversees the execution flow and invokes ser-
vices based on a workflow written in an orchestration language, WS-BPEL27. Written
initially for business applications, such as BPEL has been adapted to the scientific do-
mains [Emmerich et al. 2005; Slominski 2007].

Choreography describes a collaboration between services to achieve an agreed goal; it
involves messages between multiple parties, where no one party truly owns the conver-
sation [Barker et al. 2009]. WS-CDL28 is used for choreography. Service orchestration
works well in business domains, but not for scientific applications, where data and
applications are often large and use dispersed services managed by multiple organisa-
tions, because service choreography invokes more communication. Barker et al. [2008]
propose a hybrid model with centralised control flow, but distributed data flow, that
provides robustness and reduces data movement.

The workflow representation can meet two goals: a) human presentation, an external
representation for creators and editors of a workflow, with graphical, textual and for-
mal variants, and b) computer communication, an internal representation used for
communication between subsystems to achieve enactment. The graphical representa-
tion may facilitate the composition of workflows using GUI editors. It increases the
usability of the WMSs, but may not be suitable for describing workflows with large
number of tasks in detail; which leads to textual representations that may be a human-
comprehensible or XML-based. The representations denoting abstract workflows used
by workflow editors are transformed into internal representations and are passed to
the workflow manager to organise the execution. It may apply graph transformation
before generating a concrete execution plan to be sent to the execution engine. Three
common internal representations are scripting languages, XML-based descriptions
and internal DAG-based representations. These representations are also employed for
storing workflows [Elmroth et al. 2010].

The data processing model of a workflow matches the internal data processing model
of the PEs, which can be divided into bulk data, where PEs receive whole datasets,
e.g. files (which may contain multiple data elements), and produce their results as
bulk data, and stream data, where data units arrive from continuous and time-varying
data streams, such as the output from sensors [Babcock et al. 2002]. For stream data,
a PE produces data units on its output streams for each data unit that arrives on
an input stream. It is best to describe both using an operations/operators terminol-
ogy. In the bulk data model, PEs are operations, which are instantiated to process a
dataset, and terminated after it has been processed. WMSs execute these operations
in sequence, and some operations may be executed concurrently provided there are
no interdependencies between them. This is called batch processing. For stream data,

27Web Services Business Process Execution Language (WS-BPEL): docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html
28Web Services Choreography Description Language(WS-CDL): www.w3.org/TR/ws-cdl-10/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
www.w3.org/TR/ws-cdl-10/

Scientific Workflows: Moving Across Paradigms A:11

PEs are operators that keep on working on data items as they arrive, and will not
be terminated as long as more data is expected. These operators can be connected to
form a pipeline, a successor operator processing the data items its predecessors have
produced, their execution therefore overlapping. The choice between batch and stream
processing may be determined by non-functional requirements, such as continuously
monitoring an observed system, or it may be based on optimisation issues discussed
below and leading to research questions presented in Sect. 4.

The last characteristic concerns at which stage at which optimisation is performed:
Build time – workflow composition and planning the mapping to resources, or Run
time – the deployment, execution and monitoring phases. An execution engine uses
status information and size of data to dynamically optimise. Build-time optimisation
focuses mainly on graph transformation, e.g. task clustering and parallelisation.

These characteristics all concern how WMSs operate in practice. They significantly
affect how WMSs interoperate, e.g., how workflows are expressed, managed, operated
and optimised. Sect. 3 analyses current WMSs in terms of those characteristics, as
researchers will consider them when deciding which existing WMSs to adopt. In Sect. 4
we discuss how the limitations of existing WMSs may be overcome.

3. REVIEW OF SELECTED EXISTING WORKFLOW MANAGEMENT SYSTEMS

A review of all WMSs is not feasible, so we discuss seven: Pegasus, Kepler, Taverna,
Swift, KNIME, Airavata and Meandre. The first six are well established and widely
used in multiple domains. Meandre is less widely used, but its data-flow system ex-
ploits fine-grained data streaming and is closest to our view of future trends (see
Sect. 4). We briefly review their technology and discuss their salient features, such
as: architecture, development environment and workflow language, and conclude this
section with a summary based on the additional characteristics defined above.

To aid our comparison of these WMSs, we sketch a system-architecture diagram for
each one, e.g. see Figure 3, that shows the workflow composition tool (coloured in
green), the resource mapping mechanism (coloured in orange) and the workflow exe-
cution engine (coloured in yellow). We superimpose that system-architecture diagram
onto an hour-glass figure — the upper part of the hourglass denotes the development
and refinement of the logic in the workflow and supports activities such as sharing and
debugging, the lower part represents computation across diverse distributed comput-
ing infrastructures (DCIs) evaluating instances of the workflows. The arguments for
this “hourglass model” are given in [Atkinson and Parsons 2013]. Both the upper and
lower cones grow as capabilities are added and as the set of available DCIs evolve—see
Sect. 4. The narrow neck of the hourglass allows each part to evolve independently of
the other, protecting scientific and user-support investments in the upper cone from
obsolescence as DCIs evolve. There is a challenge developing a stable and sufficiently
powerful notation that is not too closely tied to a target DCI, for example, Pegasus
(Sect. 3.1) uses DAX at an upper level and HTCondor DAG at a target-specific level,
whereas Taverna (Sect. 3.3) is now on its third version of a language, SCUFL2 to com-
municate between composition and execution. Wider integration, and mappings that
bridge technologies are required to meet interdisciplinary challenges—see Sect. 4.1—
making the design of this critical and stable communication channel a key research
challenge—most current scientific workflow systems leak properties of the underlying
platform into the upper cone thereby distracting users and causing lock in.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

A:12 Chee Sun Liew et al.

3.1. Pegasus

Pegasus29 is a well-known WMS that is widely used across domains, e.g. Earth sci-
ence [Maechling et al. 2007] and astronomy [Berriman et al. 2010]. Together with
Wings, DAGMan and HTCondor30, it provides a complete workflow solution for handling
scientific experiments. Wings is a semantically rich workflow system, used to create
and validate workflows, and generate metadata. Workflows are created and stored in
workflow libraries. At this stage, they are workflow templates, logical definitions of
process plans, with no bindings to data or executable programs. The metadata that se-
mantically describe the components and requirements of the workflow templates are
stored in repositories, so they may be discovered, shared and reused by different users
and experiments. Wings helps researchers find templates and data to create workflow
instances, which are also known as abstract workflows. Workflow instances have the
data to be used specified, but are still independent from the execution resources. Pega-
sus maps the workflow instance onto execution resources to create an executable work-
flow, which is fully specified: the data and their location, the computing resources, and
the required data movements. DAGMan and HTCondor take over and execute the work-
flow on a distributed environment. Figure 3 shows the architecture with interaction
between these sub-systems.

Execution
Engine

DAX

HTCondor
dag

 Local
 Cluster

GridCloud

Site
Catalog

Replica
Catalog

Trans-
formation
Catalog

HTCondor Jobs

Scripting
Tools Wings HUBZero

Pegasus
WMS

HTCondor

DAGMan

Composition, Execution & Monitoring

Pegasus
Dashboard

Workflow
DB

logs for
provenance
& monitoring

Fig. 3. Pegasus architectural diagram.

Wings plays two roles in the life-cycle: workflow composition [Gil et al. 2006] (seman-
tically rich construction) and provenance tracking [Kim et al. 2008] (provenance of
workflow instances and metadata for data products). The second phase of the workflow

29Pegasus: pegasus.isi.edu [Deelman et al. 2015]
30Wings: wings-workflows.org; HTCondor: research.cs.wisc.edu/htcondor/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

pegasus.isi.edu
wings-workflows.org
research.cs.wisc.edu/htcondor/

Scientific Workflows: Moving Across Paradigms A:13

life-cycle, resource mapping, is handled by Pegasus. Pegasus is a workflow planner and
does not execute workflows. It can exploit various execution engines, e.g. HTCondor and
Globus31. Its input is an abstract workflow written in an XML format, called DAX, from
which it generates a concrete workflow as the input to DAGMan.

The mapping relies on three catalogues. The Site Catalogue describes the available
compute resources. A site can be a cluster, virtual machines in Clouds, or local ma-
chines. Pegasus exploits heterogenous DCI spread across Grid and Cloud [Deelman
2010]. The Replica Catalogue maintains a mapping from logical to physical file names
for data discovery. The Transformation Catalogue maps logical operations to physical
executables. A user can define whether a component is stageable from other sites. Pe-
gasus uses Kickstart [Vöckler et al. 2006] to launch programs and capture their exit
status and monitoring information, which are then stored in the Provenance Tracking
Catalogue [Deelman et al. 2006] and used for debugging.

Pegasus is popular because: a) its planner automatically adds staging and registration
jobs to the concrete workflow; b) it is flexible and scalable [Callaghan et al. 2010];
and c) it performs optimisation, such as: clustering small jobs together, automatically
releasing storage and reusing results from previous runs [Chen and Deelman 2011].
With the integration into the HUBZero framework [McLennan and Kennell 2010],
Pegasus has extended its powerful workflow automation and management services to
a wider research communities [McLennan et al. 2015].

A key architectural question concerns the value of a mapper; a WMSs could require
composition using executable components explicitly. Pegasus demonstrates the bene-
fits of abstraction that separates the workflow design from the target technology. This
lets scientists focus on their scientific work without being distracted by low-level de-
tails. It increases reusability: allowing the same workflow to apply to different datasets
and to run on different DCIs. Abstraction increases the scope for optimisation.

3.2. Kepler

Kepler 32 originated from the Science Environment for Ecological Knowledge project33,
which combined: EcoGrid (data storage, sharing and analysis), Semantic Mediation
(reasoning to discover and integrate data), and Analysis and Modelling (visual en-
vironment for ecologists to compose workflows—motivating Kepler) [Michener et al.
2005]. Kepler has become a general workflow infrastructure supporting many domains
including: chemistry34, geology35, molecular biology36 and oceanography37.

Kepler is built on Ptolemy II [Eker et al. 2003] that facilitates actor-oriented compu-
tation [Bowers and Ludäscher 2005]. This model matches the exploratory nature of
scientific workflows during design, prototyping and execution. Each process is mod-
elled as an actor that encapsulates required functions. Actors are independent and
communicate using message passing.

To achieve different execution semantics within a single architecture, Kepler separates
the orchestration from the execution engine, and uses directors to organise collaborat-

31Globus: www.globus.org
32Kepler Project: www.kepler-project.org [Ludäscher et al. 2006]
33Science Environment for Ecological Knowledge: seek.ecoinformatics.org
34RESearch sURGe ENabled by CyberinfrastructurE: ocikbws.uzh.ch/resurgence
35Geosciences Network: www.geongrid.org/
36Scientific Data Management Center: sdm.lbl.gov/sdmcenter/
37Real-time Observatories, Applications, and Data Management Network: www.roadnet.ucsd.edu/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.globus.org
www.kepler-project.org
seek.ecoinformatics.org
ocikbws.uzh.ch/resurgence
www.geongrid.org/
sdm.lbl.gov/sdmcenter/
www.roadnet.ucsd.edu/

A:14 Chee Sun Liew et al.

Site
A

Local
System

SDF

JVM

File
System

Web
Service

Composition, Execution & Monitoring

Kepler
WorkbenchMoML

PN CT DE

Kepler
Archives

DirectorsDFD

Cluster

SGE/
Condor R

External
Executor ...

Actors

Globus

Web
Service

Job
Submitter GridFTP

Prove-
nance

Archives

Ptolemy
Framework

Vergil GUIMonitorRun

orchestrate

modelled as

Design

Compo-
nents
Repos

Fig. 4. Kepler architectural diagram.

ing actors. The actors define “what” are the processing tasks and the directors deter-
mine “when” their processing occurs. Kepler supports the following coordination mod-
els: Process Networks (PN), Dynamic Dataflow (DDF), Synchronous Dataflow (SDF),
Continuos Time (CT) and Discrete Events (DE). These meet different requirements:
CT and DE are used for workflows that depend on time, e.g. processing data from sen-
sors and analysing population growth; DDF and SDF are used to transform and filter
non-time-series data; and PN manages parallel threads and distributed execution.

The actor/director model gives Kepler extensibility and flexibility, see Figure 4. It can
be extended easily by developing the necessary set of actors, such as:

— integrating applications, e.g. use actors RExpression and MatlabExpression to run an
R or a Matlab respectively,

— integrating Web services, e.g. WebService an actor for WSDL and actors for RESTful
Web services, and Opal38 that wraps scientific applications as Web services,

— data movement with specific protocols, e.g. GridFTP, SSHFileCopier and FTPClient,
— interacting with DCI, e.g. JobCreator and JobSubmitter create and submit jobs to clus-

ters, GlobusJob submits to Globus, SRBConnect accesses a SRB39, and DataGridTransfer
accesses to iRODS services40, and

— executing shell scripts and applications on local machines using ExternalExecutor.

The set of directors can be extended to support new modes of computation, e.g. Abram-
son et al. [2008] built Nimrod/K on Kepler’s runtime engine, and created a new Tagged
Dataflow Architecture director to achieve dynamic and parallel workflow execution.

38Opal: nbcr.ucsd.edu/data/docs/opal/
39Storage Resource Broker (SRB): www.sdsc.edu/srb/
40Integrated Rule-Oriented Data System (iRODS), irods-consortium.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

nbcr.ucsd.edu/data/docs/opal/
www.sdsc.edu/srb/
irods-consortium.org

Scientific Workflows: Moving Across Paradigms A:15

Kepler provides high usability through a powerful workbench by using the Ptolemy
Vergil GUI [Brooks et al. 2007] that is used to construct and monitor workflows and to
access their provenance archives [Altintas et al. 2006; Bowers et al. 2007]. The prove-
nance framework provides APIs for collecting assertions and data-dependencies, and
for querying the provenance database. They deliver provenance-based fault tolerance
such as, the Checkpoint actor, “exception handling” that stops a sub-workflow when an
error is detected [Crawl and Altintas 2008]. Kepler avoids redundant work by using
provenance records during recovery [Bowers et al. 2007].

Kepler maintains a searchable repository of actors and workflows to increase their
re-use and accelerate workflow development. It has over 350 ready-to-use actors that
provide access to the EarthGrid41 ecological data described using the Ecological Meta-
data Language42. Kepler saves workflows in XML format using Ptolemy’s Modelling
Markup Language, which specifies components and parameters. They may be saved
in Kepler Archive Format to extend reproducibility as they can then be imported and
re-run. Kepler promotes its “smart-rerun” mechanism for handling parameter sweeps,
where data dependency is used to only execute sub-workflows affected by the parame-
ter changes. These features make Kepler a highly usable and automated WMS.

The Kepler’s provenance work [Cuevas-Vicenttı́n et al. 2012] has been extended in the
DataONE project43, a world-wide collaboration to provide a cyber-infrastructure for
environmental science. The DataONE Scientific Workflows and Provenance Working
Group is developing a provenance architecture for WMSs [Missier et al. 2012], which
includes a provenance data model (D-OPM) and query language for D-OPM. They have
“stitched together” traces from Kepler and Taverna workflows [Missier et al. 2010].

3.3. Taverna

Taverna44 is an open-source, service-based and domain-independent WMS created by
the myGrid team45, which has focused on supporting the Life Sciences community (bi-
ology, chemistry and medical imaging) [Oinn et al. 2006]. myGrid provides tools to
help e-Science researchers: a) Taverna their workflow management tool, b) myExperi-
ment46 their workflow collaboration facility, c) SysMO-DB47 their data sharing facility,
d) Utopia48 their protein sequence and structure analysis tools, e) BioCatalogue49 a cu-
rated catalogue of Life Science Web Services, and f) BioVeL50 a virtual e-laboratory for
biodiversity researchers. This sustained collaboration with the life-science community
makes Taverna one of the most popular systems for “in silico” experiments.

Taverna makes it easy for domain experts to create workflows via the Taverna
workbench. They can obtain workflows from a local repository, a remote URL or
myExperiment—a virtual research environment for sharing workflows [De Roure et al.
2009]. Workflows are dataflow objects serialised as t2flow files. Reusability is achieved

41Knowledge Network for Biocomplexity: knb.ecoinformatics.org/
42EML: knb.ecoinformatics.org/software/eml/
43Data Observation Network for Earth (DataONE): www.dataone.org
44Taverna: www.taverna.org.uk/ [Wolstencroft et al. 2013]
45myGrid: www.mygrid.org.uk/
46myExperiment: www.myexperiment.org/
47SysMO-DB: www.sysmo-db.org/
48Utopia: utopia.cs.man.ac.uk/utopia/
49NioCatalogue: www.biocatalogue.org/
50Biodiversity Virtual e-Laboratory www.biovel.eu/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

knb.ecoinformatics.org/
knb.ecoinformatics.org/software/eml/
www.dataone.org
www.taverna.org.uk/
www.mygrid.org.uk/
www.myexperiment.org/
www.sysmo-db.org/
utopia.cs.man.ac.uk/utopia/
www.biocatalogue.org/
www.biovel.eu/

A:16 Chee Sun Liew et al.

in two ways: a) workflows may be reused with different parameters or datasets, and
b) workflow fragments may be reused when constructing new workflows.

Site
A

Local
System

WSDL

Local
Disk

Web
Service

data

Composition, Execution & Monitoring

Results Taverna
Workbenchworkflow

Taverna
Engine

t2flow

Reference
Service

Run

WorkflowInstanceFacade

workflow
events

REST Local
scripts

Local
Java API

myExp-
eriment

Workflow Repository

Design

...

Site
B

Web
Service

Service Invocation

reference

results

Fig. 5. Taverna architectural diagram.

Taverna’s libraries offer over 3,500 services; and users can add and announce new
services. The service-discovery mechanism searches public registries (e.g. UDDI51 and
Grimoires52). Services may be specified as URLs or be stored locally [Oinn et al. 2007].
Taverna has built-in services for basic operations, e.g. file I/O.

The Taverna workbench submits workflows to a local or remote Taverna Engine, where
instances (i.e. WorkflowInstanceFacade) are created to represent the running workflows,
as shown in Figure 5. Two differences distinguish Taverna from Pegasus and Swift:

— Taverna workflows connect Web services, coordinate their executions and arrange
for data to flow between them; whereas in Pegasus and Swift workflows denote a
logically ordered sequence of computing tasks, which are typically performed by
submitting jobs, supplying their data and collecting their results;

— Taverna has no centralised enactment engine, the workflow itself performs the en-
actment (each PE is mapped to an object, which starts its own execution when all
of its inputs are ready, and sends its outputs to its successor objects [Missier et al.
2010]); Pegasus and Swift organise the staging of input data and results, and dis-
patch jobs to their execution platforms.

Taverna invokes the relevant services, sending them references to the actual data.
The services then use reference services to retrieve the data. Provenance information

51Universal Description, Discovery, and Integration (UDDI) Standard: uddi.xml.org/uddi-org
52Grimoires: twiki.grimoires.org/bin/view/Grimoires

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

uddi.xml.org/uddi-org
twiki.grimoires.org/bin/view/Grimoires

Scientific Workflows: Moving Across Paradigms A:17

are captured for two purposes: execution monitoring (i.e. users can view intermediate
results) and reproducibility (i.e. they can re-apply a workflow for performance assess-
ment, debugging, or data validation). They do this via the workbench.

Similar to Kepler’s actor model, Taverna’s plugin model is extensible. Plugins allow
Taverna to use more than Web services. For instance, the BioCatalogue plugin supports
browsing and use of its life-science services. The UNICORE plugin enables the use of
UNCORE53, while the PBS plugin allows submission to PBS queues.

Taverna’s workflow language has evolved. In the earlier versions workflows were writ-
ten in the Simple Conceptual Unified Flow Language (SCUFL), a high-level XML-based
language [Oinn et al. 2004]. SCUFL is a data-flow language that defines a graph of data
interactions between Web services. However, SCUFL does not have a unified way to
extend service definitions via plugins, nor support for new features in the Taverna En-
gine. Thus, it was replaced by t2flows, a serialisable XML format (easy to be shared
and transported) in Taverna 2, which is more verbose but allows finer-grained detail.
The SCUFL2 language used in Taverna 354 combines the simplicity of SCUFL and ex-
pressiveness of t2flows.

Taverna provides a Web-based interface, namely Taverna Player55, to allow users to
execute existing workflows using a browser. This has eliminated the hassle of down-
loading and installing local software components [Mathew et al. 2014]. Taverna 2 has
been integrated with Galaxy, another popular Web-based WMS, in Tavaxy [Abouel-
hoda et al. 2012], which provides a fine-grained integration of Taverna and Galaxy
workflows. Both JSON objects of Galaxy workflows and SCUFL/t2flow of Taverna work-
flows are translated into tSCUFL objects in Tavaxy, to allow design-time integration.
Users can now include Taverna workflows as part of their Galaxy workflows.

3.4. Swift

Swift56 was initiated by the GriPhyN project to automate the processing of large
datasets from high energy physics experiments. From a simple virtual-data language,
Swift has matured into a powerful parallel scripting language [Zhao et al. 2007] with
an extensive runtime system based on CoG Karajan [von Laszewski and Hategan 2005],
that efficiently runs large-scale loosely coupled computations on clusters, clouds and
Grid resources for different domains, e.g. medical research [Stef-Praun et al. 2007],
protein structure modelling [Adhikari et al. 2012] and climate modelling [Woitaszek
et al. 2011]. The Swift scripting language, SwiftScript, provides data-oriented constructs
to specify processing of collections of files by mapping file-system objects into Swift
variables with iteration and branching over them. Swift automatically parallelises pro-
cessing, chooses computing sites, handles staging of input and output files (specified
by mappers), and invokes remote execution. It formalises and abstracts applications
as functions, with input files as parameters and output files as results.

Figure 6 shows the Swift architecture with a set of services to deliver parallel, dis-
tributed, and efficient workflow execution. A SwiftScript can be constructed using any
editor; the SwiftScript compiler then produces an abstract computation plan. This is dis-
patched to execution sites, described in the site catalogue, by the execution engine, CoG

53Uniform Interface to Computing Resources: www.unicore.eu/
54Taverna is moving to the Apache Incubator taverna.incubator.apache.org
55Taverna Player: mygrid.github.io/taverna-player/
56Swift: swift-lang.org [Zhao et al. 2007]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.unicore.eu/
taverna.incubator.apache.org
mygrid.github.io/taverna-player/
swift-lang.org

A:18 Chee Sun Liew et al.

Remote
FS

SwiftScript

Grid ClusterLocal
System

Execution
Engine

Karajan with
Swift runtime

Scheduler

Abstract
Computation Plan

Trans-
formation
Catalog

Mapping Descriptor

MapperMapperMapper

local
execution

GridFTP

Scripting
Tools Composition

SwiftScript
Compiler

Site
Catalog

Fig. 6. Swift archetectural diagram.

Karajan to obtain remote job execution, file transfer and data management through ab-
stract interfaces called providers. A data provider supports file transfer and data man-
agement via a wide range of protocols, e.g. GridFTP, SCP, FTP and direct copy. An execu-
tion provider enables the job execution via variety of schedulers, e.g. GRAM, HTCondor,
Sun Grid Engine and Portable Batch System. The provider interfaces allow Swift to be
easily extended to other DCI environments. Swift supports task execution using a pro-
visioning and dispatching system, e.g. Coasters [Hategan et al. 2011] and Falkon [Raicu
et al. 2007]. Coasters is a node provisioning system for DCI that supports pilot jobs57 on
Grid, cluster and cloud resources.

The Swift execution model is simple: non-collection data elements are single-
assignment and the functional formalisation enables implicit parallelisation. The
foreach construct specifies that the functions applied to the elements defined by its
in clause, may be executed in parallel. The evaluation of the Swift script is centralised
and may become a scalability bottleneck. Then Turbine [Wozniak et al. 2013a], a dis-
tributed dataflow engine, can be used as the Swift runtime [Wozniak et al. 2013b].

Like Pegasus, Swift use the VDS Kickstart to record provenance. Swift replicates and
automatically resubmits failed invocations. It does not provide a workbench for work-
flow composition, but is used as the backend for Science Gateways [Wu et al. 2010] and
for Generic Portals for Science Infrastructure [Uram et al. 2011]. Swift enables Galaxy
to run large-scale workflows on parallel DCI [Maheshwari et al. 2013].

57Pilot jobs make a series of jobs appear as one job to the host system. They are distributed to remote sites,
and signal to a scheduler when they are ready for another job. This avoids repeated queuing and set up.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

Scientific Workflows: Moving Across Paradigms A:19

3.5. KNIME

The KNIME58 Desktop is an open-source, workflow-based, data-analysis plat-
form [Berthold et al. 2009]. Its GUI is an Eclipse workbench, with panes for: designing
workflows, listing workflow components (called nodes), describing nodes, organising
workflows and projects, viewing execution error messages, obtaining workflows from
servers, and so on. KNIME is used for applications including social media analysis,
game analytics, pharmaceutical research, and chemo-informatics [Beisken et al. 2013].

A KNIME workflow is created by dragging nodes onto the design pane, and then con-
figuring and connecting these nodes. Configuring a node sets its parameters, such as
specifying the file name, path and column delimiters for a file reader node, or the
number of clusters and maximum number of iterations for a k-means clustering node.
Connections between nodes transfer data (for processing and analyses, or to configure
the subsequent nodes), and can transfer models (such as a derived classification tree).

KNIME Compiler

Node
library

Composition, Execution & Monitoring

Results

KNIME Workbench

workflow

XML

Run/Pause/
Restart

Cluster
Execution

(SGE)
JVM

Public
sample

workflows

Design

results

Provenance
data

Desk-
top Cluster

Team
Space

repository

Pervasive
Execution

Engine

Execution Engines

Compute
resource

Fig. 7. KNIME architectural diagram.

A workflow can be executed entirely, or up to a selected node. Partial execution of a
workflow aids debugging by allowing a user to inspect intermediate data and models,
to reset node parameters, and to rerun the workflow or resume its execution from a
check-point. A workflow is stored in its project directory, which stores all workflow
nodes and their settings (in XML), and any data and models that they produce.

58KNIME: www.knime.org [Berthold et al. 2009]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.knime.org

A:20 Chee Sun Liew et al.

The repository provides an extensive library of components with node categories that
include: I/O, database, data manipulation, mining, and flow control (i.e. loops, switches
and variables). This is supplemented by integration with packages such as R and
Weka, and user-community contributions in several application areas including: image
processing, bio- and chemo-informatics, and text retrieval. Comprehensive documenta-
tion is provided for users developing their own KNIME nodes (by extending specified
Java classes and creating an XML file describing the node and its configuration op-
tions). The KNIME Desktop also provides access to public workflows for reuse.

The open-source KNIME Desktop provides opportunities for collaboration via the im-
port or export of KNIME workflows. It also supports optimisation of large or compute-
intensive workflows insomuch as the nodes automatically exploit multi-threading and
may be set to cache data to disk to improve throughput. These requirements are
catered for more effectively in some of the KNIME commercial extensions: KNIME
Team Space allows users to work within a shared space, KNIME Cluster Execution
enables workflows to be executed on a cluster, while KNIME.com’s partnership with
Pervasive59 has resulted in RushAnalytics for KNIME, giving access to Pervasive’s
execution engine that uses horizontal, vertical and pipelining parallelism.

3.6. Apache Airavata

Airavata60 is an open source campaign developing a WMS that executes applications
on a variety of DCI. The architecture is service oriented and uses distributed messag-
ing for workflow composition and orchestration. It includes: XBaya, GFac and Registry-
API, and thereby provides a complete workflow solution for in silico experiments. Aira-
vata is used in various projects, for which it delivers: a) a dynamic workbench to ex-
ecute workflows on Amazon EC2 for BioVLAB [Yang et al. 2010], b) computational
workflows for SEAGRID/GridChem [Dooley et al. 2006], c) Web services and workflow
orchestration for oreChem [Challa et al. 2010], and d) parameter optimisation and
analysis for ParamChem [Ghosh et al. 2011].

XBaya is a workflow suite for Airavata. It consists of a GUI that is used for workflow
composition and monitoring. Users create workflows via the XBaya workbench using
a drag-and-drop GUI. An abstract DAG that is independent of target platforms is then
generated. The resulting workflow can be mapped to various targets, such as: BPEL
2.0 for Apache ODE [Gunarathne et al. 2009], SCUFL for Taverna, DAGman for Pega-
sus, Jython scripts and Java. Users can select the workflow runtime that suits their
applications.

XBaya has an interpreter for dynamic and interactive workflow execution. When users
launch a workflow, the interpreter starts executing the workflow DAG. As in the case
of KNIME, Airavata demonstrates the benefits of an execution model where users can
stop and resume the execution of workflow at any time as the interpreter provides
fine-grained control. This enables users to reconfigure an active workflow and resume
its execution with the update immediately incorporated by the interpreter.

When users have submitted a workflow for execution, they can monitor its progress
using the XBaya monitoring component, which provides the state of job submis-
sions to batch queues and the progress of data transfers. This component sup-
ports synchronous, when the workflow uses the interpreter, and asynchronous, when

59Pervasive: bigdata.pervasive.com
60Apache Airavata: airavata.apache.org [Marru et al. 2011]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

bigdata.pervasive.com
airavata.apache.org

Scientific Workflows: Moving Across Paradigms A:21

XBaya Orchestrator

Composition, Execution & Monitoring

Results

XBaya Workbench

workflow

SCUFL

Run/Pause/
Restart

XBaya
Interpreter

GFac

Design

results

Registry

Execution
Engines

BPELCondor
DAG XWF

 Grid

Web
Service

 Cluster

Web
Service

 Cloud

Web
Service

Local
Machine

JVM

Abstract
DAG

Monitor

Pegasus Taverna Apache
ODE

execution
state

Local
Machine

Jython
runtime

Jython
script

Fig. 8. Airavata architectural diagram.

the workflow has been submitted to a batch queue, monitoring. Airavata uses Rab-
bitMQ61 [Marru et al. 2015] to send WS-Event notifications between XBaya, the work-
flow interpreter, monitoring and GFac. Visualisations of WS-events let users observe
their workflow’s progress – similar to active provenance in [Spinuso et al. 2016].

The Generic Application Service, GFac provides a framework to wrap an application
in a service interface. GFac can generate SOAP, REST and Java interfaces to appli-
cations. Application providers register their applications by providing definitions of
inputs, outputs, work-space directories and remote access mechanisms. Once appli-
cations are registered, GFac constructs requests to computational resources to host
specific operations with support for file staging and security.

Airavata has a thick-client API to achieve portability across infrastructures. The reg-
istry API can be reused by XBaya and GFac to store and retrieve data. This provides a
unified API that can be layered on top of various content repositories. In addition, the
API is used to catalogue workflow inputs and outputs.

Using their browser, users can experiment with workflows and retrieve their output
using the Science gateway62. This eliminates the complexities of installing Airavata
software, but assumes sufficient computational resources behind the gateway. Appli-
cation developers register workflows. Users initiate runs by supplying data and pa-
rameters to those workflows.

61RabbitMQ: www.rabbitmq.com
62Apache Airavata Web gateway: testdrive.airavata.org/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.rabbitmq.com
testdrive.airavata.org/

A:22 Chee Sun Liew et al.

3.7. Meandre

Meandre63 is a semantically-enabled, Web-driven, data-intensive, flow execution en-
vironment developed under the Software Environment for the Advancement of Schol-
arly Research64 project, which created a virtual research environment for humanities
scholars to exploit the rich digital data becoming available in their disciplines, and
to share their data and research. The design principles of Meandre aim for a robust
and scalable system for data-intensive research, scaled from a single laptop to a high-
performance cluster, with collaboration encouraged by sharing components [Llorà et al.
2008]. Web-scale music analysis using NEMA65 used Meandre to run genre classifica-
tion workflows on the NCSA66 supercomputing facility [De Roure et al. 2011].

Among the WMSs in this section, Meandre is the only one using a data-streaming
model. It has two types of component connected to form a flow—a workflow in our
context: a) Executable components that perform computational tasks without human
interactions, and are executed according to their predefined firing policy; and b) Con-
trol components that permit user-interaction via an HTML form or an Applet.

Meandre’s approach to fostering sharing and increasing reusability of components and
flows uses semantic-Web RDF metadata to cross application domain, enterprise and
community boundaries. Metadata for components and flows have the form: name, de-
scription, tags, and right. Executable components have additional metadata describing
behaviour and location, e.g. firing policy, runnable, format and resource location. Flow com-
ponents have additional metadata describing connections e.g. component instances, con-
nectors, connector instance source and connector instance target. The RDF metadata are
interpreted by the execution engine to find and initialise components, to determine
the form of connection between them and when to execute them.

Meandre has three parts [Ács et al. 2010]: a) tools for creating components and flows,
the Meandre workbench and an Eclipse67 plugin, b) a high-level workflow language.
ZigZag, and c) a semantically described service-oriented execution environment. The
Meandre workbench offers discovery, creation and execution of flows by dragging and
dropping components from the repository panel, and linking them by clicking on their
ports. A declarative language, ZigZag, defines flows as directed graphs.

Meandre has a compiler to convert ZigZag flows into self-contained tasks, called Mean-
dre Archive Units, as files with a .mau extension containing metadata describing the
components and flows, and their implementation. Their heterogeneity and scalability
are hidden from users. The mau file can be executed by the Meandre execution engine
on a laptop or as a batch job on a Grid environment via SGE. These files can be shared
via myExperiment [De Roure et al. 2010]. A significant achievement is automatic par-
allelisation, i.e. the [+AUTO] tag tells the compiler it may parallelise an instance, or
users can specify parallel instantiation, e.g. [+4] creates four instances.

Meandre offers a simple and flexible environment for data flow; its server has a meta-
data store, user-interaction services and an execution engine. Scalability is achieved by
the server being instantiated on demand, i.e. run as a single server locally or as mul-
tiple servers on a cluster (as shown in Figure 9). The Meandre server can be managed
through a Web GUI, where users can browse and manage their shared components and

63Meandre: seasr.org/meandre/ [Llorà et al. 2008]
64Software Environment for the Advancement of Scholarly Research (SEASR): seasr.org/
65Networked Environment for Music Analysis: www.music-ir.org/?q=nema/overview
66NCSA: www.ncsa.illinois.edu/
67Eclipse: www.eclipse.org/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

seasr.org/meandre/
seasr.org/
www.music-ir.org/?q=nema/overview
www.ncsa.illinois.edu/
www.eclipse.org/

Scientific Workflows: Moving Across Paradigms A:23

RDF
descriptors

HPC
Cluster

Local
Machine

Execution
Engine

ZigZag

MAU

ZigZag
Compiler

Scripting
Tools

Meadre
Workbench

Composition, Execution & Monitoring

Web UI

Cloud

MS MSMeandre
Server

EE EE

MS

EE

...

Repository

Fig. 9. Meandre architectural diagram.

flows, and run and monitor flows. The engine initiates a thread for each component,
and executes them based on their firing policy; recovering resources after termination.

3.8. Summary

We revisit the architectural characterisations from Section 2.2, summarised in Table I.

Table I. Characterising the workflow management systems.

Pegasus Kepler Taverna Swift KNIME Airavata Meandre

processing
element

executable
program

executable
program
& Web
service

executable
program
& Web
service

executable
program

executable
program

executable
program
& Web
service

executable
programs

system
architecture orchestrate orchestrate orchestrate orchestrate orchestrate orchestrate orchestrate

optimisation
stage build-time none none run-time run-time none run-time

user
interface textual graphical both textual graphical both both

data
processing
model

bulk data
bulk data
& stream

data

bulk data
& stream

data

bulk data
& stream

data
bulk data

bulk data
& stream

data

stream
data

Pegasus and Swift have similarities because they evolved from the GriPhyN VDS
project; their processing elements are executable programs. They have a logical-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

A:24 Chee Sun Liew et al.

workflow layer that encodes data flow between and temporal ordering of their pro-
cessing elements. They use catalogues to map logical names to physical files and pro-
grams. Both handle large workflows; examples involving more than a million tasks
have been reported. Pegasus has the bulk data processing model (Sect. 2.2) with work
underway to support the data-stream model. Swift uses pipeline execution to improve
efficiency [Zhao et al. 2007].

Kepler, Taverna and Airavata originated separately with different communities
(i.e. ecology, life sciences and meteorology), but they had the same raison d’être: to
facilitate scientific experiments using Web services and data integration across organ-
isational and geographical boundaries. They all provide an easy-to-use workbench to
enable scientists to design and run their workflows, and support program execution on
local machines and web services. Kepler uses pipeline execution [McPhillips and Bow-
ers 2005] and has run streaming workflows on cloud platforms [Dou et al. 2011; Zinn
et al. 2011; Kohler et al. 2012]. Taverna uses pipelined streaming to reduce workflow
execution times [Missier et al. 2010]. Their data granularity differs however: Taverna
performs a coarse-grained pipelining by allocating a thread for each input item, while
Kepler supports pipelining of nested collections [McPhillips and Bowers 2005]. Neither
performs fine-grained data streaming.

KNIME commercial extension, i.e. Cluster Execution support bulk data processing on
a cluster. Both Airavata and KNIME provide fine-grained control over the workflow
execution where users can stop, update workflow activity and resume the execution.
Meandre uses Web-oriented, data-driven concepts with a streaming-data model. Its
components are executable programs that process a stream of data. Data-analysis ex-
perts develop components and publish them in a repository. The workbench is used to
build a workflow as a graph of these components.

All seven systems coordinate using orchestration, with a controller overseeing poten-
tially distributed execution. They use a bottom-up approach for workflow construction,
where their visual tools or workflow language are used to compose a graph of pro-
cessing elements, most of which have been previously defined by experts. The level of
abstraction in the workflow language varies significantly.

Pegasus does not have a user-oriented workflow language. Its DAX format describes
the directed graph that forms the workflow. It is translated to an abstract workflow
using two catalogues. DAX requires too much technical information for scientists and
changes in the platform require modification of the DAX. In contrast, Swift’s script-
ing language has better abstraction delivered by the SwiftScript compiler and mapper.
Its compilation into parallel execution programs is transparent to its users. The map-
per reduces explicit data management for large-scale analyses of distributed and het-
erogenous data. Most scientists find that abstraction and automation improve their
productivity. However, in some cases, e.g., for the gravity-wave detection, they require
to inspect every detail to verify the precise validity of the encoding.

Kepler and Taverna have their own workflow languages, i.e. MoML and SCUFL. MoML
describes workflows rather than abstracting over them. However, Kepler has its own
mechanism to hide the complexity and diversity. Its actor/director model is extensible
and allows data-intensive engineers to encode powerful patterns. For instance, Kepler
has been extended with a tagged data-flow architecture [Abramson et al. 2008].

Users compose workflows in Airavata by building an abstract DAG, which is indepen-
dent of target technologies. The composed workflow can be mapped to multiple targets,
e.g., BPEL, SCUFL, DAGman, Jython and Java. Using XBaya interpreter or GFac, the
workflow can be executed locally or remotely using different execution engines.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

Scientific Workflows: Moving Across Paradigms A:25

The last characteristic relates to workflow optimisation. Kepler, Taverna and Airavata
depend on manual optimisation, helped by their good provenance and monitoring sys-
tems, which provide crucial data for optimisation experts. Swift has implicit paralleli-
sation and pipeline execution delivered by run-time optimisation. KNIME performs
run-time optimisation that uses multi-threading. Meandre has automatic paralleli-
sation that multiply instantiates components tagged in the ZigZag script. At build-
time Pegasus refines execution plans by: a) workflow reduction (reusing available in-
termediate data products and removing the corresponding tasks), b) task clustering
(reducing scheduling overhead by submitting groups of small tasks as a composite
task) [Chen et al. 2014], and c) data cleanup (removing data that are no longer needed
to release resources sooner) [Srinivasan et al. 2014].

Exploiting today’s wealth of data exposes further issues, which trigger research and
lead to new workflow execution strategies on sophisticated data-intensive platforms.
Those platforms deliver reliable and high-throughput enactment, as they handle scal-
ability, recovery after partial failures and optimised mappings to the rapidly evolving
commercial systems. This delegates much of the responsibility for the lower half of the
hour glass to others and amortises its R&D, and operation to a much wider commu-
nity. The main focus for workflow research, described in the next Section, then becomes
improvements in the characteristics of the upper part of the hour glass, e.g., accommo-
dating greater scale and diversity, delivering better tooling to more practitioner roles,
and developing improved mappings to the rapidly evolving data-intensive platforms.

4. SCIENTIFIC WORKFLOW DIVERSITY, SCOPE AND FLEXIBILITY

In virtually every research domain the quantity and diversity of data is growing
rapidly because the capacity of storage is increasing [Walter 2005], digital communica-
tion is pervasive and increases in capacity [Zhao et al. 2011] and the sensitivity, speed,
diversity and deployed numbers of digital data-collection devices exhibit a compound
growth. This is combined with a growing drive to share data [Interagency Working
Group on Digital Data 2009; EU Parliament 2007], enabled by many organisations’
standardisation efforts, e.g. W3C, OGC, FDSN68 IVOA and RDA, and a growing need
to combine data across discipline boundaries to address today’s societal challenges69.
This growth in scale and complexity makes automation of scientific methods essen-
tial. More and more sciences and researchers will choose workflows to automate and
formalise their scientific methods. The benefits include: a) increased productivity and
lower error rates as tedious chores are automated, b) improved scientific methods as
many different specialists pool advances to their parts of a method, and c) achievement
of new goals by combining computational power with the increased wealth of data. We
review two questions. a) Why are scientific workflow systems unable to supported this
increased use? b) What research will be needed to make them ready?

4.1. Boundaries limit growth

Each community develops its own culture – a body of knowledge, established methods,
practices and ethics – shaped for its own research goals and professional practices. It is
promulgated to new practitioners through education and induction. It takes effort and
leadership for this to incorporate the technological advances and growing data wealth.
Inevitably, differences develop, but the foundations of cognate subjects and common

68W3C: www.w3.org; OGC: www.opengeospatial.org and International FDSN: www.fdsn.org
69Societal challenges ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.w3.org
www.opengeospatial.org
www.fdsn.org
ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges

A:26 Chee Sun Liew et al.

factors in the technical environments and working practices provide overlaps that can
lead to successful interdisciplinary collaboration, particularly in long-running research
campaigns. A crucial form of such interdisciplinary collaboration is synergy between
three groups of expert: a) domain experts who identify the key goals and bring scientific
insights, b) data scientists: mathematicians, statisticians and algorithmic experts who
formulate steps, simulation of models and extraction of evidence, and c) data-intensive
experts who develop improved ways of mapping methods onto computing infrastructure
exploiting technical advances and changes in the forms of provision [Atkinson and
Parsons 2013]. Workflow systems provide a framework for this key relationship, but
they need to ensure that: a) each group of experts can work effectively, i.e., the higher
levels of abstraction in WMS must meet the needs of the other experts, and b) the
representations available facilitate communication across these key boundaries.

Sub-disciplines, organisations and communities often commit to different workflow
systems, e.g., those in Sect. 3, for many reasons. They develop significant intellectual,
cultural and financial investment in their chosen system, as can be judged by the
numbers of components and workflows in their repositories – see Sect. 3.3. This may
build substantial momentum and form identities that have significant value to each
community. But it inhibits collaboration, as each technology separates its adherents
from similar researchers using a different technology. They use a different language
to express their scientific methods, draw on different libraries of components, and de-
pend on different enactment systems. When this happens within a discipline, it means
multiple implementations of the key workflows, sub-workflows and components. This
may be beneficial competition, but more often, it means effort is wasted, the results
are not as easily compared and improvements created in one technological island do
not propagate to the others. Even widely different research domains need very similar
workflow fragments, e.g. many require a mechanism to enable a researcher to identify
a collection of results as valuable, to send them for curation with the issue of a per-
sistent identifier (PID), and permanent links to metadata. The organisation of such a
common subtasks can be shared by many disciplines, as in the EUDAT70 project.

There are already several research campaigns underway to reduce the isolating effect
of these technological islands. Some of these are bridges between pairs of workflow
systems; examples were given in Sect. 3. Here we review a sample of more generic
approaches. For the upper hour glass, the myExperiment project initiated pooling of
workflow repositories across multiple workflow systems [De Roure et al. 2009] enabling
workflow developers to search for useful input from any of the participating technolog-
ical communities. Extended research objects were used to bundle background mate-
rial with workflow fragments to increase appropriate reuse and share insights. The
Wf4Ever project71 further developed this approach and extended the workflow repre-
sentation to prolongue workflow re-use [Belhajjame et al. 2015]. For the lower hour-
glas, the project ER-flow72 enabled the composition of workflows encoded for different
systems into a larger “meta-workflow”, hiding much of the necessary housekeeping and
interfacing from its users [Kacsuk et al. 2014; Terstyánszky et al. 2014] – it accommo-
dates 15 WMSs, and maps them to multiple DCIs [Kozlovszky et al. 2014]. However, it
leaves the users working with the concepts, terms and notations of each WMS. To ad-
dress these conceptual difficulties, Gesing et al. propose integration in the upper hour
glass as a meta-workflow composition framework [Gesing et al. 2014].

70EUDAT: www.eudat.eu/
71Wf4Ever: www.wf4ever-project.org/
72ER-flow: www.erflow.eu/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

www.eudat.eu/
www.wf4ever-project.org/
www.erflow.eu/

Scientific Workflows: Moving Across Paradigms A:27

4.2. Empowering scientists

Although a great deal of work is routine – using established methods – scientists also
need to explore new ways of using data and simulations, to improve existing methods
and to develop understanding of what may be becoming possible. The routine work is
well supported by workflows that are packaged via portals in tailored science gateways
[Kacsuk 2014]73. Here experts can invest time in formulating and hand-optimising the
relevant workflows and in coupling them to the portal as this effort is amortised over
many repeated uses of a stable method. There remains four problems: a) as the encoded
scientific method is hidden, and often includes many technical details, it is no longer
reviewed by the scientists, b) as scientist do not engage directly in the formalisation
and automation, they do not develop intuitions about what may be becoming possible,
c) as the optimisations are tuned to contemporary technology the encoding tends to
become obsolescent, and d) as the number and scope of automated scientific methods
increases the shortage of relevant experts to package methods in a science gateway
delays advances. The problems with reviewing and understanding these encapsulated
workflows are ameliorated by provenance systems that allow their end-users to exam-
ine the background to results and trees of derivatives and to request replays [Kim et al.
2008; Cuevas-Vicenttı́n et al. 2012; Santana-Perez et al. 2016; Spinuso et al. 2016]. The
extension of reusability draws on formalisations mentioned above [Belhajjame et al.
2015]. Replay is facilitated by bundles that pack input data and parameters with the
workflow activation request [Rogers et al. 2013], but bundling data and keeping copies
becomes infeasible as volumes increase and when continuous streams are handled.

To overcome the distancing from workflows, due to gateway packaging and reformu-
lation by experts, it is necessary to keep innovative domain experts engaged with all
phases of workflow refinement. Production experience stimulates revision of scientific
methods. For most practitioners and for most of the time for innovators, the produc-
tivity benefits win over direct engagement. When innovation and quality checks are
needed, it is best if domain experts still have a comprehensible and accurate view of
the workflow, so that they can explore potential improvements, conducting in silico ex-
periments in a good emulation of the production, up to reasonable scales, depending on
automated mappings and optimisations. This is complementary to the input of work-
flow and DCI experts, who take over the revised workflow and tune it for production
before deploying it in a re-packaged form. This duality of viewpoints, corresponds to
the upper and lower hour glass, and requires: a) A suitable representation for domain
experts to work with that is not obscured by too much detail. b) Automated handling
for exploratory and one-off work with the semantics matching that of production ex-
actly for local tests and medium-scale experiments. c) A means for the other experts
to apply their expertise, which will include technical and mathematical detail. d) Ex-
traction of the domain view whenever required. e) Re-use of as much of the expert
annotation as possible when revised workflows move into production. The overall ef-
fect should be fluent interchange between domain-led method refinement and produc-
tion running. However well-developed automated planners, mappers and optimisers
become, there will remain extremely demanding data-driven science methods where
expert statistical, algorithmic or engineering refinements will be necessary. Research
into WMS engineering should reduce the proportion of times that this is necessary,
but the growth in data and data-driven science will mean the absolute demand will in-
crease. Thus good tooling for these experts is also an imperative; demand will outgrow
their capacity unless their productivity is also improved.

73http://sciencegateways.org/ with relevant publications at http://iwsg-life.org/site/iwsglife/publications

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

http://sciencegateways.org/
http://iwsg-life.org/site/iwsglife/publications

A:28 Chee Sun Liew et al.

The Wings composition system for Pegasus, SwiftScript and Meandre’s ZigZag (see
Sect. 3.1, Sect. 3.4 & Sect. 3.7) provide conceptual models during workflow compo-
sition, but the reverse mappings, e.g. for diagnostics, are not supported. The Dispel
language focuses on this conceptual level [Martin and Yaikhom 2013] and [Atkinson
2013] reports its focus on the logic of data-intensive methods. Meandre (see Sect. 3.7)
aspires to deliver continuity from a method on a laptop to its enactment on a powerful
DCI. Virtually all of the workflow systems provide an effective workbench for initial
development, KNIME (Sect. 3.5) and Galaxy [Blankenberg et al. 2010] are particu-
larly successful at delivering comprehensible representations. These representations
are typically graphical, but that does not always match the scientists’ preferences. For
example, the seismologists, like many scientists, prefer to work in the productive en-
vironment of tools and libraries provided by Python [Koepke 2014]. As a consequence
it was necessary to wrap the Dispel conceptual model as a Python library, dispel4py
[Filguiera et al. 2016], that behind the scenes maps automatically to multiple DCIs
to provide the required continuity between development and production. This context
illustrates an additional boundary-crossing challenge; the data used for research is col-
lected by long-running observational networks that include aspects of the data prepa-
ration – the same is true of astronomical sky surveys and many other shared research
infrastructures. The innovative researchers may want to revisit these early stages or
may want to propose improvements to them. However, in many of today’s research
infrastructures the use of different technologies for data capture and for data-driven
research inhibits quick explorations. Service roles, such as hazard monitoring in seis-
mology, introduce further impediments to change [Ringler et al. 2015]. In summary,
we see good though diverse support for initial creation, in the upper hour glass with
often sophisticated mapping to the lower hour glass, but subsequent workflow lifecycle
stages and reverse mappings remain a research goal.

4.3. Towards a consistent context for data-intensive research

Every aspect of scientific workflow systems will be subject to improvement, and we
note below some directions in which they will advance. However, we consider first
responses to two pervasive pressures: a) increasing data-intensity partially driven by
Kryder’s law [Walter 2005] and new technologies, e.g., 3D Xpoint, and b) increasing
complexity from composing improvements and from workflow systems interworking.

The growing volumes of scientific data, the increased focus on data science and the in-
exorable march of Kryder’s law, combine to overload the capacity of disk I/O – or more
generally the bandwidth between RAM and external devices. This will drive increased
adoption of data-streaming between workflow stages, as these avoid a write out to
disk followed by reading in, or double that traffic if files have to be moved. As long
as stages can process a succession of data units and stream data units to subsequent
stages, the code in the stages can remain resident, and the coupling can use in-RAM,
local or inter-site communication mechanisms74. As with disk mediated communica-
tion, moving data reduction as early as logically possible and employing lossless com-
pression has benefits [Filgueira et al. 2014]. This approach mirrors shared-nothing
and distributed query processing [Buil-Aranda et al. 2013] developed and refined in
the database context [Stonebraker et al. 2013]. It is latent in the auto-iteration of Tav-
erna and has been developed for Kepler [Kohler et al. 2012]. It is the model used by
Meandre [Ács et al. 2010], and motivated the design of Dispel [Atkinson 2013]. It is the
underpinning enactment model of dispel4py [Filguiera et al. 2016] and Bobolang [Falt

74Of course, capture of intermediary streams is needed for diagnostics during experiments and development.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

Scientific Workflows: Moving Across Paradigms A:29

et al. 2014]. As well as improving performance, this approach offers two extra benefits:
a) those working with live observations of time-dependent behaviour, e.g., observing
the dynamics of natural phenomena or monitoring engineering or human systems,
can use data-streaming workflows with the live data, and use exactly the same work-
flows with archived observations; and b) as the inter-stage connection cost has been
made small, it is feasible to include very simple stages—“fine-grained composition”. Of
course, large subsystems and services are also used in scientific methods encoded this
way, e.g. Python objects in dispel4py, can wrap and interface with legacy code.

Workflow systems grow in complexity as extensions are added to accommodate more
target DCI, to handle more aspects of optimisation, to automate frequently occurring
actions and to provide appropriate work environments for all three categories of expert
contributing to data-intensive methods [Atkinson and Parsons 2013]. This growing
complexity slows the rate at which these systems can respond to scientists’ needs and
exploit new opportunities. A two-pronged strategy is needed: a) partitioning the sys-
tem into manageable parts, and b) developing a formal framework to ensure parts and
enhancements are consistent and work well together. The systems reported above have
various partitioning strategies. Kepler uses an actor framework to partition parts and
has a separate set of directors for orchestration. Pegasus uses three major partitions;
the Wings framework for high-level composition, the planner and target-independent
optimisers, and then the dynamic optimisation during enactment delivered by DAG-
man and HTCondor. The WS-PGRADE/gUSE system has the partitions Data-avenue [Ha-
jnal et al. 2014] and DCI-Bridge [Kozlovszky et al. 2014] to handle interfacing with
data storage systems and with DCI respectively. Independent repository management
provides another partition; e.g. myExperiment and Wf4Ever (see above), or the WS-
PGRADE/gUSE repository [Terstyánszky et al. 2014]. As workflow providers deploy
more optimisations, as the paths between lightweight development and production
environments are made smooth, and as interworking between workflow systems be-
come more prevalent, these partitions will need to be kept small, with tightly defined
consistent APIs. Agreeing such an architectural structure is a research priority.

An envisaged future environment of services meeting the needs of scientists is shown
in Figure 10. There are four major groups of subsystems: a) the mobile-device and
Web-enabled user-interaction will deploy the latest Web-enabled GUIs as a Dashboard
and host a wide range of tools, that can be tailored to the requirements of commu-
nities, groups and individuals – this will handle interaction locally and depend on
a wide range of underlying microservices; b) the knowledge base accumulates work-
flows, workflow components, information about sessions, users, enactments and com-
munity relationships, provenance records and derivatives of these collected data, such
as fragments that are often re-used [Garijo 2015] – it supports interaction, includ-
ing relaunching sessions, it supports security and controls, it provides information for
optimisers and provides a basis for recommendations – it will integrate data from
multiple application domains, communities and technologies, interfacing with exist-
ing repositories and credential services; c) the enactment service supports immediate
execution for development, and sophisticate choice of DCI targets with optimised map-
pings and dynamic optimisation during execution for production; and d) the diverse
DCI resources that are provided via many organisations, academic and commercial,
and are shaped by many other requirements beyond scientific research and workflow
enactment. There are many fronts on which scientific workflow systems will advance,
and the capabilities they deliver to researchers will depend on combined advances.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

A:30 Chee Sun Liew et al.

r rr

Astrophysics Computational
Chemistry

Solid-Earth
sciences

Scientific
User

Communities

Dashboards
providing
workflow

interaction
contexts

ST WF WE WM EM RM PV DV DF
ST WF WE WM EM RM PV DV DFWf

Finder

EP ECEPEP

OMOMOM
EEEEEE

EP ECEPEP

OMOMOM
EEEEEE

Workflow
enactment
services
running

workflows
in

development
and

production

User
Acc-
ess

Sess-
ion
Data

Tran-
slation
Data

View
Data

Pref
Data

Corre-
lations
Ob-

served Knowledge
base

Micro-
services

Clusters Grids Clouds HPC PRACE XSEDE US
NDS

Data
Archives

Multiple
existing

DCIs
DI

servers

EPEPEnact-
ment
Planner

OMOMOpti-
mised
Mapper

EEEEExecu-
tion
Engine

Enact-
ment
Controller

a a a

b c d g
f

h

i

Session
Tool

Wf
Manager

Enact-
ment
Man

Results
Man

Prov.
Viewer

Data
Viewer

Data
Finder

Wf
Finder

Wf
Editor

Repos-
itory C

Repos-
itory B

Repos-
itory A

Existing
repositories

Fig. 10. Future partitioned and coupled workflow systems.

5. CONCLUSIONS

Scientific communities have increasingly adopted workflow technologies to automate
scientific methods. The emergence of data-driven science as the fourth paradigm has
posed a new data challenge for scientific workflows, compounded by the increasing
complexity and diversity of both applications and computing platforms.

In this paper, we have proposed a taxonomy of WMSs that covers some aspects that
have been overlooked in the related studies. Based on these architectural characteri-
sations, we have reviewed seven prevalent WMSs that are widely adopted by research
communities. These WMSs focused on different research communities with their spe-
cialist domains, e.g. life-sciences, geosciences, high-energy physics, astronomy and hu-
manities, and slowly emerged into cross-disciplinary workflow infrastructures over the
years. We took a bottom-up approach to analysing these WMSs and presented a de-
tailed architectural comparison that exposes their commonalities and diversity.

Section 4 identified a growing need for workflow systems that can be used directly by
scientists to automate and formalise research methods. This will increase the pressure
on workflow-system research to make substantial advances in usability, interopera-
tion, performance and stability. It is crucial to reduce barriers associated with differ-
ent modes of use and different technologies; this includes better access to distributed
computing infrastructures, particularly those adapted to data-intensive requirements.
Facilitating scientists experimenting with their own workflows will empower them to
innovate and to exploit the growing data wealth to the full. The need for experts im-
proving automated planning, mapping and optimisation and applying their own hand-
crafted tuning in the cases where it is needed will continue. That will require improv-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

Scientific Workflows: Moving Across Paradigms A:31

ing the experts’ productivity by equipping them with better tools and by automatically
re-using their improvements.

There are deep technical challenges. A central one is the long-term growth of data
storage and data acquisition outgrowing Moore’s law by substantial factors. The in-
terworking of WMS will need to incorporate the advances in scientific database tech-
nologies and data-intensive middleware platforms. The extended data-intensive WMSs
will need to be made accessible and comprehendible from Web-enabled dynamic work-
places. This requires substantial advances in the conceptual and formal models de-
scribing the whole data-intensive infrastructure and the workflow languages that ex-
ploit it.

The emergent architecture for WMSs should support coalitions of the user commu-
nities associated with different WMS as today’s wealth of data and pressing societal
challenges will require pooling intelligence and combining the best ideas and meth-
ods from many disciplines. The breadth of viewpoints and range of data and method
ownership models will grow, for example, consider the food shortage challenge. Agri-
cultural researchers need to combine all of the ’omic data from genomics to proteomics
for every crop, animal, pest and pathogen with data at many scales concerning soil
type, aspect, climate and climate change, anthropogenic affects, farm management
and agro-pharma developments and to create models to predict environmental effects,
vulnerabilities and yields, at scales from individual plots to global [Rawlings 2014].

The power of data science drawing on today’s growing wealth of data will only be
realised if the WMS research rises to the challenge. Some of the issues to be faced
have emerged in this review. A campaign is called for that builds both the theory and
practice, that draws on all the intellectual and engineering powers of the many work-
flow experts, both in industry and academia, and that yields new families of mutually
supporting, flexible, scalable, multi-application, multi-community, multi-purpose and
sustainable workflow management systems with greatly increased power, platform in-
dependence and dramatically improved usability. They will need to be well-integrated
with data-curation and all aspects of data sharing [Sansone et al. 2012]. We need a
”moon-shot” culture where every effort and skill of the wider research community that
will be needed to reach this goal is focused on achieving it; the problems encountered
will need ingenious collaboration across discipline, organisational, technical, theoreti-
cal and architectural boundaries.

ACKNOWLEDGMENTS

We thank James Cheney, University of Edinburgh (UoE) and Alessandro Spinuso of KNMI for alerting us to
work on provenance and its standardisation, Murray Cole, UoE for encouraging our architectural compar-
ison of WMSs, Rosa Filgueira, UoE and Oscar Corcho, Universidad Politécnica de Madrid for their sugges-
tions. We thank our reviewers for giving valuable insights. We particularly thank Paul Watson of Newcastle
University for suggesting this paper. Our work is supported by the Ministry of Education Malaysia (UMRG
RP001F-13ICT and CG009-2013), the e-Science Core Programme Senior Research Fellow programme (UK
EPSRC EP/D079829/1), and the EU projects: ADMIRE, VERCE and ENVRIplus (FP7 ICT 215024, FP7 RI
283543 and H2020 654182).

REFERENCES

B. P. Abbott et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev.
Lett. 116 (Feb 2016), 061102. Issue 6. 10.1103/PhysRevLett.116.061102

Mohamed Abouelhoda et al. 2012. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing
support. BMC Bioinformatics 13, 1 (2012), 77. 10.1186/1471-2105-13-77

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1103/PhysRevLett.116.061102
10.1186/1471-2105-13-77

A:32 Chee Sun Liew et al.

David Abramson et al. 2008. Nimrod/K: towards massively parallel dynamic grid workflows. In Proc. SC ’08.
IEEE Press, Piscataway, NJ, USA, Article 24, 11 pages. 10.1109/SC.2008.5215726

Bernie Ács et al. 2010. A general approach to data-intensive computing using the Meandre component-based
framework. In Proc. WANDS ’10. ACM, Article 8, 12 pages. 10.1145/1833398.1833406

Aashish N. Adhikari et al. 2012. Modeling large regions in proteins: applications to loops, termini, and
folding. Protein Science 21, 1 (January 2012), 107–121. 10.1002/pro.767

Chris Allan et al. 2012. OMERO: flexible, model-driven data management for experimental biology. Nature
Methods 9, 3 (March 2012), 245–253. 10.1038/nmeth.1896

Ilkay Altintas et al. 2006. Provenance collection support in the Kepler scientific workflow system. In Prove-
nance and Annotation of Data. LNCS, Vol. 4145. 118–132. 10.1007/11890850 14

Michael Armbrust et al. 2010. A view of cloud computing. Commun. ACM 53, 4 (April 2010), 50–58. Issue 4.
10.1145/1721654.1721672

Malcolm Atkinson et al. 2015. VERCE delivers a productive e-Science environment for seismology research.
In Proc. IEEE eScience 2015.

Malcolm Atkinson et al. 2013. The Digital-Data Challenge. See Atkinson et al. [2013], Chapter 1, 5–13.
10.1002/9781118540343.ch1

Malcolm P. Atkinson. 2013. Data-Intensive thinking with Dispel. See Atkinson et al. [2013], 61–122.
Malcolm P. Atkinson et al. 2013. The DATA Bonanza – Improving Knowledge Discovery for Science, Engi-

neering and Business. John Wiley & Sons, Inc.
Brian Babcock et al. 2002. Models and issues in data stream systems. In Proc. 21 ACM SIGMOD-SIGACT-

SIGART PODS ’02. ACM, New York, NY, USA, 1–16. 10.1145/543613.543615
Roger Barga et al. 2008. The Trident Scientific Workflow Workbench. In Proc. IEEE e-Science ’08. IEEE

Computer Society, Los Alamitos, CA, USA, 317–318. 10.1109/eScience.2008.126
Adam Barker et al. 2009. Choreographing Web Services. IEEE Trans. on Services Computing 2, 2 (April-June

2009), 152–166. 10.1109/TSC.2009.8
Adam Barker et al. 2008. Orchestrating Data-Centric Workflows. In Proc. IEEE/ACM CCGRID ’08. IEEE

Computer Society, 210–217. 10.1109/CCGRID.2008.50
Jörg Becker et al. 2002. Workflow Application Architectures: Classification and Characteristics of Workflow-

based Information Systems. In Workflow Handbook 2002, Layna Fischer (Ed.). 39–50.
Stephan Beisken et al. 2013. KNIME-CDK: Workflow-driven cheminformatics. BMC Bioinformatics 14, 1

(2013), 257. 10.1186/1471-2105-14-257
Khalid Belhajjame et al. in press 2015. A Suite of Ontologies for Preserving Workflow-Centric Research

Objects. J. Web Semantics (in press 2015).
G. Bruce Berriman et al. 2010. The application of cloud computing to the creation of image mosaics and man-

agement of their provenance. In Software and Cyberinfrastructure for Astronomy, Nicole M. Radziwill
and Alan Bridger (Eds.), Vol. 7740. SPIE, 77401F. 10.1117/12.856486

Michael R. Berthold et al. 2009. KNIME - The Konstanz Information Miner. SIGKDD Explorations 11
(November 2009), 26–31. Issue 1. 10.1145/1656274.1656280

Shishir Bharathi et al. 2008. Characterization of scientific workflows. In Proc. WORKS ’08. IEEE Computer
Society, 1–10. 10.1109/WORKS.2008.4723958

Daniel Blankenberg et al. 2010. Galaxy: A Web-Based Genome Analysis Tool for Experimentalists. John
Wiley & Sons, Inc. 10.1002/0471142727.mb1910s89

Peter A. Boncz et al. 2008. Breaking the memory wall in MonetDB. Commun. ACM 51, 12 (December 2008),
77–85. 10.1145/1409360.1409380

Shawn Bowers et al. 2005. Actor-Oriented Design of Scientific Workflows. In Conceptual Modeling – ER
2005. LNCS, Vol. 3716. 369–384. 10.1007/11568322 24

Shawn Bowers et al. 2007. Project Histories: Managing Data Provenance Across Collection-Oriented Sci-
entific Workflow Runs. In Data Integration in the Life Sciences. LNCS, Vol. 4544. 122–138. 10.1007/
978-3-540-73255-6 12

P. Chris Broekema et al. 2012. ExaScale High Performance Computing in the Square Kilometer Array. In
Proc. Astro-HPC ’12. ACM, New York, NY, USA, 9–16. 10.1145/2286976.2286982

Christopher Brooks et al. 2007. Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduc-
tion to Ptolemy II). Technical Report UCB/EECS-2007-7. EECS Department, University of California,
Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Erik Brynjolfsson et al. 2010. Cloud computing and electricity: beyond the utility model. Commun. ACM 53,
5 (May 2010), 32–34. Issue 5. 10.1145/1735223.1735234

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1109/SC.2008.5215726
10.1145/1833398.1833406
10.1002/pro.767
10.1038/nmeth.1896
10.1007/11890850_14
10.1145/1721654.1721672
10.1002/9781118540343.ch1
10.1145/543613.543615
10.1109/eScience.2008.126
10.1109/TSC.2009.8
10.1109/CCGRID.2008.50
10.1186/1471-2105-14-257
10.1117/12.856486
10.1145/1656274.1656280
10.1109/WORKS.2008.4723958
10.1002/0471142727.mb1910s89
10.1145/1409360.1409380
10.1007/11568322_24
10.1007/978-3-540-73255-6_12
10.1007/978-3-540-73255-6_12
10.1145/2286976.2286982
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
10.1145/1735223.1735234

Scientific Workflows: Moving Across Paradigms A:33

Tamás Budavári et al. 2013. SkyQuery: Federating Astronomy Archives. Computing in Science & Engineer-
ing 15, 3 (2013), 12–20. 10.1109/MCSE.2013.41

Carlos Buil-Aranda et al. 2013. Federating queries in {SPARQL} 1.1: Syntax, semantics and evaluation.
Web Semantics: Science, Services and Agents on the World Wide Web 18, 1 (2013), 1 – 17. 10.1016/j.
websem.2012.10.001 Special Section on the Semantic and Social Web.

J. Cała et al. 2016. Scalable and efficient whole-exome data processing using workflows on the cloud. Future
Gener. Comput. Syst. In Press, Corrected Proof (2016). 10.1016/j.future.2016.01.001

Scott Callaghan et al. 2010. Scaling up workflow-based applications. J. Comput. System Sci. 76, 6 (2010),
428–446. 10.1016/j.jcss.2009.11.005

Steven P. Callahan et al. 2006. Managing the Evolution of Dataflows with VisTrails. In Proc. ICDEW ’06.
IEEE Computer Society, Washington, DC, USA, 71. 10.1109/ICDEW.2006.75

S. K. Challa et al. 2010. Integrating chemistry scholarship with web architectures, grid computing and
semantic web. In Proc. GCE ’10. 1–8. 10.1109/GCE.2010.5676123

Matthew Chalmers. 2014. Large Hadron Collider: The big reboot. Nature 514 (2014), 158–160.
Jinjun Chen et al. 2008. A taxonomy of grid workflow verification and validation. Concurrency and Compu-

tation: Practice and Experience 20, 4 (March 2008), 347–360. 10.1002/cpe.1220
Weiwei Chen et al. 2014. Using imbalance metrics to optimize task clustering in scientific workflow execu-

tions. Future Gener. Comput. Syst. 0 (2014), –. 10.1016/j.future.2014.09.014
Weiwei Chen et al. 2011. Workflow overhead analysis and optimizations. In Proc. WORKS ’11. ACM, New

York, NY, USA, 11–20. 10.1145/2110497.2110500
Daniel Crawl et al. 2008. A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows. In Prove-

nance and Annotation of Data and Processes. LNCS, Vol. 5272. 152–159. 10.1007/978-3-540-89965-5 17
Vı́ctor Cuevas-Vicenttı́n et al. 2012. Scientific Workflows and Provenance: Introduction and Research Op-

portunities. Datenbank-Spektrum 12, 3 (2012), 193–203. 10.1007/s13222-012-0100-z
Sérgio Manuel Serra da Cruz et al. 2009. Towards a Taxonomy of Provenance in Scientific Workflow Man-

agement Systems. In Proc. 2009 IEEE Congress on Services - Part I (SERVICES ’09). IEEE Computer
Society, 259–266. 10.1109/SERVICES-I.2009.18

David De Roure et al. 2010. The Evolution of myExperiment. In Proc. Sixth IEEE International Conference
on e-Science (e-Science ’10). IEEE, 153–160. 10.1109/eScience.2010.59

David De Roure et al. 2009. The design and realisation of the myExperiment Virtual Research Environment
for social sharing of workflows. Future Gener. Comput. Syst. 25, 5 (2009), 561–567. 10.1016/j.future.
2008.06.010

David De Roure et al. 2011. An e-Research approach to Web-scale music analysis. Phil. Trans. R. Soc. A 369,
1949 (August 2011), 3300–3317. 10.1098/rsta.2011.0171

Ewa Deelman. 2010. Grids and Clouds: Making Workflow Applications Work in Heterogeneous Distributed
Environments. Internat. J. High Performance Comput. Appl. 24, 3 (August 2010), 284–298. 10.1177/
1094342009356432

Ewa Deelman et al. 2006. Managing Large-Scale Workflow Execution from Resource Provisioning to Prove-
nance Tracking: The CyberShake Example. In Proc. Second IEEE International Conference on e-Science
and Grid Computing (e-Science ’06). 14. 10.1109/E-SCIENCE.2006.261098

Ewa Deelman et al. 2009. Workflows and e-Science: An overview of workflow system features and capabili-
ties. Future Gener. Comput. Syst. 25, 5 (May 2009), 528–540. 10.1016/j.future.2008.06.012

Ewa Deelman et al. 2015. Pegasus, a workflow management system for science automation. Future Gener.
Comput. Syst. 46 (2015), 17 – 35. 10.1016/j.future.2014.10.008

E. Deelman et al. 2016. Pegasus in the Cloud: Science Automation through Workflow Technologies. IEEE
Internet Computing 20, 1 (Jan 2016), 70–76. 10.1109/MIC.2016.15

László Dobos et al. 2013. Graywulf: A Platform for Federated Scientific Databases and Services. In Proc.
25th International Conference on Scientific and Statistical Database Management (SSDBM). ACM, New
York, NY, USA, Article 30, 12 pages. 10.1145/2484838.2484863

Rion Dooley et al. 2006. From Proposal to Production: Lessons Learned Developing the Computational
Chemistry Grid Cyberinfrastructure. Journal of Grid Computing 4, 2 (2006), 195–208. 10.1007/
s10723-006-9043-7

Lei Dou et al. 2011. Scientific workflow design 2.0: Demonstrating streaming data collections in Kepler. In
Proc. IEEE ICDE ’11. 1296–1299. 10.1109/ICDE.2011.5767938

Johan Eker et al. 2003. Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91, 1 (January 2003),
127–144. 10.1109/JPROC.2002.805829

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1109/MCSE.2013.41
10.1016/j.websem.2012.10.001
10.1016/j.websem.2012.10.001
10.1016/j.future.2016.01.001
10.1016/j.jcss.2009.11.005
10.1109/ICDEW.2006.75
10.1109/GCE.2010.5676123
10.1002/cpe.1220
10.1016/j.future.2014.09.014
10.1145/2110497.2110500
10.1007/978-3-540-89965-5_17
10.1007/s13222-012-0100-z
10.1109/SERVICES-I.2009.18
10.1109/eScience.2010.59
10.1016/j.future.2008.06.010
10.1016/j.future.2008.06.010
10.1098/rsta.2011.0171
10.1177/1094342009356432
10.1177/1094342009356432
10.1109/E-SCIENCE.2006.261098
10.1016/j.future.2008.06.012
10.1016/j.future.2014.10.008
10.1109/MIC.2016.15
10.1145/2484838.2484863
10.1007/s10723-006-9043-7
10.1007/s10723-006-9043-7
10.1109/ICDE.2011.5767938
10.1109/JPROC.2002.805829

A:34 Chee Sun Liew et al.

Erik Elmroth et al. 2010. Three fundamental dimensions of scientific workflow interoperability: Model of
computation, language, and execution environment. Future Gener. Comput. Syst. 26, 2 (February 2010),
245–256. 10.1016/j.future.2009.08.011

Wolfgang Emmerich et al. 2005. Grid Service Orchestration Using the Business Process Execution Lan-
guage (BPEL). Journal of Grid Computing 3, 3-4 (September 2005), 283–304. Issue 3. 10.1007/
s10723-005-9015-3

EU Parliament. 2007. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007
establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official
Journal of the European Union 50, L108 (April 2007).

Thomas Fahringer et al. 2007. ASKALON: A Development and Grid Computing Environment for Scientific
Workflows. See Taylor et al. [2007a], 450–471. 10.1007/978-1-84628-757-2 27

Zbyněk Falt et al. 2014. Bobolang: A Language for Parallel Streaming Applications. In Proc. HPDC ’14.
ACM, New York, NY, USA, 311–314. 10.1145/2600212.2600711

Rosa Filgueira et al. 2014. Applying Selectively Parallel I/O Compression to Parallel Storage Systems. In
Euro-Par 2014 Parallel Processing. LNCS, Vol. 8632. 282–293. 10.1007/978-3-319-09873-9 24

Rosa Filguiera et al. In press 2016. dispel4py:A Python Framework for Data-Intensive Scientific Computing.
International Journal of High Performance Computing Applications (In press 2016).

Ian Foster et al. 2002. Chimera: a virtual data system for representing, querying, and automating data
derivation. In Proc. SSDBM ’02. 37–46. 10.1109/SSDM.2002.1029704

Scott W. French et al. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots.
Nature 525, 7567 (03 09 2015), 95–99. 10.1038/nature14876

Dennis Gannon. 2007. Component Architectures and Services: From Application Construction to Scientific
Workflows. See Taylor et al. [2007a], 174–189. 10.1007/978-1-84628-757-2

Daniel Garijo. 2015. Mining abstractions in Scientific workflows. Ph.D. Dissertation. Departamento de In-
teligencia Artficial Escuela Técnica Superior de Ingenieros Informáticos, Madrid, Spain.

Daniel Garijo et al. 2012. Towards Open Publication of Reusable Scientific Workflows: Abstractions, Stan-
dards and Linked Data. Technical Report. (Jan 2012).

Sandra Gesing et al. 2014. Workflows in a Dashboard: A New Generation of Usability. In Proc. WORKS ’14.
IEEE Press, Piscataway, NJ, USA, 82–93. 10.1109/WORKS.2014.6

Jayeeta Ghosh et al. 2011. Molecular Parameter Optimization Gateway (ParamChem): Workflow Manage-
ment Through TeraGrid ASTA. In Proc. TG ’11. ACM, 35:1–35:8. 10.1145/2016741.2016779

Yolanda Gil et al. 2006. Wings for Pegasus: A semantic approach to creating very large scientific workflows.
In Proc. OWLED’06, Vol. 216.

Edward Givelberg et al. 2011. An Architecture for a Data-intensive Computer. In Proc. NDM ’11. ACM, New
York, NY, USA, 57–64. 10.1145/2110217.2110226

Carole Goble et al. 2009. The Impact of Workflow Tools on Data-centric Research. See Hey et al. [2009],
137–145.

Katharina Görlach et al. 2011. Conventional Workflow Technology for Scientific Simulation. In Guide to
e-Science. 323–352. 10.1007/978-0-85729-439-5 12

Ian Gorton et al. 2008. Data-Intensive Computing in the 21st Century. Computer 41, 4 (April 2008), 30–32.
10.1109/MC.2008.122

Jim Gray. 2009. Jim Gray on eScience: A Transformed Scientific Method. See Hey et al. [2009], xix–xxxiii.
Paul Grefen et al. 2006. A taxonomy of transactional workflow support. International Journal of Cooperative

Information Systems 15, 1 (March 2006), 87–118. 10.1142/S021884300600130X
Paul Groth et al. 2012. Requirements for Provenance on the Web. International Journal of Digital Curation

7, 1 (2012), 39–55.
Yunhong Gu et al. 2009. Sector and Sphere: the design and implementation of a high-performance data

cloud. Phil. Trans. R. Soc. A 367, 1897 (June 2009), 2429–2445. 10.1098/rsta.2009.0053
Thilina Gunarathne et al. 2009. Experience with Adapting a WS-BPEL Runtime for eScience Workflows. In

Proc. GCE ’09. ACM, 7:1–7:10. 10.1145/1658260.1658270
Ákos Hajnal et al. 2014. Remote storage resource management in WS-PGRADE/gUSE. See Kacsuk [2014],

Chapter 5, 69–81. 10.1007/978-3-319-11268-8
Mihael Hategan et al. 2011. Coasters: uniform resource provisioning and access for clouds and grids. In Proc.

UCC ’11. IEEE Computer Society, 114–121. 10.1109/UCC.2011.25
George Heald et al. 2011. LOFAR: Recent Imaging Results and Future Prospects. Journal of Astrophysics

and Astronomy 32, 4 (December 2011), 1–10. 10.1007/s12036-011-9125-1

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1016/j.future.2009.08.011
10.1007/s10723-005-9015-3
10.1007/s10723-005-9015-3
10.1007/978-1-84628-757-2_27
10.1145/2600212.2600711
10.1007/978-3-319-09873-9_24
10.1109/SSDM.2002.1029704
10.1038/nature14876
10.1007/978-1-84628-757-2
10.1109/WORKS.2014.6
10.1145/2016741.2016779
10.1145/2110217.2110226
10.1007/978-0-85729-439-5_12
10.1109/MC.2008.122
10.1142/S021884300600130X
10.1098/rsta.2009.0053
10.1145/1658260.1658270
10.1007/978-3-319-11268-8
10.1109/UCC.2011.25
10.1007/s12036-011-9125-1

Scientific Workflows: Moving Across Paradigms A:35

Tom Heath et al. 2011. Linked Data: Evolving the Web into a Global Data Space (1st ed.). Number 1-136 in
Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool.

Tony Hey et al. (Eds.). 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.
Interagency Working Group on Digital Data. 2009. Harnessing the Power of Digital Data for Science and

Society: report of the Interagency Working Group on Digital Data to the National Science and Technology
Council. Technical Report. Executive office of the President, Office of Science and Technology, USA.

Gideon Juve et al. 2010. Scientific Workflows and Clouds. Crossroads 16, 3 (March 2010), 14–18. 10.1145/
1734160.1734166

Péter Kacsuk (Ed.). 2014. Science Gateways for Distributed Computing Infrastructures: Development frame-
work and exploitation by scientific user communities. 10.1007/978-3-319-11268-8

Peter Kacsuk et al. 2012. WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large Variety of User
Communities. Journal of Grid Computing 10, 4 (2012), 601–630. 10.1007/s10723-012-9240-5

Peter Kacsuk et al. 2014. Executing Multi-Workflow Simulations on Mixed Cloud and Grid Infrastructure
Using the SHIWA and SCI-BUS Technology. In Cloud Computing and Big Data, C. Catlett, W. Gentzsch,
L. Grandinetti, and G.Joubert (Eds.). Ios Pr Inc, 141–162.

Douglas B. Kell et al. 2004. Here is the evidence, now what is the hypothesis? The complementary roles
of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26, 1 (January 2004),
99–105. 10.1002/bies.10385

Steve Kelling et al. 2013. Estimating species distributions – across space, through time and with features of
the environment. See Atkinson et al. [2013], 441–458. 10.1002/9781118540343.ch22

Jihie Kim et al. 2008. Provenance trails in the Wings/Pegasus system. Concurrency and Computation: Prac-
tice and Experience 20, 5 (April 2008), 587–597. 10.1002/cpe.1228

Hoyt Koepke. 2014. Why Python rocks for research. Technical Report. University of Washington.
Sven Kohler et al. 2012. Sliding Window Calculations on Streaming Data using the Kepler Scientific Work-

flow System. Procedia Computer Science 9, 0 (2012), 1639 – 1646. 10.1016/j.procs.2012.04.181
Vladimir Korkhov et al. 2013. Exploring Workflow Interoperability for Neuroimage Analysis on the SHIWA

Platform. Journal of Grid Computing 11, 3 (2013), 505–522. 10.1007/s10723-013-9262-7
Miklos Kozlovszky et al. 2014. DCI Bridge: Executing WS-PGRADE Workflows in Distributed Computing

Infrastructures. See Kacsuk [2014], Chapter 4, 51–67. 10.1007/978-3-319-11268-8
Michael Litzkow et al. 1988. Condor - A Hunter of Idle Workstations. In Proc. 8th International Conference

of Distributed Computing Systems. IEEE Computer Society Press, 104 –111. 10.1109/DCS.1988.12507
Xavier Llorà et al. 2008. Meandre: Semantic-Driven Data-Intensive Flows in the Clouds. In Proc. IEEE

e-Science ’08. 238–245. 10.1109/eScience.2008.172
Bertram Ludäscher et al. 2006. Scientific workflow management and the Kepler system. Concurrency and

Computation: Practice and Experience 18, 10 (August 2006), 1039–1065. 10.1002/cpe.994
Bertram Ludäscher et al. 2009. Scientific Workflows: Business as Usual? In Business Process Management.

LNCS, Vol. 5701. 31–47. 10.1007/978-3-642-03848-8 4
Philip Maechling et al. 2007. SCEC CyberShake Workflows—Automating Probabilistic Seismic Hazard

Analysis Calculations. See Taylor et al. [2007a], 143–163. 10.1007/978-1-84628-757-2
Ketan Maheshwari et al. 2013. Enabling multi-task computation on Galaxy-based gateways using swift. In

CLUSTER 2013. 1–3. 10.1109/CLUSTER.2013.6702701
Suresh Marru et al. 2011. Apache Airavata: A Framework for Distributed Applications and Computational

Workflows. In Proc. GCE ’11. ACM, 21–28. 10.1145/2110486.2110490
Suresh Marru et al. 2015. Apache Airavata As a Laboratory: Architecture and Case Study for Component-

Based Gateway Middleware. In Proc. SCREAM ’15. 19–26. 10.1145/2753524.2753529
Paul Martin et al. 2013. Definition of the DISPEL Language. See Atkinson et al. [2013], Chapter 10, 203–

236. 10.1002/9781118540343.ch10
Cherian Mathew et al. 2014. A semi-automated workflow for biodiversity data retrieval, cleaning, and qual-

ity control. Biodiversity Data Journal 2 (dec 2014), e4221. 10.3897/BDJ.2.e4221
Michael McLennan et al. 2015. HUBzero and Pegasus: integrating scientific workflows into science gate-

ways. Concurrency and Computation: Practice and Experience 27, 2 (2015), 328–343. 10.1002/cpe.3257
M. McLennan et al. 2010. HUBzero: A Platform for Dissemination and Collaboration in Computational

Science and Engineering. Computing in Science Engineering 12, 2 (March 2010), 48–53. 10.1109/MCSE.
2010.41

Timothy M. McPhillips et al. 2005. An approach for pipelining nested collections in scientific workflows.
SIGMOD Record 34, 3 (September 2005), 12–17. 10.1145/1084805.1084809

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1145/1734160.1734166
10.1145/1734160.1734166
10.1007/978-3-319-11268-8
10.1007/s10723-012-9240-5
10.1002/bies.10385
10.1002/9781118540343.ch22
10.1002/cpe.1228
10.1016/j.procs.2012.04.181
10.1007/s10723-013-9262-7
10.1007/978-3-319-11268-8
10.1109/DCS.1988.12507
10.1109/eScience.2008.172
10.1002/cpe.994
10.1007/978-3-642-03848-8_4
10.1007/978-1-84628-757-2
10.1109/CLUSTER.2013.6702701
10.1145/2110486.2110490
10.1145/2753524.2753529
10.1002/9781118540343.ch10
10.3897/BDJ.2.e4221
10.1002/cpe.3257
10.1109/MCSE.2010.41
10.1109/MCSE.2010.41
10.1145/1084805.1084809

A:36 Chee Sun Liew et al.

William Michener et al. 2005. Data Integration and Workflow Solutions for Ecology. In Data Integration in
the Life Sciences. LNCS, Vol. 3615. 734–734. 10.1007/11530084 32

Paolo Missier et al. 2010. Linking multiple workflow provenance traces for interoperable collaborative sci-
ence. In WORKS’10. 1–8. 10.1109/WORKS.2010.5671861

Paolo Missier et al. 2012. Golden Trail: Retrieving the Data History that Matters from a Comprehensive
Provenance Repository. IJDC 7, 1 (2012), 139–150. 10.2218/ijdc.v7i1.221

Paolo Missier et al. 2010. Taverna, Reloaded. In Scientific and Statistical Database Management. LNCS, Vol.
6187. 471–481. 10.1007/978-3-642-13818-8 33

Fiona Murphy et al. 2015. WDS-RDA Publishing Data Workflows Working Group Analysis sheet. (June
2015). 10.5281/zenodo.19107

J Myers et al. 2015. Towards sustainable curation and preservation. In Proc. IEEE eScience Conf. 526–535.
Michael L. Norman et al. 2010. Accelerating data-intensive science with Gordon and Dash. In Proc. TG ’10.

ACM, New York, NY, USA, Article 14, 7 pages. 10.1145/1838574.1838588
Thomas Oinn et al. 2004. Taverna: a tool for the composition and enactment of bioinformatics workflows.

Bioinformatics 20, 17 (November 2004), 3045–3054. 10.1093/bioinformatics/bth361
Tom Oinn et al. 2006. Taverna: lessons in creating a workflow environment for the life sciences. Concurrency

and Computation: Practice and Experience 18, 10 (2006), 1067–1100. 10.1002/cpe.993
Tom Oinn et al. 2007. Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community. See

Taylor et al. [2007a], 300–319. 10.1007/978-1-84628-757-2 19
Ioan Raicu et al. 2007. Falkon: a Fast and Light-weight tasK executiON framework. In Proc. SC ’07. ACM,

New York, NY, USA, Article 43, 12 pages. 10.1145/1362622.1362680
Christopher Rawlings. 2014. Big data in the agricultural and ecological sciences — a growing challenge.

Keynote EGI CF 2014. (May 2014).
A.T. Ringler et al. 2015. The data quality analyzer: A quality control program for seismic data. Computers

& Geosciences 76 (2015), 96–111.
David Rogers et al. 2013. Bundle and Pool Architecture for Multi-Language, Robust, Scalable Workflow

Executions. Journal of Grid Computing 11, 3 (2013), 457–480.
J.W. Romein et al. 2011. Processing LOFAR telescope data in real time on a Blue Gene/P supercomputer.

In General Assembly and Scientific Symposium, 2011 XXXth URSI. 1–4. 10.1109/URSIGASS.2011.
6051270

Susanna-Assunta Sansone et al. 2012. Toward interoperable bioscience data. Nat Genet 44, 2 (02 2012),
121–126. 10.1038/ng.1054

Idafen Santana-Perez et al. 2016. Reproducibility of execution environments in computational science using
Semantics and Clouds. Future Gener. Comput. Syst. In Press (2016). 10.1016/j.future.2015.12.017

Matthew Shields. 2007. Control- Versus Data-Driven Workflows. See Taylor et al. [2007a], 167–173. 10.1007/
978-1-84628-757-2

Yogesh L. Simmhan et al. 2009. Building the Trident Scientific Workflow Workbench for Data Management
in the Cloud. In Proc. ADVCOMP ’09. 41–50. 10.1109/ADVCOMP.2009.14

Aleksander Slominski. 2007. Adapting BPEL to Scientific Workflows. See Taylor et al. [2007a], 208–226.
10.1007/978-1-84628-757-2

A. Spinuso et al. 2016. Visualisation methods for large provenance collections in data-intensive collaborative
platforms. In Geophysical Research Abstracts - EGU General Assembly 2016, Vol. 18.

Sudarshan Srinivasan et al. 2014. A Cleanup Algorithm for Implementing Storage Constraints in Scientific
Workflow Executions. In Proc. WORKS ’14. IEEE Press, 41–49. 10.1109/WORKS.2014.8

Tiberiu Stef-Praun et al. 2007. Accelerating Medical Research Using the Swift Workflow System. Studies in
Health Technology and Informatics 126 (2007), 207–216.

Michael Stonebraker et al. 2009. Requirements for Science Data Bases and SciDB. In CIDR ’09.
Michael Stonebraker et al. 2013. SciDB: A Database Management System for Applications with Complex

Analytics. Computing in Science & Engineering 15, 3 (2013), 54–62.
Ian Taylor et al. 2007b. The Triana workflow environment: Architecture and applications. See Taylor et al.

[2007a], 320–339. 10.1007/978-1-84628-757-2
Ian J. Taylor et al. 2007a. Workflows for e-Science: Scientific Workflows for Grids. Springer London. 10.1007/

978-1-84628-757-2
Gabor Terstyánszky et al. 2014. Sharing Science Gateway artefacts through repositories. See Kacsuk [2014],

Chapter 9, 123–135. 10.1007/978-3-319-11268-8
Douglas Thain et al. 2005. Distributed computing in practice: the Condor experience. Concurrency and Com-

putation: Practice and Experience 17, 2-4 (2005), 323–356. 10.1002/cpe.938

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1007/11530084_32
10.1109/WORKS.2010.5671861
10.2218/ijdc.v7i1.221
10.1007/978-3-642-13818-8_33
10.5281/zenodo.19107
10.1145/1838574.1838588
10.1093/bioinformatics/bth361
10.1002/cpe.993
10.1007/978-1-84628-757-2_19
10.1145/1362622.1362680
10.1109/URSIGASS.2011.6051270
10.1109/URSIGASS.2011.6051270
10.1038/ng.1054
10.1016/j.future.2015.12.017
10.1007/978-1-84628-757-2
10.1007/978-1-84628-757-2
10.1109/ADVCOMP.2009.14
10.1007/978-1-84628-757-2
10.1109/WORKS.2014.8
10.1007/978-1-84628-757-2
10.1007/978-1-84628-757-2
10.1007/978-1-84628-757-2
10.1007/978-3-319-11268-8
10.1002/cpe.938

Scientific Workflows: Moving Across Paradigms A:37

Thomas D. Uram et al. 2011. A solution looking for lots of problems: generic portals for science infrastruc-
ture. In Proc. TG ’11. ACM, New York, NY, USA, Article 44, 7 pages. 10.1145/2016741.2016788

Wil M.P. van der Aalst et al. 2014. Workflow Patterns. http://www.workflowpatterns.com. (2014).
Wil M.P. van der Aalst et al. 2003. Workflow Patterns. Distributed and Parallel Databases 14, 1 (July 2003),

5–51. 10.1023/A:1022883727209
Jens Vöckler et al. 2006. Kickstarting Remote Applications. In Second International Workshop on Grid Com-

puting Environments.
Gregor von Laszewski et al. 2005. Workflow Concepts of the Java CoG Kit. Journal of Grid Computing 3, 3-4

(September 2005), 239–258. Issue 3. 10.1007/s10723-005-9013-5
Chip Walter. 2005. Kryder’s Law: The doubling of processor speed every 18 months is a snail’s pace compared

with rising hard-disk capacity, and Mark Kryder plans to squeeze in even more bits. Scientific American
(August 2005), 32–33.

Hongbing Wang et al. 2004. Web services: problems and future directions. Web Semantics: Science, Services
and Agents on the World Wide Web 1, 3 (April 2004), 309–320. 10.1016/j.websem.2004.02.001

Marek Wieczorek et al. 2009. Towards a general model of the multi-criteria workflow scheduling on the grid.
Future Gener. Comput. Syst. 25, 3 (March 2009), 237–256. 10.1016/j.future.2008.09.002

Michael Wilde et al. 2009. Parallel Scripting for Applications at the Petascale and Beyond. Computer 42, 11
(November 2009), 50 –60. 10.1109/MC.2009.365

Matthew Woitaszek et al. 2011. Parallel High-resolution Climate Data Analysis using Swift. In Proc. ACM
MTAGS ’11. ACM, New York, NY, USA, 5–14. 10.1145/2132876.2132882

Katherine Wolstencroft et al. 2013. The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research 41, W1 (2013), W557–W561. 10.
1093/nar/gkt328

J.M. Wozniak et al. 2013b. Swift/T: Large-Scale Application Composition via Distributed-Memory Dataflow
Processing. In Proc. IEEE/ACM CCGRID ’13. 95–102. 10.1109/CCGrid.2013.99

Justin M. Wozniak et al. 2013a. Turbine: A Distributed-memory Dataflow Engine for High Performance
Many-task Applications. Fundamenta Informaticae 128, 3 (01 2013), 337–366. 10.3233/FI-2013-949

Wenjun Wu et al. 2010. Accelerating science gateway development with Web 2.0 and Swift. In Proc. TG ’10‘.
ACM, New York, NY, USA, Article 23, 7 pages. 10.1145/1838574.1838597

Youngik Yang et al. 2010. Biovlab:Bioinformatics data analysis using cloud computing and graphical work-
flow composers. In Cloud Computing and Software Services: Theory and Techniques, Syed A. Ahson and
Mohammad Ilyas (Eds.). Number 309-327. CRC Press, Inc.

Jia Yu et al. 2005. A Taxonomy of Workflow Management Systems for Grid Computing. Journal of Grid
Computing 3, 3-4 (September 2005), 171–200. 10.1007/s10723-005-9010-8

Yong Zhao et al. 2007. Swift: Fast, Reliable, Loosely Coupled Parallel Computation. In Proc. IEEE SER-
VICES ’07. IEEE Computer Society, 199–206. 10.1109/SERVICES.2007.63

Yong Zhao et al. 2014. Enabling scalable scientific workflow management in the Cloud. Future Gener. Com-
put. Syst. 0 (2014), –. 10.1016/j.future.2014.10.023

Zhiming Zhao et al. 2011. An agent based network resource planner for workflow applications. Multiagent
and Grid Systems 7, 6 (2011), 187–202.

Daniel Zinn et al. 2011. Towards Reliable, Performant Workflows for Streaming-Applications on Cloud Plat-
forms. In Proc. IEEE/ACM CCGRID ’11. 235–244. 10.1109/CCGrid.2011.74

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: October 2016.

10.1145/2016741.2016788
http://www.workflowpatterns.com
10.1023/A:1022883727209
10.1007/s10723-005-9013-5
10.1016/j.websem.2004.02.001
10.1016/j.future.2008.09.002
10.1109/MC.2009.365
10.1145/2132876.2132882
10.1093/nar/gkt328
10.1093/nar/gkt328
10.1109/CCGrid.2013.99
10.3233/FI-2013-949
10.1145/1838574.1838597
10.1007/s10723-005-9010-8
10.1109/SERVICES.2007.63
10.1016/j.future.2014.10.023
10.1109/CCGrid.2011.74

	Introduction
	Workflows
	Workflow characteristics
	Workflow architectures

	Review of selected existing Workflow Management Systems
	Pegasus
	Kepler
	Taverna
	Swift
	KNIME
	Apache Airavata
	Meandre
	Summary

	Scientific Workflow Diversity, Scope and Flexibility
	Boundaries limit growth
	Empowering scientists
	Towards a consistent context for data-intensive research

	Conclusions

