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Efficient utilisation and sharing of limited spectrum resources in an autonomous fashion is one of the primary goals of cognitive
radio. However, decentralised spectrum sharing can lead to interference scenarios that must be detected and characterised to help
achieve the other goal of cognitive radio—reliable service for the end user. Interference events can be treated as unusual and
therefore anomaly detection algorithms can be applied for their detection. Two complementary algorithms based on information
theoretic measures of statistical distribution divergence and information content are proposed. The first method is applicable
to signals with periodic structures and is based on the analysis of Kullback-Leibler divergence. The second utilises information
content analysis to detect unusual events. Results from software and hardware implementations show that the proposed algorithms
are effective, simple, and capable of processing high-speed signals in real time. Additionally, neither of the algorithms require
demodulation of the signal.

1. Introduction

Cognitive radio (CR) is the term used to describe smart,
reconfigurable wireless communications devices that are
capable of automatically adjusting their operating character-
istics in order to adapt to changes in the radio environment.
The purpose of such a system is to enable efficient use of
the available radio spectrum and provide reliable service
to the end user [2]. The motivation for efficient spectrum
utilisation arises from the fact that it is a very limited
resource. Although the electromagnetic spectrum is (for
all intents and purposes) infinite, only a small fraction of
it is usable for personal wireless communications as we
know it today. Furthermore, while the spectrum available
remains fixed, the number of wide-band wireless systems
contending for access keeps growing—further compounding
the spectrum scarcity problem.

Traditionally, the radio spectrum has been divided into a
number of usable bands by regulatory bodies such as the Fed-
eral Communications Commission (FCC) in the USA and
the Office of Communications (Ofcom) in the UK. Each of
the bands is then assigned for exclusive access by a particular
operator or service. A notable exception is of course the set of

bands known as the industrial, scientific and medical (ISM)
bands where emission from unlicensed consumer electronic
devices is tolerated. While this restrictive approach to sharing
the radio spectrum succeeds at providing a certain degree of
interference protection, it is an inefficient use of the available
resources since it is extremely unlikely that all of the bands
are in use at the same time at a given place.

CR systems aim to simultaneously provide better quality
of service and spectrum utilisation by dynamically moving
the communication link from crowded or occupied bands
to ones that do not appear to be in use by a primary
licensed system at that instant. In order to carry out this
task, secondary CR devices perform spectrum sensing—
a procedure used to identify “holes” (free bands) in the
spectrum and characterise the radio environment [3]. While
there are a number of diverse approaches to problem [4],
none of them are perfect. Energy detection-based methods
[5] are limited by signal-to-noise ratio (SNR) constraints
while methods relying on cyclostationary features [6] are
limited by the amount of a priori information available
regarding the signal structure of the primary system. As
a result of these shortcomings, spectrum sensing cannot
completely avert the risk of interference that arises from
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dynamic spectrum sharing. Since interference generally
leads to anomalous signal behaviour, an additional layer of
simple signal processing algorithms that can help detect and
characterise that behaviour is useful.

Anomaly detection refers to the process of locating
unusual and unexpected events that may exist alongside
nominal samples in a dataset. It is a process that is already
utilised in a large number of diverse application domains.
Typical examples include the detection of: unauthorised
access to computer systems [7], irregularities in vital signs
such as electrocardiogram (ECG) traces [8], fraud in finan-
cial services [9], and so forth. An extensive survey of current
anomaly detection techniques and application domains is
provided in [10].

The aforementioned survey reveals that there are many
different approaches to solving the anomaly detection
problem—each with its own set of advantages and disadvan-
tages. However, there is one drawback that is shared by most
algorithms: computational complexity. The computational
effort required makes it difficult to adapt these techniques
for real time and online processing of the input signal.
This is unfortunate since any algorithm employed on an
interactive communications system such as a CR platform
must be capable of real time operation to maintain a
seamless user experience. To overcome this challenge, two
complementary anomaly detection algorithms based on
simple information theoretic measures have been developed
and are presented in this paper. The first method utilises
Kullback-Leibler divergence (KLD) [11] while the latter uses
the information content of individual signal events [12].
The algorithms are easy to generalise and broadly define
anomalies as events that lead to changes in the nominal
probability distribution of the radio signal. As a result, it is
possible to employ the techniques for the detection of a wide
range of disruptive events such as interference, timing errors,
transmitter malfunction, and so on.

KLD is a convenient and robust method of measuring the
difference between two data sets in a statistical sense. Due
to its versatility and general appeal, it finds use in fields as
diverse as economics [13] and computational neuroscience
[14]. As a statistical comparison tool, KLD can also be
employed for the automatic and real time detection of
unusual (anomalous) data segments. The proposed KLD-
based technique utilises two data windows to perform a
statistical comparison of neighbouring segments of signals
with periodic structures (e.g., systems utilising time division
multiple access [15]). Since segments separated by the signal
period are expected to be analogous and hence have similar
statistical characteristics, any deviation can be taken to imply
the presence of an anomaly.

Unlike the KLD-based method, the information content
analysis (ICA) algorithm can also be applied to signals
lacking any kind of periodic features. Information content
is a quantity that is directly related to the probability of
an event: the lower the probability, the higher the informa-
tion content. Since anomalies are, by definition, rare (low
probability), the associated information content is high. The
proposed anomaly detection algorithm exploits this fact by
analysing the signal for high-information content events.

Software implementations of the algorithms have been
tested against a set of real wireless signals with promising
results. Additionally, a Xilinx Virtex4 field-programmable
gate array-(FPGA-) based hardware implementation of the
KLD-based method has shown that the algorithm is indeed
capable of real time analysis of high speed, high bandwidth
signals.

A brief review of some of the anomaly detection algo-
rithms described in literature is provided in Section 2 while
the proposed algorithms are described in detail in Section 3.
Results from applying the techniques to the test signals and
measures of performance are provided in Section 4. The
hardware implementation is briefly discussed in Section 5
while Section 6 concludes the paper with a summary of the
contributions made and directions for future work.

2. Review of Existing Methods

Anomaly detection, also known as novelty detection or out-
lier detection, is a rich field of research with a very large body
of work that exists in the literature. The existence of multiple
survey-type papers such as [10, 16–20] is a testament to the
true extent of the subject of anomaly detection. It is therefore
surprising to learn that it is still very much an active area of
research lacking generic algorithms that can be applied uni-
versally to anomaly detection problems. Most of the methods
described in literature are based on tightly constrained
frameworks that apply to very specific classes of problems.

Existing techniques of anomaly detection can be sepa-
rated into a handful of classes depending on the underlying
approach. Classification-based methods utilise supervised
machine learning techniques to categorise nominal and
anomalous behaviour while clustering and nearest-neighbour
based techniques rely on measures of the relative distance
between points of data. Statistical techniques detect anoma-
lies by comparing the test data points against stochastic
models of nominal behaviour. Information theoretic meth-
ods employ measures of information such as Kolmogorov
complexity and entropy and work under the assumption that
anomalies lead to a change in the information content. The
algorithms proposed in this paper employ techniques that are
both statistical and information theoretic in nature.

A statistical method of detecting anomalies in sensor
data streams is proposed by Basu and Meckesheimer in [21].
Relying on the assumption that the data stream is contin-
uous, the method exploits the fact that correlation between
neighbouring data points is higher than between points
separated by a relatively long length of time. The described
algorithm detects anomalous events by comparing the value
of each event against the median of a data set composed of
neighbouring events. The performance of the method then
depends on the size of the data set and the threshold. Since
the algorithm expects an input where subsequent data points
change little under nominal circumstances, it is unsuitable
for use in typical communications systems where the signal
strength can vary considerably even under normal operating
conditions.

An algorithm for detecting anomalous network traffic by
means of a combined statistical and information theoretic
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measure is described by Krügel et al. in [7]. For each packet,
an anomaly score is computed by considering the packet
type, length, and payload distribution. If the combined score
exceeds a certain threshold established through training,
existence of an anomalous packet is signalled. Since the
algorithm is designed for operation in the network layer, it
cannot be utilised for link monitoring and anomaly detection
in the physical layer.

Another set of statistical anomaly detection algorithms
are presented by Desforges et al. and Yeung and Chow in [22,
23], respectively. Both papers propose the use of the Parzen
windows method of nonparametric smooth probability
density estimation in order to establish a stochastic model
of the data distribution. While Yeung and Chow simply test
whether a data point belongs to a given model, Desforges et
al. also construct a model of the test data set and compare
that against the reference. Since the model of the underlying
process is determined once at the onset of the experiments,
the algorithms cannot cope with nonstationary systems.
Utilisation of Parzen windows method for density estimation
also makes the algorithms computationally expensive and
unsuitable for real time implementation.

A technique for detecting anomalous segments (“dis-
cords”) in structured time series such as ECG traces is
described by Lin et al. in [8]. Given a time series containing a
discord, the algorithm essentially splits the series into a set of
small segments and computes the mutual distance between
the segments. If a segment is then found to have a minimum
distance larger than a predefined threshold, it is labelled as
anomalous. Although the algorithm shows promising results,
it is unsuitable for real time implementation due to the
computational complexity cost associated with performing
a search for anomalous segments.

Finally, the use of various information theoretic measures
for anomaly detection is discussed by Lee and Xiang in
[24]. However, the focus of the paper is on determining
the suitability of data models through the use of measures
such as entropy and relative entropy (i.e., KLD) rather than
algorithms for detecting anomalies.

It is evident from this survey of existing techniques that
there is a lack of algorithms that offer the features needed
(nonparametric with a low computational complexity and
the ability to handle nonstationary behaviour) to analyse
radio frequency signal envelopes in real time for anomalies.

3. Anomaly Detection Algorithms

The detection algorithms utilise KLD and information
content analysis, respectively, to determine the presence of
anomalies. Both quantities are ultimately calculated from
estimates of the statistical probabilities of events in the signal.

Given two data sets Pn and Qn, at time n, that contain
samples from domain X , it is possible to obtain empiri-
cal estimates of the associated probability mass functions
(PMFs) pn and qn from a nonparametric model such as a
histogram. Once the PMF estimates are available, the KLD
between them can be calculated using [11]

D
(
pn ‖qn

) =
∑

x∈X
pn(x)log2

pn(x)
qn(x)

, (1)

where x ∈ X . Since base-2 logarithm is used, the divergence
is measured in bits. KLD between two PMFs is generally
asymmetric: that is, D(pn‖qn) /=D(qn‖pn) and the triangle
inequality is not satisfied. When pn = qn, the KLD is zero;
otherwise, it is a positive real number (R+). For brevity and
convenience, D(pn‖qn) will also be referred to as Dn in this
paper.

KLD belongs to a class of distance measures known
as f-divergence (or Ali-Silvey distances). Some of the other
distance measures that belong to the same class are varia-
tional distance (symmetric), Hellinger distance (symmetric),
and Chernoff distance (generally asymmetric) [25]. While
they are all equally suitable for quantifying the statistical
difference between two probability distributions, KLD and
variational distance are the least complex and therefore the
easiest to implement. Variational distance is defined as

V
(
pn ‖qn

) = 1
2

∑

x∈X

∣
∣pn(x)− qn(x)

∣
∣

= 1
2

∥
∥pn − qn

∥
∥

1,

(2)

where ‖pn − qn‖1 is commonly known as the L1 distance
(L1D) between the PMFs pn and qn. Furthermore, KLD and
L1D (and hence the variational distance) are related by the
inequality [11]

D
(
pn ‖qn

) ≥ 1
2 ln 2

∥
∥pn − qn

∥
∥2

1. (3)

Crucially, it states that D(pn‖qn) is bounded by ‖pn − qn‖2
1

and not ‖pn − qn‖1. It is an important distinction as it
implies that for certain PMF pairs the KLD may in fact
be smaller than the L1D. For a pair of largely dissimilar
PMFs (Differences that are large enough to produce a L1

distance of 2 ln 2 or greater, to be precise.), as is generally
the case when comparing an anomalous data set against a
nominal reference, larger distance magnitudes are obtained
from KLD rather than L1D. However, when both PMFs are
similar (e.g., a nominal data set and the reference), this
can lead to L1D values that are larger compared to KLD—
increasing the likelihood that false positives are detected. As
a result, it is expected that KLD is better suited for statistical
anomaly detection compared to L1D. This is confirmed by
the results seen in Section 4 where the performance of a
KLD-based algorithm is compared against one based on L1D.
The algorithm for anomaly detection using KLD is described
in Section 3.2.

Information content analysis is another technique based
on an information theoretic quantity that can be utilised
for the detection of anomalies. The amount of information,
In(x), conveyed by any discrete random event, xn, at time n,
is directly related to its probability of occurrence, pn(x) [12]:

In(x) = −log2

{
pn(x)

}
, n = 1, 2, . . . (4)

Since base-2 logarithm is used once again, information is
also measured in bits. The equation implies that an event
with a very high probability of occurrence carries very
little information while a large amount of information is
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Figure 1: (a) Spectrogram of a wireless local area network (WLAN) signal experiencing interference from a Bluetooth device. The regular
pattern is a single WLAN frame repeatedly transmitted by a signal generator. The frequency hopping nature of the Bluetooth transmission
is clearly visible in the plot. (b) Impact of the number of bins utilised, β, on a histogram of the instantaneous power density of the WLAN
signal. When β is too small, the histogram is insensitive to small changes and does not effectively capture the subtleties of the process. At the
other extreme, it is too sensitive and therefore susceptible to noise. The optimal β is with respect to some minimum error criterion [1] and
provides a good balance between resolution and sensitivity.

conveyed by the occurrence of rare events (i.e., In(x) → ∞
as pn(x) → 0). Information is always real, positive (R+)
and monotonically increasing with decreasing values of event
probability. ICA is essentially a nonlinear scaling function
that favours the unusual.

3.1. Histogram and PMF Estimation. It is clear from (1) and
(4) that both KLD analysis and ICA require estimation of
empirical event probabilities. One approach to obtaining the
necessary estimates is via event histograms. In addition to
being simple to implement, histograms are nonparametric—
implying that no assumptions need to be made regarding the
underlying distribution of the sample data.

For samples that originate from domainX , the histogram
is obtained by first partitioning X into bins B such that

X =
β⋃

l=1

Bl, (5)

and then counting the number of samples that belong to
each bin. β is the total number of bins used to construct
the histogram. Once the histogram is available, the empirical
PMF of the sample set is easily obtained by simply dividing
the histogram by the cardinality of the set.

Given a statistically significant sample size, it is clear
that the only parameter that affects the quality of the PMF
estimate obtained is the bin allocation B. If the partitions
are then assumed to be equidistant for simplicity, the only

variable that remains is the number of bins utilised: β.
The effect of β on the histogram of a random process is
shown in Figure 1. The random process in question is the
instantaneous power density at any time-frequency point of
the signal shown in Figure 1(a). It is a wireless local area
network (WLAN) signal experiencing bursts of interference
from a Bluetooth (BT) device. Histograms of the power
density obtained using three different values of β are shown
in Figure 1(b).

When a small number of bins are utilised, that is, β is
small, the histogram is insensitive to small scale variations in
the input. As a result of the poor resolution, the estimated
model fails to adequately capture the subtleties in the
behaviour of the underlying random process. On the other
hand, when the value of β utilised is too large, the resolution
is too high and the histogram is overly sensitive—resulting in
an estimate that is noisy. The optimal value of β yields a good
balance between resolution and sensitivity.

A method of computing the optimal bin size (and hence
the optimal β) for constructing a histogram, subject to some
minimum mean square error criterion, is provided in [1].
While the algorithm described therein is conceptually simple,
it unfortunately requires the use of exhaustive search to
iteratively minimise a certain cost function—making it too
computationally expensive to be evaluated in real time on a
hand-held mobile device with limited energy and processing
power.
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Figure 2: The algorithmic flowchart. KLD is used to compare the
statistical distribution of a test data set against that of a reference. If
the divergence, Dn, is greater than some predefined threshold, Dth,
the test set may be anomalous.

The impact of β on the performance of each of the
anomaly detection algorithms has been investigated and the
results are presented in Section 4.2.4.

Depending on the choice of B, there may be zeros in
the estimated PMFs due to the presence of empty histogram
bins. Under such circumstances, calculation of the KLD
using (1) can be a problem as it leads to instances where
0 log2{0/qn(x)} or pn(x)log2{pn(x)/0} have to be evaluated.
While it is certainly possible to handle these as special cases
by setting them to 0 and,∞, respectively, through continuity
arguments, it may be better to simply avoid zeros in the
PMFs. It is possible to avoid empty histogram bins and hence
zeros in PMFs by adding a small number, λ, to every bin
of the histogram. As preloading of histogram bins in this
manner undoubtedly distorts the estimate of the true PMF,
the preload value must be carefully chosen. According to the
work done by Krichevsky and Trofimov [26] and Johnson et
al. [27] λ = 0.5 is a good choice.

3.2. Algorithm Based on KLD. The capability of KLD to
quantise the difference, in a statistical sense, between two
data sets to single real value is ideal for use in anomaly
detection since it provides a convenient detection metric. A
general description of the algorithm is provided here while
a discussion of the optimisations needed for an efficient
hardware implementation is provided in Section 3.3 that
follows.

The flowchart in Figure 2 shows the proposed algorithm.
At time n, the process starts with the acquisition of the two

Table 1: Complexity analysis of KLD.

Operations
Σ × ÷ log Total

2|Pn| + β β 3β β 2|Pn| + 6β

Memory |Pn| + ψ + 2β

data sets to be compared using KLD. One of the data sets is
a reference (Qn) while the other is the one under test (Pn).
If the samples in the data sets do not directly represent the
parameter of interest, they must be processed. Once the data
sets have been suitably transformed, the associated PMFs
pn(x) and qn(x) are estimated and used to compute the KLD,
Dn. If Dn is then observed to be larger than some predefined
KLD threshold, Dth, the test data set may be anomalous.

This general approach to detecting anomalies using KLD
can be easily adapted for use with signals containing periodic
structures. One example of such a signal is IEEE 802.16e
wireless broadband (WiBro) which utilises time division
duplexing (TDD) [28]. Periodic signals are expected to have
statistics that are also periodic—implying that segments
of the signal separated by the period, Tp, should have
probability distributions that are very similar under normal
circumstances. Therefore, by simply acquiring the data sets
Pn and Qn from two sliding signal windows of length Tw
with centres separated by Tp, the proposed algorithm can
be utilised for the detection of anomalies in periodic signals.
KLD analysis can be performed on the signal envelope itself
and as a result, demodulation is unnecessary and the only
a priori information required by the algorithm is the signal
period Tp.

While the steps required to compute the KLD are all
simple and straightforward, the storage (data buffers) and
the number of arithmetic operations required grow linearly
with the size of input data sets. As these data sets can be
very large when analysing high speed signals, it can easily
lead to scenarios where it may not be possible to provide
for the resources required by the algorithm. Analysis of the
algorithm’s complexity and memory requirements follows
and is summarised in Table 1.

The input data sets Pn and Qn themselves require a buffer
capable of holding at least |Pn| + ψ elements, where ψ is the
number of samples corresponding to the signal period and
|Pn|(= |Qn|) is the size of the data windows in samples. Only
a single buffer is required for the input data since one of the
data sets is essentially just a ψ-delayed version of the other
in this case. Computing the frequency count over the bins
(B), for the purpose of estimating the histograms, requires
up to |Pn| additions for each of the two windows. Once the
histograms are available, the PMFs are obtained by dividing
the frequency count in each of the β bins by |Pn|. Two buffers
of size β each are then required to store the resulting PMFs.
Computation of the KLD from the PMFs then requires a
further β divisions, logarithms, multiplication, and addition,
respectively.

3.3. Hardware Implementation. The analysis performed in
the previous Section 3.2 reveals that a direct interpretation
of the algorithm to hardware would be inefficient, inflexible,
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Window Qn−1 Window Pn−1

Window Qn Window Pn

o k

m j

Figure 3: At any given time, only a maximum of four histogram
bins need to be updated (two per window). Bins incremented (fresh
samples) are denoted by j and m while bins decremented (old
samples at the end of the window) are denoted by k and o.

Table 2: Complexity analysis of DKLD.

Operations
Σ × ÷ log Total

20 8 16 16 60

Memory |Pn| + ψ + 2β

and computationally expensive. The inefficiency arises from
the fact that at each successive time instance, the PMFs
and the KLD are completely recalculated, even though
it is only a single sample that changes in each of the
data sets. The inflexibility comes from the fact that the
computational complexity depends on β, implying that a
direct interpretation would be limited by the initial choice
of the histogram bin resolution. Finally, logarithms and
divisions can be very costly to implement in hardware.
Fortunately, there are several well-known methods that can
be adopted to overcome each of these challenges.

The complexity that arises from the division operation
in (1) can be removed by exploiting the identity log(a/b) =
log(a)− log(b):

Dn =
∑

x∈X
pn(x)log2

pn(x)
qn(x)

=
∑

x∈X
pn(x)

{
log2

[
pn(x)

]− log2

[
qn(x)

]}
.

(6)

The division operation is exchanged for a subtraction
and a second base-2 logarithm operation which can be
implemented in a very efficient manner by means of a lookup
table.

Further efficiency improvements can be achieved by
making application-specific changes to the way the algorithm
is evaluated. Since the purpose of the algorithm is to analyse
periodic signals by means of two sliding windows, it holds
that at any given instance, only one sample in each of the data
sets changes. This in turn implies that only a maximum of
4 histogram/PMF bins need to be updated at that instant—
two for each data set/window. The two bins per window
account for the freshly acquired sample (bin frequency count
incremented by one) and the sample that is dropped at the
end of the window (bin frequency count reduced by one).
An illustration is provided in Figure 3.

This also means that the KLD values change very
little between subsequent time steps for this particular

application—suggesting that it is possible to rewrite (6) in
the form of a differential equation:

Dn =
∑

x∈X
pn(x)

{
log2

[
pn(x)

]− log2

[
qn(x)

]}

= Dn−1

− pn−1
(
j
){

log2

[
pn−1

(
j
)]− log2

[
qn−1

(
j
)]}

+ pn
(
j
){

log2

[
pn
(
j
)]− log2

[
qn
(
j
)]}

− pn−1(k)
{

log2

[
pn−1(k)

]− log2

[
qn−1(k)

]}

+ pn(k)
{

log2

[
pn(k)

]− log2

[
qn(k)

]}

− pn−1(m)
{

log2

[
pn−1(m)

]− log2

[
qn−1(m)

]}

+ pn(m)
{

log2

[
pn(m)

]− log2

[
qn(m)

]}

− pn−1(o)
{

log2

[
pn−1(o)

]− log2

[
qn−1(o)

]}

+ pn(o)
{

log2

[
pn(o)

]− log2

[
qn(o)

]}
,

(7)

where the four bin indices j, k, m, and o are assumed to be
unique. If not, any duplicate terms in the equation are set to
zero.

The differential equation form of KLD (DKLD) shows
that its computational complexity is no longer dependent
on the number of histogram bins utilised in evaluating
the PMFs. Assuming that Dn−1 is available, only 16 addi-
tions/subtractions, 16 logarithms, and 8 multiplications are
needed to calculate Dn—regardless of the value of β. This
opens the path for a fixed complexity, flexible, and efficient
implementation that can be easily updated to accommodate
a wide range of histogram resolutions.

The computational complexity and storage requirement
of DKLD are shown in Table 2. Comparisons against the
unmodified, direct interpretation version of KLD (Table 1)
reveals that while memory utilisation remains unchanged,
there is a vast difference in the number of operations
required. Regardless of the window size and histogram bin
count, 60 operations are needed to compute the KLD. In
addition to the 16 additions/subtractions, 16 logarithms,
and 8 multiplications required for the DKLD (7), 4 more
additions/subtractions are required to update the affected
histogram bins and 16 divisions are required to obtain the
necessary PMFs at times n− 1 and n from the histogram.

Switching to a fixed-point representation and using a
lookup table for base-2 logarithms provide further reduc-
tions in complexity at the expense of a slight increase in the
memory requirements. The size of the table, L, then dictates
the precision available. Additionally, if |Pn| is chosen such
that it is always a power of two (PoT), that is,

|Pn| = 2σ , σ = 0, 1, 2, . . ., (8)

no division operations are required to obtain the PMFs since
division by a PoT is simply a bit-shift operation that costs
nothing in hardware.
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Table 3: Complexity analysis of FP-DKLD.

Operations
Σ × ÷ log Total

20 8 0 0 28

Memory |Pn| + ψ + 2β + L

The complexity and storage requirements of a fixed-
point DKLD (FP-DKLD) based algorithm utilising a log
lookup table and PoT constraint on |Pn| is shown in Table 3.
It can be seen that with some simple changes and constraints,
the complexity of the anomaly detection algorithm can
be greatly reduced—allowing for efficient and high speed
hardware implementations. Results obtained from a Xilinx
Virtex4 FPGA implementation of the FP-DKLD algorithm
are shown in Section 5.

3.4. Information Content Analysis Algorithm. Unlike the
KLD-based anomaly detection algorithm just described, the
ICA-based method analyses individual input samples rather
than aggregate sets of data. The information conveyed by
the events is the detection metric utilised. The following is
a general description of the algorithm.

First and foremost, it is necessary to establish the type of
event that is under observation. This can be any property that
is associated with the signal under test (e.g., instantaneous
amplitude, phase, or power). If the event type chosen is
measurable directly from the signal envelope, demodulation
is unnecessary for anomaly detection. The ICA algorithm
utilises supervised learning to establish a reference histogram
(and hence probability) of events; therefore, some clean
signal is required for training. Once the reference histogram
is obtained, online analysis of the signal under test can
commence. Events from the test signal are extracted and used
to update the reference histogram. This yields updated event
probabilities and hence the associated information content.
If the information content In(x) of any event xn, at time n,
is above some predefined threshold Ith, an anomaly may be
present.

Once again, it is clear that the event histogram plays a
central role in the anomaly detection algorithm. It has been
stated previously in Section 3.1 and illustrated by Figure 1
that the number of bins utilised, β, has a significant impact
on the sensitivity of the histogram and hence the effectiveness
of the detection algorithms. When β is too small, anomalous
events may not be detected due to poor sensitivity—leading
to missed detections. On the other hand, when β is too large,
even nominal events will appear to have low probability—
leading to a large number of false positives. It is therefore
necessary to find a β that offers a good balance between
sensitivity and probability of detecting false positives.

The event histograms shown in Figure 1(b) reveal
another potential challenge for the ICA algorithm. It can
be seen that the histograms have long tails with numerous
low probability (i.e., high information content) events even
when the signal is behaving nominally. Although this is
expected for any analogue signal transmitted over a lossy
physical channel, it raises the possibility that numerous false
positives are observed at a detector that employs a simple

Start

Obtain initial
event histogram

from training data

Get new event, xn, update
histogram and evaluate

information content, In(x)

n = n + 1

{In−N (x), . . . , In(x)} > Ith?
No

Yes

Anomalous
event

Figure 4: Flowchart of information content analysis algorithm with
clustered anomaly detection. First, clean data is used to initialise
the reference event histogram and event probabilities. Then, events
in the signal under test are used to update the reference histogram
and event probabilities. The updated values are used to estimate the
information content of the events. If the information content ofN+
1 contiguous events exceeds a predefined threshold, Ith, an anomaly
may be present in the signal under test.

information content threshold. It is certainly possible to
reduce the number of tail events by using a smaller number
of bins, but that leads to reduction in sensitivity and hence
an increase in the probability of missed detections.

Examination of the interference scenario in Figure 1(a)
reveals an important distinction between anomalous events
and the underlying signal—anomalies tend to appear in
clusters while nominal low-probability signal events are
decidedly “singular.” This difference is the key to reducing
the number of false positives while still maintaining a low
rate of missed detections. The proposed algorithm is easily
augmented to benefit from this insight: instead of triggering
on individual high information content events, the detector
must search for contiguous groups of events that exceed the
predefined information content threshold.

A flowchart of the algorithm with simplified clustering is
shown in Figure 4. The general approach is as before, with
the exception of the last step. With the simple clustering
extension, detection of an anomaly is signalled only when a
contiguous sequence of N previous events and the current
event exceeds a predefined information content threshold.
Sequence detection is used rather than full two-dimensional
clustering to minimise the complexity of the algorithm. This
is permissible since a sequence can be considered as a one-
dimensional cluster. The effect of the cluster size utilised on
the detector performance is examined in Section 4.2.5.
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Table 4: Runtime complexity analysis of ICA.

Operations
Σ × ÷ log Total

2 0 1 1 4

Memory β +N + 2

The discrimination threshold is an important aspect of
any detector. While the optimum threshold is problem and
cost function specific, it is generally chosen to minimise
missed detections while still maintaining a low rate of false
positives. For the proposed anomaly detection algorithm,
it is not possible to define a single information content
threshold, Ith, that is suitable for use with any arbitrary
signal. Ith is signal specific and may be set automatically using
information obtained from the clean training data. After
the reference event histogram and probabilities have been
estimated, the reference information content associated with
each event type can be easily computed using (4). For β bins,
the standard deviation, σI〈β〉, of the reference information
content provides a measure of the spread and may be used
to obtain the threshold:

Ith = mσI〈β〉. (9)

m is a multiplicative factor greater than 1. The effect of Ith on
detector performance is investigated in Section 4.2.3.

Due to the simplicity of the ICA algorithm, its runtime
operational complexity and memory requirements are neg-
ligibly small. On completion of the initial training phase,
a small buffer capable of holding just β + 1 elements is
required to store the event histogram and the total events
count. At runtime, analysis of an event requires 2 additions
to increment the relevant bin count and the total events
count. Division of the incremented bin count by the total
is then needed to obtain the event probability. After the
probability is computed, a single base-2 logarithm is needed
to calculate the event’s information content. An additional
buffer capable of holding N + 1 elements is also needed to
accommodate information content clustering. A summery
of the complexity analysis is provided in Table 4. It reveals
that in addition to being negligibly small, the fixed runtime
operational complexity is independent of any algorithmic
parameter (e.g., histogram resolution)—suggesting that fast
and efficient implementations for power limited hand-held
devices are possible.

4. Results

In order to evaluate the performance of the proposed
anomaly detection schemes, signals with different classes of
abnormalities are employed as test cases. All of the signals
under test are actual radio frequency transmissions captured
using spectrum analysis hardware and therefore represent
scenarios likely to be encountered by real world wireless
devices.

Analyses of the test signals are provided in the fol-
lowing section while detailed performance analyses of the
algorithms based on parameters such as histogram bin
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Figure 5: (a) WLAN signal with interference at 11.5 ms from a
Bluetooth device. (b) Both KLD and L1D analyses of the signal
result in detection of the anomaly. KLD appears to be better than
L1D since it leads to a much larger peak and lower noise.

resolution, data window size, sampling rate and cluster
length are provided in Section 4.2.

4.1. Data Analysis. Of the four data sets available, the
first three are used to demonstrate the PMF divergence
analysis (KLD/L1D)-based technique while the last is used
to demonstrate the ICA-based technique.

4.1.1. Test Signal A. The signal is shown as a time series in
Figure 5(a). It consists of a single WLAN frame that repeats
with a period of 2.45 ms and a burst of interference from
a Bluetooth device that is visible at 11.5 ms. The signal is
similar to that shown earlier in Figure 1.

Both KLD and L1D are used to analyse the signal for the
purpose of obtaining results that can be directly compared.
Two windows with a duration of 256μs each are employed
to process the time series signal. The window centres are
separated by 2.45 ms to match the WLAN frame repetition
interval. The windows estimate the PMFs of the signal
power. The number of histogram bins utilised is the optimal
value (51 in this case) as obtained from the algorithm
proposed by Shimazaki and Shinomoto [1]. In any case, it
is shown in a subsequent Section (4.2.4) that the number of
histogram bins used does not have a significant impact on
the outcome—therefore, an arbitrary but reasonable choice
such as 32 can also be used instead.

The result of the analysis is also shown in Figure 5. Both
KLD-and L1D-based methods are successful at detecting
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Figure 6: (a) Wireless broadband (WiBro) signal. The uplink
subframe at 16 ms has a longer duration than others and is therefore
unusual in this context. (b) KLD and L1D analysis both reveal
the anomalous segment of the WiBro signal. A second peak is
obtained when the signal returns to normal—this is due to the twin-
windowing nature of the anomaly detection algorithm. Once again,
KLD analysis results in a larger peak and lower noise.

the presence of the anomaly (BT interferer). However, it is
clear that KLD is the better choice as it produces a larger
peak compared to L1D when the anomaly is detected. The
baseline noise level with KLD is also much lower than that
obtained with L1D—confirming the hypothesis presented in
Section 3.

4.1.2. Test Signal B. The second signal under test is a wireless
broadband (WiBro) signal. It is shown in Figure 6(a). Due
to the proximity of the recording equipment to the mobile
terminal (MT), the uplink (UL) subframes show a higher
power level then downlink (DL) subframes. From the plot,
it can be seen that the UL subframe at 16 ms is longer than
any of the other UL subframes. In context of this particular
signal snapshot, this behaviour is unusual and hence can be
considered to be anomalous. Once again, two windows with
a duration of 256μs each are employed to estimate the signal
power PMFs. The window centres are separated by 5 ms—
corresponding to the frame period of the signal. The optimal
histogram bin allocation scheme in [1] is once again used to
determine the number of bins utilised (β = 51).

Analysis of the signal is also shown in Figure 6. A sharp
peak in the divergence at 16 ms reveals the presence of the
unusual UL subframe. A second peak is obtained when the
signal returns to normal in the following UL subframe. Once
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Figure 7: (a) Message exchange between a mobile terminal and a
base station using the WiBro communications protocol. An extra
command sequence in the uplink subframe at 20 ms initiates the
power control loop. (b) The extra command sequence (20 ms) and
subsequent power change (25 ms) are both revealed by KLD/L1D
analyses of the signal. A larger KLD peak results from the anomalous
command but not from the power change. L1D also leads to larger
noise levels compared to KLD.

again, the superiority of KLD over L1D as a divergence metric
is demonstrated by the larger peaks and lower baseline noise
levels.

4.1.3. Test Signal C. The third signal used to test the detection
capabilities of the divergence-based algorithm is shown
in Figure 7. It depicts communication between a mobile
terminal and base station using the WiBro standard. Since
the recording is made at the MT, there is significantly more
power in the UL subframes. Although unnoticeable in the
time series, the UL subframe at 20 ms contains an additional
command sequence that triggers the subsequent change in
the transmit power observed at 25 ms. As a result, there
are effectively two unusual events in the signal: the extra
command and the subsequent change in power level. The
parameters utilised for analysis of the signal are identical to
those used in Section 4.1.2.

The divergence analysis plot in Figure 7 shows that both
anomalies can be successfully detected using KLD and L1D.
Since the width of a KLD peak corresponds to the temporal
duration of the anomaly responsible, the first peak at 20 ms
is very sharp as it is due to the extra command sequence
in the UL subframe. Since the subsequent change in power
at 25 ms affects the entire UL subframe, the second peak is
much broader and spans the entire subframe.
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(c) Anomalies (N = 0)

2.4452.442.4352.43

Frequency (GHz)

10

20

30

40

50

60

70

80

90
T

im
e

(m
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Anomalies (N = 2)

Figure 8: Analysis of a WLAN signal with interference from a Bluetooth device. (a) Spectrogram of the original signal. Data bursts from
the Bluetooth device are clearly visible as high power, lightly shaded patches. (b) Information content of events (power density at any given
time-frequency point) in the signal. (c) Anomalies detected (light patches) using a threshold of 1.25σI〈16〉 (7.15 bits) and a cluster length of
1. The result is noisy and there are a lot of false positives (appearing as singular, lightly shaded spots). (d) Anomalies detected when the
threshold is left unchanged at 1.25σI〈16〉 and the cluster length is increased to 3. The outcome is now much cleaner with virtually zero false
positives.

The plot also reveals that for the second anomalous event
(power change), KLD is smaller than the associated L1D. This
is not unexpected since it has been hypothesised in Section 3
that for differences that lead to an L1D of 2 ln 2 or smaller,
L1D can be larger than KLD. It is also the reason why L1D
generally leads to larger baseline noise levels compared to
KLD.

4.1.4. Test Signal D. The final test signal is used to evaluate
the ICA algorithm. It is similar in nature to the signal shown
in Figure 1(a). Spectrogram of the test signal is shown in
Figure 8(a). It is a much longer signal with numerous inter-

ference events to provide a statistically significant sample
size. The plot depicts a real WLAN signal with Bluetooth
interference captured over the air-interface. The WLAN
signal consists of a single frame that is repeated periodically
by a vector signal generator. The characteristic frequency
hopping pattern of the Bluetooth device marks the locations
of the interference (anomalous) events.

The signal spectrogram is estimated from the time series
using nonoverlapping Hamming windows that are 64μs
long. A 1024 point FFT (fast Fourier transform) is used to
obtain a frequency resolution of approximately 20 kHz. The
signal event under observation is the instantaneous power
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density at any given time-frequency coordinate. The first
10 ms of the signal is assumed to be free from interference
and is therefore used for training purposes. 16 equally spaced
histogram bins divide the range between the maximum and
minimum power densities observed in the training data. The
σI〈16〉 for the training data is 5.72 bits.

Figure 8(b) shows the information content of events in
the test signal. As expected, the anomalous events have a
higher information content and they are highlighted while
the regular underlying structure is suppressed. The plot
also shows that there is a lot of noise (tiny spots of high
information content) from individual low-probability signal
events that are otherwise nominal. The reason for this
behaviour has been outlined in Section 3.4.

Anomalies detected using a threshold of 1.25σI〈16〉 and
a cluster length of 1 (i.e., only the current event) are
shown in Figure 8(c). It is immediately obvious from the
large number of small, lightly shaded spots that there are a
lot of false positives. Again, singular low-probability signal
events are responsible since they can potentially have higher
information content than actual anomalous events. Keeping
Ith the same and increasing the cluster length to 3 yields the
result shown in Figure 8(d). It reveals that a simple change
in the cluster length is sufficient for reducing the number of
false positives to virtually zero.

4.2. Performance Analysis. The analyses of test signals pre-
sented in Section 4.1 show that both algorithms perform
well for the parameter combinations chosen. In order to
investigate and quantify the impact of other parameter
choices, it is necessary to define and utilise metrics that reflect
performance.

For the divergence-based technique, the ratio between
the anomaly detection peak and the maximum of the
baseline noise level is a good indicator of performance since
it is a reflection of the range over which a threshold can be
applied. It can be seen from the results presented in Figures 5,
6, and 7 that KLD is an extremely effective discriminator for
statistical changes in the observed data. Even with such real
test vectors captured over-the-air, the KLD peaks produced
by anomalous events are many orders of magnitude larger
than baseline noise levels associated with nominal data. As
a result, 100% probability of detection can be achieved over
a wide range of KLD threshold values (the anomalous peak
is approximately 140 times as large as the background noise
level in Figure 6) while still guaranteeing a 0% probability of
false positives—making such classical measures of detector
performance inadequate for gauging the true extent of the
algorithm’s performance.

Another reason against the suitability of classical per-
formance measures such as receiver operating characteristic
(ROC) curves is the scarcity of available test data. Probability
of detection and false positives are inherently statistical
measures of performance that require a large sample size
to produce meaningful results. Since the focus of this work
is exclusively on practical applications of the proposed
algorithm, the number of test vectors available is limited and
each test signal (A, B and C) contains only 1 or 2 anomalous
events. So instead of attempting to extract questionable

probability measures from the limited data set, a measure of
the difference between the height of the anomalous peak and
the baseline noise level is utilised to quantify the observed
performance.

When KLD is used as the measure of divergence, the KLD
ratio (KLDR) is defined as

KLDR = KLDanom

KLDbg
, (10)

where KLDanom is the maximum of the detection peak and
KLDbg is the maximum of the background baseline noise
level. KLDR is the metric that is used to quantify the
algorithm’s performance.

For the ICA-based algorithm, the circumstances are
different. The test set (signal D) contains a sufficient amount
of nominal and anomalous events to allow the use of more
traditional performance metrics. Performance is measured
in terms of the detector true positive rate (Rtp) and false
discovery rate (Rfd). Rtp is defined as the ratio of the number
of correctly detected anomalous events (Σtp) to the total
number of anomalous events present (Σta):

Rtp =
Σtp

Σta
= 1− Σmd

Σta
, (11)

where Σmd is the number of anomalous events that missed
detection. Rfd is the ratio of false positives (Σfp) to the total
number of anomalies detected (includes both Σfp and Σtp)
[29]:

Rfd =
Σfp

Σfp + Σtp
. (12)

Rfd is preferred over the more common false positive rate
(Rfp) as it is more useful in this context. Rfp is defined as the
ratio between Σfp and all nonanomalous events (Σtn) in the
signal:

Rfp =
Σfp

Σtn
. (13)

It is also known as the false alarm rate. Since Σtn is a
very large number, Rfp is close to zero for most parameter
combinations and therefore does not adequately reflect the
variations observed in detector performance.

To summarise, KLDR is used to evaluate the performance
of the KLD-based algorithm while Rtp and Rfd are used to
evaluate the ICA-based algorithm.

4.2.1. Sampling Rate. Continuous processes such as time-
series must be sampled before the anomaly detection algo-
rithms can be applied. The sampling frequency employed
is crucial as it dictates the size of the input data sets, |Pn|,
and therefore the memory utilisation of the KLD-based
algorithm—as indicated in Table 2. For a given window
length, a higher frequency implies that more data samples
have to be stored and sorted to construct the histograms.
If the frequency is too low, small scale signal features and
anomalies may be lost. According to the Nyquist sampling
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Figure 9: Performance of the KLD-based anomaly detection
scheme under various data sampling rates. Decimation factor refers
to the amount by which the input signal is undersampled relative to
the signal bandwidth. A factor of unity corresponds to a sampling
frequency equal to the signal bandwidth. For two of the test cases (A
and B), a KLDR well above 10 dB can be maintained for a window
length of 256μs, histogram bin count of 32, and a decimation factor
of 100. Signal C is unable to accommodate such high decimation
rates.

criterion, a signal must be sampled with a frequency at
least twice as large as its bandwidth to be reconstructible.
For wideband signals this leads to a very high sampling
frequency and hence a prohibitively large volume of data—
heavily increasing the resource requirements of the proposed
scheme. Since neither of the proposed algorithms require
the time-series to be reconstructible, a far lower sampling
frequency can be used instead. Figure 9 shows how the
performance of the KLD-based anomaly detection scheme
is affected by undersampling of the input time series. The
window length utilised is 256μs and the histograms used
to construct the PMFs are 32 bins wide. The amount by
which the input time-series is undersampled relative to the
bandwidth is defined as the decimation factor. Therefore, a
factor of unity implies that the signal is sampled at the same
frequency as the signal bandwidth.

The results indicate that decimation factors as large as
500 can be successfully employed depending on the type
and duration of the anomaly present. For test signals A and
B, a KLDR of more than 10 dB can be maintained even
with a decimation factor of 100. This is an important result
as it indicates that satisfactory performance levels can be
maintained with little input data and hence memory-limited
implementations of the algorithm. At high decimation
factors, performance is poor for test signal C. This is because
the first anomaly (extra command sequence) is temporally
brief and is likely to be lost when the signal is heavily
undersampled. As for the second anomaly in the signal, the
change in power is simply not large enough to produce a
significant increase in the divergence.
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Figure 10: Performance of the KLD-based anomaly detection
scheme under various window lengths and hence the input sample
size |Pn|. Decimation factors (DF) of 2 and 10 are utilised and the
number of histogram bins is 32. In all cases, an increase in the
amount of data leads to a better performance. However, beyond
a certain window length, the performance is no longer strongly
affected.

Results for the ICA-based method are not shown since
the input sampling rate has no bearing on the complexity
or memory requirements of the algorithm—as shown in
Table 4. The only requirement then on the sampling rate
is that it must be fast enough to capture events that are
suspected of being anomalous.

4.2.2. Window Length. The window size, and hence the input
data set size |Pn|, is another parameter that is relevant for
the KLD-based algorithm but not the ICA-based algorithm.
The effect of the PMF estimation window size on the
performance of the algorithm shown in Figure 10. The
number of histogram bins utilised is 32. Results are shown
for undersampling factors of 2 and 10. At lower decimation
factors, more data is available and the KLDR improves
uniformly across all window sizes for signals A and B. At
smaller window sizes, performance for signal A is unaffected
by the choice of the decimation factor due to the relatively
long duration of the anomaly. This is because even at a
decimation factor of 10, a sufficient number of anomalous
samples are represented in the PMF.

As anticipated, the performance is poor at small window
sizes where the amount of data available is insufficient
to adequately model the underlying PMFs. Increasing the
window length leads to an improvement of the performance.
However, for signals B and C, the gains become marginal
for windows larger than approximately 400μs. The transition
shown by signal A at a window length of 1 ms for a
decimation factor of 2 is due to a sudden reduction in the
KLD noise at the frame edges (as seen in the zoomed-in
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Figure 11: Effect of information threshold (9) on detector Rtp and
Rfd for the ICA algorithm. The cluster length utilised is 3. Histogram
bin sizes of 8, 16, and 32 are used for comparison. Rtp for each β
shows a sharp decrease when Ith (i.e., m · σI〈β〉) is increased above a
certain limit. Majority of the anomalous events have an information
content less than this and miss detection. m = 1.35 and β = 32
yields the best performance.

segment of Figure 5) while the detection peak remains at
approximately the same level. It is no coincidence that the
duration of the interframe spacing for the signal is also
1 ms. It is a signal feature that is detected by the algorithm
alongside the actual anomalous events. When the window
size is increased beyond this feature size, it can no longer be
resolved effectively by the detection algorithm and lead to a
decrease in the noise level seen at the frame edges.

The initial KLDR improvements with increasing window
size are due to improvements in the PMF estimates which
in turn lead to a reduction in the baseline KLD levels.
At larger window sizes, the anomalous samples represent
smaller fractions of the data and hence contribute less to the
shape of the estimated PMF—resulting in a decrease of the
KLD due to the anomaly. As the background levels are also
reduced by an increase in the data size, the overall KLD ratio
(i.e., the KLDR) remains relatively constant.

4.2.3. Information Threshold. As stated previously in
Section 3, the discrimination threshold (9) is an important
aspect of any detector. The impact of Ith on Rtp and Rfd of the
ICA-based algorithm is investigated using a cluster length of
3 and histogram bin sizes of 8, 16, and 32. The result of the
analysis is shown in Figure 11.

The plot shows that there is a hard Ith boundary for each
β after which Rtp drops rapidly. This implies that the majority
of the anomalous events share similar characteristics and
convey information equivalent to that boundary. When Ith is
increased further through the use of a larger threshold factor
m, Rtp approaches zero due to an ever increasing number of
missed detections.

At low-information content thresholds, Rfd is also high—
specially for high values of β. As explained earlier in
Section 3.1, a higher resolution makes the detector more
susceptible to noise, leading to an increase in the number of
false positives and hence the Rfd.

The impact of Dth on the performance of the KLD-based
method has not been investigated and therefore cannot be
shown. The reasons for this are as follows.

(i) The number of anomalous events available is insuffi-
cient to investigate statistical trends.

(ii) Detection is often guaranteed for a wide range of
thresholds due to the large KLDR (greater than
30 dB) values that are observed.

It is the second reason that generally makes it straightforward
to choose a suitable Dth.

A mathematical treatment of the impact ofDth and Ith on
detector performance is beyond the scope of this article. Such
a framework requires well-defined theoretical models of the
data distribution which are difficult to obtain for real data
vectors. Equations derived using the simplifying assumption
that the distributions belong to a well-known class such as
Gaussian would be of little use in context of the test signals
used in this paper. Since the signals do not conform to any
standard probability density function, it is out of necessity
that the thresholds are determined empirically.

4.2.4. Histogram Resolution. Histogram bin resolution, rep-
resented by the parameter β, is of relevance to both of the
proposed algorithms. Figure 12 shows how performance of
the KLD-based algorithm is affected by the choice of the
number of histogram bins used to classify the input data and
estimate the PMFs. The window length is set at 256μs and
results are shown for decimation factors of 2 and 10. Once
again, the smaller decimation factor provides uniformly
improved performance over the entire range of β values. The
only exception is signal A where the performance for smaller
β values appears to be independent of the decimation factor
used. The reasons for this is the relatively long duration of
the anomaly—as explained previously in Section 4.2.2.

The only trend common to all three signals is that the
performance changes little with increasing bin numbers,
with signal C showing an optimum in the vicinity of β = 55.
This indicates that the behaviour observed is specific to the
type of anomaly present in a signal. While the number of bins
utilised does not appear to have a significant impact on the
performance of the scheme for a fixed amount of data, the
decrease observed is due to noisier PMF estimates that are
obtained for larger values of β. Noisy PMFs lead to larger
background KLD values and hence a reduced KLDR.

Figure 13 shows how the Rtp and Rfd vary for the test
signal (Figure 8(a)) with the number of histogram bins
utilised. The cluster length utilised is 3 and Ith of 1.2σI〈β〉,
1.4σI〈β〉, and 1.6σI〈β〉 are used for comparison. The plot
reveals that when β = 4, Rtp is zero and Rfd is unity for
all thresholds tested. This is because the sensitivity is very
low and no anomalies can be detected (Rtp = 0). Events
exceeding the threshold are low-probability signal events and
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Figure 12: Performance of the KLD-based anomaly detection
scheme under various histogram bin counts. The window size is set
at 256μs and the decimation factors used are 2 and 10. Generally, a
larger number of bins lead to poorer performance due to increased
noise in the estimates. However, the rate of change is small and
therefore the drop in performance is insignificant over a wide range
of bin resolutions.
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Figure 13: Effect of histogram resolution on detector Rtp and Rfd.
The cluster length is 3 and thresholds are 1.2σI〈β〉, 1.4σI〈β〉, and
1.6σI〈β〉. Rtp improves with resolution while Rfd deteriorates. β = 20
with a threshold of 1.2σI〈20〉 yields the best performance.

hence are all false positives (Rfd = 1). As β is doubled
to 8, the resolution improves and there is a corresponding
increase in the Rtp. The Rfd also drops to a negligibly small
value. As β is increased further, the Rtp increases due to
better detector resolution. The Rtp improvements come at
a cost, the detector is more susceptible to noise at higher
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Figure 14: Impact of cluster length on detectors Rtp and Rfd. The
number of histogram bins used is 16 and the thresholds utilised
are 1.2σI〈16〉, 1.4σI〈16〉, and 1.6σI〈16〉. Even the smallest cluster length
(N = 2) is shown to provide a significant improvement in the Rfd.

resolutions. This is evident from the gradual increase in the
Rfd.

Comparison between the three detection thresholds
reveals that a higher Rtp is achieved with a lower thresh-
old. Unfortunately, this also leads to a higher Rfd. This
behaviour is in accordance with the explanation provided in
Section 4.2.3.

4.2.5. Cluster Size. In order to investigate the impact of the
information cluster length, N , on the ICA-based detector, β
is set at 16 and the analysis is performed for Ith of 1.2σI〈16〉,
1.4σI〈16〉, and 1.6σI〈16〉 on the test signal shown in Figure 8.
The result of the analysis is shown in Figure 14.

The significance of clustered anomaly detection is imme-
diately obvious. With N = 0, when clustering is not
performed, there are an overwhelming number of false
positives. This is indicated by the high Rfd. As soon as
clustering is applied by setting N = 2, a dramatic drop in
the Rfd is observed—showing that even minimal anomaly
clustering is sufficient to yield a massive improvement in
detector performance. By lowering the Rfd, clustering also
allows a lower Ith to be used to achieve a higher Rtp.

The impact of anomaly clustering on Rtp for a given Ith is
relatively low. As cluster size is increased, a gradual decrease is
observed in the Rtp. This is expected since larger cluster sizes
lead to missed detections around the edges of the interference
patterns. The plot also shows that higher thresholds lead to
lower Rtp for a given cluster size. This is also expected since
a higher information content threshold leads to a higher
number of missed detections.

From the analysis performed on the test signals, it is clear
that it is challenging to determine a set of parameters that
are inherently optimal for the anomaly detection algorithms
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proposed. This is due to the fact that the optimal parameter
set depends on a number of problems-specific factors such
as the duration of the anomaly and the dynamic range of
the signal. It may be possible to develop adaptive variants
of the algorithms that automatically find the best parameter
combinations subject to some performance criterion but that
is beyond the scope of this paper.

The ICA-based algorithm is particularly sensitive to the
parameters utilised. Generally, it is seen that parameter
values that increase the Rtp (good) often also lead to an
increase in the Rfd (bad) and vice versa. Trade-offs must
therefore be made to meet the required detector performance
characteristic (low Rfd, moderate Rtp or high Rtp, moderate
Rfd). A moderate number of bins (β = 20), small cluster
size (N = 2), and a threshold of 1.2σI〈20〉 bits (m = 1.2)
provide a good balance between Rtp (1.0) and Rfd (0.01) for
this particular test vector (signal D).

The KLD-based algorithm on the other hand is much
more robust with respect to the parameter combinations
utilised. The results clearly show that performance better
than 30 dB of KLDR can be easily obtained with reasonable
choice of parameter values such as a window length of 256μs,
β = 32 and decimation factor of 2.

5. Hardware Platform

The FP-DKLD version of the detection algorithm presented
in Section 3.3 has been implemented on a Xilinx Virtex-
4 ML402 SX XtremeDSP Evaluation Platform to serve as
a proof of concept and allow the testing of signals in real
time. To facilitate and accelerate code development, Xilinx
SystemGenerator 10.1 is used in conjunction with MATLAB
R2007a for the primary design flow. The implemented design
runs at a clock speed of 80 MHz and is capable of processing
input with a 10 MHz sample rate. The hardware chain used
to test and validate the FP-DKLD implementation is shown
in Figure 15.

The Agilent E4438C ESG signal generator simultaneously
provides analogue and digital versions of the signal under
test. The digital data stream is connected to the FPGA
platform via the Agilent N5102A Digital Signal Interface
Module (DSIM) while the analogue signal is connected to a
oscilloscope for display. The DSIM conditions the data (word
size, bit alignment, clock relationship settings) and provides
a synchronous clock signal that is used to drive the FPGA
core. The trigger output from the FPGA platform is also
connected to the oscilloscope via a digital probe so that it
can be directly compared against the signal under test.

A pair of Wireless Broadband (WiBro) signals known to
contain a number of different anomalous data segments are
used to test the hardware platform. The design is configured
with |Pn| = 4096 (320μs) and β = 8. It is not necessary to
down sample the input data stream since the implemented
design is capable of processing the input at its original rate.

The DSIM module provides the samples to the FPGA
as 12-bit words in 2s complement format. The sample and
DSIM clocks are set at 10 MHz and 40 MHz respectively-
providing 4 clock cycles per input sample (CCPS). Although

E4438C ESG

Analog signal

Scope

Trigger

N5102A

Digital data and clock

Xilinx ML402

Figure 15: Block diagram of the hardware test-bed. The E4438C
ESG signal generator produces the signal under test in both
analogue and digital formats. The digital signal is passed to the
FPGA platform via the N5102A digital signal interface module
while the analogue signal is fed into the oscilloscope. The trigger
signal from the FPGA core is also connected to the oscilloscope via
a digital probe for comparison.

the design requires 8 CCPS, the DSIM is only capable of
providing a maximum of 4 CCPS. To obtain the required
8 CCPS, the clock signal is doubled on the FPGA using
an on-chip digital clock manager (DCM) module. Use of a
DCM also has added benefit of providing clock buffering and
deskewing.

5.1. Test Signal I. Figure 16 shows the result of analysing the
first WiBro signal using the FP-DKLD implementation of the
algorithm. The signal analysed is identical to that shown in
Figure 6 and analysed in Section 4.1.2. It is clear from the
oscilloscope trace that one of the UL frames is longer than
the others and hence is anomalous. With Dth = 0.0313, the
FPGA implementation of the algorithm clearly succeeds in
detecting the signal anomaly. The first trigger event obtained
(A) coincides exactly with the anomalous segment of the
unusual UL frame. A second trigger event (B) is observed
when the UL frame structure subsequently returns to normal
and the anomalous segment is no longer present.

5.2. Test Signal II. The second WiBro signal tested is shown
in Figure 17. It is identical to that shown in Figure 7 and
analysed in Section 4.1.3 with the exception of an additional
change in the timing structure. Analysing the signal with
Dth = 0.0625 is seen to produce five trigger events—
corresponding to the three anomalous conditions known to
be present in the signal.

Trigger events A and B are due to a momentary
disruption in the natural frame period of the signal. The first
event marks the position where the UL frame should have
been but is not while the second event marks the opposite:
finding a UL frame where there should be none.

Events C and D are caused by a very brief command
sequence at the beginning of the fifth UL frame that
causes the power control loop to be initiated—which is
then responsible for event E. Although invisible to the
naked eye, the algorithm succeeds in locating the anomalous
command sequence as clearly demonstrated by trigger event
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A B

Figure 16: Oscilloscope trace of a WiBro signal with a single
anomalous frame and the associated trigger events. The KLD
threshold is 0.0313. Trigger event A marks the start of the unusual
segment of the anomalous frame. A second trigger event, B, is also
obtained in the subsequent frame due to the disappearance of the
anomalous feature.

C. Since that command sequence is no longer present in the
subsequent UL frame, its disappearance is marked by trigger
event D.

Once initiated, the power control loop causes a sudden
increase in the signal power level. This behaviour can be
considered to be anomalous and is flagged by trigger event
E. There are no other events associated with the change in
power level as the signal power is seen to remain high beyond
this point.

6. Summary and Conclusions

Two complementary anomaly detection algorithms utilising
information theoretic measures have been presented. Both
algorithms are simple to implement and require little a priori
information regarding the signal under test. Demodulation
of the signal is also not required since the algorithms are
capable of processing the baseband signal envelope itself in
real time. The information content analysis based method
is capable of detecting singular anomalous events while the
Kullback-Leibler divergence based method is also able to
detect otherwise nominal events that are anomalous purely
due to context (e.g., misaligned signal frames). In order to
provide this context aware detection of anomalies, the KLD-
based algorithm requires the input signal to be periodic.

Analyses of a number of test signals captured over
the air show that the KLD-based scheme is successful at
detecting all anomalies known to be present. Extensive
tests using a software implementation of the algorithm
demonstrate that it is robust with respect to parameter
choices since satisfactory performance can be maintained
with reasonable parameter values even when the input is
severely undersampled. With PMF estimation window sizes
of 256μs, 32 histogram bins and factor of 10 undersampling,
KLDR of 25 dB or better can be achieved depending on the
anomaly present.

Although the primary purpose of the KLD-based algo-
rithm is to act as an anomaly detector, it can also be used
to detect frame boundaries in a signal. The modification
required is trivial: eliminate the spacing that normally

A B C D E

Figure 17: Oscilloscope trace of a WiBro signal with multiple
anomalous events and the associated trigger events. The KLD
threshold is 0.0625. Triggers A and B are caused by a momentary
change in the signal period. Trigger C flags the presence of a
very brief command sequence that leads to a signal power level
change. Trigger D marks the position in the subsequent frame where
the power change inducing command was previously present and
finally, trigger E corresponds to a sudden change in the overall signal
power level.

separates the two PMF estimation windows. Since frame
boundary detection is expected to reveal the underlying
cyclic structure of a periodic signal, it may be used as a
precursor to the actual anomaly detection algorithm to auto-
matically learn the period of the signal—thus eliminating the
need for any a priori information regarding a test vector.

A variation on the anomaly clustering technique pre-
sented in context of the ICA-based algorithm may also be
applied to the KLD-based algorithm to further improve
detection of anomalous events. Anomalies generally lead
to KLD peaks that increase monotonically until some
maximum divergence is reached. It may be possible to
exploit this observation to improve detection under low SNR
conditions by restricting detection to signal segments that
lead to monotonically increasing KLD values that are also
above some predefined KLD threshold.

Both boundary detection and monotonic sequence
detection are techniques that add significantly to the KLD-
based anomaly detection algorithm. Therefore, they will be
the primary focus of work done in the future on this subject.

In addition to the MATLAB based software, the algo-
rithm has been implemented on a Xilinx Virtex4 FPGA
based hardware platform for evaluation under real world
physical conditions. The design is highly efficient and capable
of processing 10 MHz input signals without requiring any
undersampling. Successful tests with a set of WiBro signals
indicate that the algorithm is indeed capable of processing
high speed test vectors in real time.

Unlike the KLD-based method, the algorithm utilising
ICA for anomaly detection does not require the input signal
to be periodic. The only piece of information that is needed
in advance is the set of reference event probabilities. A
training data set known to be clean can be used to obtain
the reference probabilities prior to analysis. The complexity
and memory requirements of the algorithm are also very low.

It is clear from tests carried out using a software
implementation of the algorithm that performance of the
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system is strongly affected by the choice of parameters such
as histogram resolution, threshold and cluster size. Impact
of these parameters on the detector performance by means
of the true positive rate and false discovery rate has been
analysed and guidelines for appropriate values have been
provided. It is shown that a true positive rate of 100%
and false discovery rate of 1%—guaranteeing zero missed
detections with very few false positives—is possible for the
signal tested with a suitable set of parameter choices.

The ICA-based algorithm presented in this paper utilises
a histogram with infinite memory, that is, it maintains a
record of all samples analysed. Clearly this implies that
the information content of anomalous events such as an
interference drops over time if they happen with sufficient
frequency. If such behaviour is undesirable, it is necessary to
implement a windowed histogram. Along with tests against
other types of anomalous signals, it will be the focus of
further research on the ICA algorithm.
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