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Hyperspectral Image Classification Using Gaussian
Mixture Models and Markov Random Fields
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Abstract—The Gaussian mixture model is a well-known classi-
fication tool that captures non-Gaussian statistics of multivariate
data. However, the impractically large size of the resulting
parameter space has hindered widespread adoption of Gaussian
mixture models for hyperspectral imagery. To counter this
parameter-space issue, dimensionality reduction targeting the
preservation of multimodal structures is proposed. Specifically,
locality-preserving nonnegative matrix factorization, as well as
local Fisher’s discriminant analysis, is deployed as preprocessing
to reduce the dimensionality of data for the Gaussian-mixture-
model classifier, while preserving multimodal structures within
the data. In addition, the pixel-wise classification results from
the Gaussian mixture model are combined with spatial-context
information resulting from a Markov random field. Experimen-
tal results demonstrate that the proposed classification system
significantly outperforms other approaches even under limited
training data.

Index Terms—Gaussian mixture model (GMM), hyperspectral
classification, Markov random field (MRF), nonnegative matrix
factorization.

I. INTRODUCTION

ANY classification methods, such as support vector

machines (SVMs) [1], employ the high-dimensional
spectral signatures of hyperspectral data as input features.
However, Gaussian mixture models (GMMs) [2], although
a powerful supervised classification tool, have not been as
popular within the hyperspectral community owing to the
tremendous size of the resulting parameter space. For exam-
ple, for d-dimensional data with a K-component GMM, the
parameter space is on the order of K(1 + d(d — 1)/2 + d).
Even for a reasonably sized hyperspectral dataset with, say,
d = 100 and K = 5, the resulting parameter space has a
dimensionality of 25 255—clearly impractical when using lim-
ited ground-truth hyperspectral data. Popular dimensionality-
reduction techniques, such as linear discriminant analysis
(LDA), may destroy the underlying multimodal structure
of hyperspectral data; consequentlyy, GMM classifiers are
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expected to be ineffective when such structure-destroying
dimensionality reduction is used. In contrast, in this let-
ter, we consider two alternatives for structure-preserving di-
mensionality reduction—Ilocality-preserving nonnegative ma-
trix factorization (LPNMF) [3] and local Fisher’s discrim-
inant analysis (LFDA) [4]—as a preprocessing for GMM
classifiers.

Nonnegative matrix factorization (NMF)—recently popular
for blind-source-separation hyperspectral unmixing [5] since
it allows only additive operations—has received attention
in the literature because of its physical parts-based repre-
sentation. LPNMF combines the advantages of NMF with
those of locality-preserving projection (LPP) [6], leading to
an intuitive representation using only additive operations,
all the while preserving the intrinsic geometric structure in
the embedded subspace. On the other hand, LFDA—which
has been introduced for hyperspectral data in our previous
work [7]—is an extension of conventional LDA such that
the class-distributions are no longer restricted to be unimodal
Gaussian. LFDA obtains good between-class separation in the
projection, while preserving the within-class local structure
at the same time. Ultimately, both LPNMF and LFDA have
been shown to be effective at preserving multimodal statistical
distributions.

Most classifiers, such as SVMs and GMMSs, do not consider
the spatial correlation between neighboring pixels. Yet, for
hyperspectral imagery (HSI), it is highly probable that two
adjacent pixels belong to the same class. Recently, several
spatial-spectral classifiers—which consider spatial features and
spectral signatures simultaneously—have been developed [8],
[9]. In particular, a Markov random field (MRF) [8], [9]
is a common model for incorporating spatial-context infor-
mation into image-classification problems. The MRF model
has the advantage that it can work with many probability
distributions in the sense that it can capture complex spatial
interdependencies among neighboring pixels. In particular, [9]
uses multinomial logistic regression (MLR) to learn posterior
probability distributions from which posterior probabilities are
combined with the MRF model to extract spatial correlation
among pixels.

In this letter, we propose a GMM-MRF classification—
specifically, a GMM classifier, based on a low-dimensional
feature space induced by either LPNMF or LFDA, is first
employed to learn posterior probabilities from the spectral
signatures of the data. Afterward, an MRF model integrates
the results from the classifier to exploit spatial-context in-
formation. Via appropriate preprocessing, a GMM classifier
is able to accurately learn class-conditional statistics in the
corresponding reduced-dimensional subspace. The posterior
probabilities from this model are incorporated into the MRF
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model, which is, in turn, expected to result in superior classi-
fication performance.

II. BACKGROUND

Consider the HSI with pixels X = {x;}’, in R? (d-
dimensional feature space) and class labels @ = {w;}i, €
{1,2,...,C}, where C is the number of classes, and n is
the total number of pixels. According to the Bayes rule, the
posterior probability of class labels w given data X is

Pr(X|w) Pr(w)
PrwX)= ————— (H
Pr(X)

where Pr(X) is a constant that does not affect the final result,
Pr(®w) can be viewed as the spatial prior, and Pr(X|w) is the
likelihood function that is estimated from the data distribution.
The ® that maximizes Pr(w|X) in (1) is referred to as the

maximum a posteriori (MAP) estimation of @
® = arg max Z (log Pr(x;|w;) + log Pr(w)) . 2)

i=1

A. GMMs

In this letter, we model the likelihood function Pr(X|w)
as a Gaussian mixture. The spectral response of HSI can be
affected by many factors, such as differences in illumination
conditions, geometric features of material surfaces, and atmo-
spheric effects. As a consequence, it is reasonable to expect
that statistical distributions of HSI classes pose a complicated
multimodal structure. The GMM model is hence a natural
choice for this letter.

For GMM:s, a probability density function for the likelihood
function is written as the sum of K Gaussian components or
modes, Pr(X|w) = Zf:l N X, uk, i), where N(X, ug, Zx)
represents the kth Gaussian component of the mixture, K
is the number of mixture components, and oy, pg, and X
are the mixing weight, mean, and covariance matrix of the
kth component, respectively. The parameters for the mixture
model can be estimated by the expectation-maximization al-
gorithm. Estimating an appropriate number of modes, K, is
an important aspect of designing a GMM classifier, and the
Bayes information criterion (BIC) [10] is commonly used for
this task.! A detailed description of our approach to GMM
classifiers for HSI can be found in [7].

B. MRFs

MRFs have been applied recently [8], [9], [11] to extract
spatial-context information for HSI, in which spatially adjacent
(homogeneous) objects tend to be of the same class. In [9],
the spatial prior is defined as Pr(w) = Z~! exp (U(®)), where
Z is a normalizing constant, U(®) = v Z(i,j)EE d(w; —wj) is an
energy function that is a sum of clique potentials §(w; — ;)
over all possible cliques E, and v is a parameter of smoothness.
In an MRE, a clique is defined as a set of pixels in which
distinct sites are neighbors. In addition, the property of a pixel
is determined by only its neighborhoods, while the associated
density is a Gibbs distribution. In this letter, we use the MRF
model from [9]; thus, based on a multilevel logistic prior, the
MRF computes the MAP in (2) via a graph-cut algorithm. A
detailed description can be found in [9].

IBIC is not the only method for estimating the number of modes for GMM.
A number of other methods can be found in the literature.

’7 LFDA/
[nput: X —» LPNMF
. .
‘ MRF GMM ‘
Yy I
| Pr(e) | PrXlo) |
Output: @
Fig. 1. Proposed GMM-MREF classification algorithm.
C. LFDA

LFDA [4] provides supervised dimensionality reduction
designed to handle multimodal, non-Gaussian distributions.
LFDA combines the properties of LDA and LPP [6] such
that the local between-class S and within-class S™ scatter
matrices are

1 n
S =2 D WP = xpexi —x)" (3)
i, j=1
1 ¢ W
S™ =2 Wi =X —x)" @)
i, j=1

where W and W are n x n matrices defined as

Ai (1 -1 i if =y _
Wi = = 5)
1/n, ity 7y
Wl(l]W) = Ai,j/l’ll, lf yi = yj =l (6)
7o, i Ay,

where n; is the number of available training samples for the
[th class, ch=1 n;=n, and A is defined as the affinity matrix.
Maximizing Fisher’s ratio as defined using the local scatter
matrices, we have that the transformation matrix

—1
@ ppa=arg Mmax tr [ ((DEFDA N cI>LFDA) D/ oA S Dy ppa
LFDA
)

is given by the generalized eigenvalue problem S ®;pp, =
AS™®;ppa, where A is the diagonal eigenvalue matrix.
LFDA is a localized variant of LDA since it does not force
distant data pairs in the same class to be close, thereby preserv-
ing the local neighborhood even when the data distribution is
complex. LFDA has been shown to yield performance better
than that of LDA and LPP for dimensionality reduction for
non-Gaussian or multimodal data.

D. LPNMF

LPNMF [3] was originally proposed for document cluster-
ing. The objective function is

d n
Xi i
O:Zz<xi,jlogy;—xi,j+y,~,j>+)u7€ (8)
i=1 j=1 b

where Y = { Yi, j} =UVT, and A is a regularization parameter.
The first part of (8) is the usual objective function of NMF
that uses Kullback-Leibler divergence [3] between X and Y.
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TABLE I
CLASSIFICATION ACCURACY (%) FOR THE UNIVERSITY OF PAVIA DATASET

# samples Classification algorithms

Class Train Test SVM | SVM-MRF | MLR-MRF | LFDA | LFDA-GMM | LPNMF | LPNMF-GMM
-GMM -MRF -GMM -MRF
Asphalt 60 6631 81.48 91.27 97.52 85.21 96.71 87.34 98.23
Bare soil 60 18649 | 82.97 89.59 93.98 78.73 88.21 85.86 93.74
Bitumen 60 2099 87.18 96.09 58.54 73.20 83.11 78.77 86.89
Bricks 60 3064 | 95.89 98.40 72.94 95.90 97.55 96.86 98.60
Gravel 60 1345 99.55 99.63 99.90 100 99.91 100 99.95
Meadows 60 5029 88.43 95.82 97.42 85.28 98.80 88.19 99.44
Metal sheets 60 1330 | 92.78 96.02 82.55 69.08 65.72 82.86 88.26
Shadows 60 3682 | 78.14 88.24 87.44 71.05 86.15 74.51 90.60
Trees 60 947 100 100 99.23 96.89 97.43 97.22 97.67
Overall accuracy 85.30 92.16 86.36 81.54 90.88 86.41 94.96
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Fig. 2. Overall accuracy as a function of the number of labeled training
samples per class for the University of Pavia dataset. Standard deviations of
the accuracies (%) for 40, 60, 80, 100, and 120 labeled samples for LFDA-
GMM-MRF are 0.1357, 0.1828, 0.0171, 0.0466, and 0.0649, respectively;
the corresponding standard deviations for LPNMF-GMM-MREF are 0.2243,
0.0215, 0.0142, 0.0265, and 0.0037, respectively.

On the other hand, R is used to force a geometric locality
constraint among points in the reduced-dimensional subspace
V(<d),ie,

’q) Wis 9

J4q

ZZ(v,qlog—véq+qu

js—lql

where W is an edge-weight matrix measuring the distance
between points in the original space X. This matrix, defined
from the theory of LPP [6], is employed to preserve the
intrinsic geometry of the data distribution. The following
multiplicative rules are used to minimize the function O and
to estimate the matrices U and V:

Z (xuv/q)/E (igVjq)

P (10)
Z v;
19
Xi,1Uigq
Ul,qzz’m
1 _ Xiplhiqg
1%) qZ Eq(u,quq) (11)
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Fig. 3. Overall accuracy as a function of the pixel-mixing abundance for the

University of Pavia dataset using 60 labeled training samples per class.

where v; is the kth column of V, I is the n x n identity
matrix, and L is the graph Laplacian of W. A more detailed
description of this technique can be found in [3].

Compared to NMEF, the locality-preserving constraint of LP-
NMF guarantees that the local manifold structure is maintained
from the original high-dimensional space. The constraint mea-
sures the similarity among local neighborhoods via a graph
Laplacian that describes the latent distribution structures.
For HSI, the statistical (geometrical) structure is complex,
and, in [7] and [12], we have demonstrated that imposing
an additional locality-preserving constraint is important for
feature extraction in hyperspectral applications, providing a
tighter distribution and smaller Bayes error in the induced
feature space. Both LFDA and LPNMF have been shown to
be effective at preserving multimodal statistical distributions
for the GMM classifier.

III. GMM-MRF CLASSIFICATION

Fig. 1 depicts a flowchart for the proposed GMM-MRF
classification.

1) Supervised LFDA combined with a GMM classifier
(LFDA-GMM) is employed to learn the posterior prob-
ability distribution Pr(X|®) from spectral information.
Spatial prior Pr(w) is calculated by MRF models using
results from LFDA-GMM. The final classification label



156

Ground-truth

S
LFDA-GMM-MRF (90.88%)

LFDA-GMM (81.54%)

Unlabeled Area | Asphalt

Metal Sheets Bare Soil

Fig. 4. Classification maps for the University of Pavia dataset.

is obtained via (2). This algorithm is called LFDA-
GMM-MRE.

2) As in LFDA-GMM-MREF, unsupervised LPNMF com-
bined with a GMM classifier (LPNMF-GMM) is applied
for learning Pr(X|w) from spectral information. The
MRF model integrates the results to produce spatial prior
Pr(w). The final label is assigned via (2). This algorithm
is called LPNMF-GMM-MRFE.

IV. EXPERIMENTS AND ANALYSIS

In this letter, the experimental hyperspectral dataset em-
ployed was collected by the reflective optics system imaging
spectrometer (ROSIS) sensor. The image, covering the city of
Pavia, Italy, was collected under the HySens project managed
by the German Aerospace Agency. The data have a spectral
coverage from 0.43 to 0.86 um, and a spatial resolution of
1.3 m. The scene used in our experiment is the university area
that has 103 spectral bands with a spatial coverage of 610x 340
pixels. There are nine classes for the dataset, and the number
of training and testing samples are shown in Table I.

We evaluate the efficacy of the proposed GMM-MRF
classification scheme for hyperspectral images. The proposed
approaches—LFDA-GMM-MRF and LPNMF-GMM-MRF—
are compared with conventional algorithms, including a prob-

Meadows

Bitumen
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ability SVM classifier (LIBSVM tools?) SVM-MRF, MLR-
MRE;® and our previously proposed LFDA-GMM [7]. We
have developed training and testing data subsets for parameter
tuning. All classification techniques are implemented using
optimal parameters, such as the Gaussian kernel parameter
for the SVM (set here to 0.6).

LFDA and LPNMF can be viewed as preprocessing for
the proposed methods, which implies that reduced dimension-
ality is an important parameter for LFDA-GMM-MRF and
LPNMF-GMM-MREF classification systems. In this letter, the
optimal dimensionality of LFDA and LPNMF is found to be
11 and 17, respectively. We use implementations of LFDA and
LPNMF from the authors of [3] and [4], respectively.*>

Classification accuracies of the proposed approaches, as
well as those for current state-of-the-art techniques, are shown
in Table I for the experimental dataset for each class. The
number of available training samples is often insufficient
for hyperspectral images. Thus, we report the classification
accuracy of different techniques as a function of the training-
sample size in Fig. 2 (the whole labeled scene is used as

2 Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

3 Available at http://www.Ix.it.pt/~jun/.

4 Available at http:/www.cs.titech.ac.jp/~sugi/software/LFDA/index.html.
3 Available at http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
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testing). To avoid any bias, the experiments are repeated
20 times, and we report the average classification accuracy.
From Fig. 2, it can be seen that the proposed LFDA-GMM-
MRF and LPNMF-GMM-MREF significantly outperform other
classification techniques. For further purposes of illustration,
we show the classification maps resulting from the various
approaches in Fig. 4.

In many situations, the spatial resolution of HSI is poor, and
pixels are mixed from multiple classes. Thus, we also compose
artificially mixed hyperspectral pixels according to a linear
mixing model from background classes. For example, a pixel-
mixing abundance of 70% indicates that 30% of background
signatures were mixed linearly with 70% of the target class.
An abundance of 100% implies that pure pixels are employed
without any mixing. Here, target class simply refers to the
true class of the pixel currently being classified/tested. The
background signatures/pixels used for mixing the target class
are gathered (with uniform weights) from across all the other
classes. Fig. 3 illustrates the accuracy as a function of pixel-
mixing abundance for the experimental dataset (we implement
pixel mixing for both unlabeled and labeled areas for the
scene—unlabeled data are viewed as a new class mixed with
other labeled classes). From Fig. 3, it can be seen that LPNMF-
GMM-MRF has the best performance compared to others,
even under severe pixel-mixing conditions.

Finally, we compare the computational cost of the classifi-
cation methods using the same experimental data. All experi-
ments are carried out using MATLAB on a 3.2-GHz machine
with 5.8 GB of RAM. The execution times (in seconds) are
13 for SVM, 9 for MLR-MREF, 491 for LFDA-GMM, 494
for LFDA-GMM-MRE, 466 for LPNMF-GMM, and 469 for
LPNMF-GMM-MRE. As we can see, the MRF post-processing
amounts to only an extra 3 s for the experimental data.

V. CONCLUSION

In this letter, we considered a GMM classifier based on an
LFDA- and LPNMF-induced feature subspace for HSI clas-
sification. The LFDA and LPNMF dimensionality-reduction
techniques have superior locality-preserving properties and
preserve the local manifold structure for hyperspectral data
with complex distributions, from which the GMM classifier
is able to accurately learn the class-conditional statistics.
The GMM-based pixel-wise classification results were subse-
quently followed by an MRF-based technique that integrated
the spatial-context information for the image. Experimental
results showed that LFDA and LPNMF provide effective
dimensionality reduction, and LPNMF performed especially
well under a pixel-mixing scenario. The proposed GMM-
MRF classification strategy outperformed other traditional

techniques over a wide range of operating conditions. GMM-
based probabilistic pixel-wise classification works effectively
when used in an MRF model. As a final remark, we noted
that, in [13], spectral-spatial information was investigated for
LFDA-GMM. Consequently, we planned to study the bene-
fit of such information for preserving multimodal statistical
distributions for GMM classifiers in subsequent work.
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