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ABSTRACT 

We address the problem of creating an adaptive source coding 

algorithm for a genomic encryption protocol using a small 

alphabet such as the nucleotide bases represented in the 

genetic code.  For codewords derived from an alphabet of N 

plaintext with probability of occurrence, p, we describe a 

mapping into a floating point representation of the codewords 

which are translated into genomic codewords derived from a 

novel modification of the Shannon-Fano-Elias coding process. 

Errors in the reverse decoding process are processed through 

an adaptive, self-correcting codebook to determine the best fit 

codeword decoding solution. A genetic algorithmic approach 

to error correction within the source coding is also 

summarized.  

General Terms 

Data Confidentiality and Network Authentication 
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1. INTRODUCTION 
Genomic encryption protocols are being widely studied for 

implementation in advanced information security [1], [2]. In 

this paper, we present a source coding system for subsequent 

encryption via a system that emulates the mechanisms of 

regulation of gene expression [3].  However, utilization of 

such a protocol requires an efficient source coding scheme 

that is optimized for the requirements of the electronic domain 

(bandwidth and channel efficiency, error detection and 

correction, signal recovery in the presence of noise and 

interferers, etc.)   In this paper, we address the mapping of a 

plaintext source code alphabet into genomic codes using the 

matrix cofactors of a solution of linear equations. The 

transmitted data content is a series of floating point matrix 

cofactors. At the receiving end, the receiver applies a 

decoding algorithm to recover and invert the cofactor matrix 

and correct the rounding and floating point errors via an 

adaptive source codebook. A genetic algorithm provides an 

efficient method to determine to correct errors in received 

codewords based upon the fitness of approximated 

codewords. 

Codeword lengths are adaptable based upon the entropy of 

user selected source. This source could be a user plaintext, the 

selected genome of one or more species, or other sources as 

required. The genomic alphabet can consist of the four most 

commonly found nucleotides (adenine, cytosine, guanine and 

thymine. It can be expanded to include epigenetic marking 

(methyl-cytosine) [4], mutagenic base modifications 

(xanthine, hypoxanthine) [5], the RNA base uracil, and so 

forth. The method is extensible to the proteome and other 

domains within the space of gene expression products.  

A large variety of methods have been published to utilize 

DNA transcription and translation in cryptographic systems. 

DNA cryptography using the central dogma of biology has 

been proposed for mobile ad hoc networks [6]. It takes 

plaintext through a process of DNA→RNA→Amino Acid 

coding. A combination of DNA computing and Elliptic Curve 

Cryptography has been described [7] for a powerful form of 

DNA encryption. It permits encrypted traffic over 

communication links which may not be secure. A symmetric 

key block cipher approach using DNA transcription and 

translation has been demonstrated by [8]. Other forms of 

DNA encryption include:  

 Image compression – encryption using a DNA-based 

alphabet and a genetic algorithm based compression 

scheme [9]. 

 DNA encryption utilizing gel electrophoresis images and 

a molecular checksum [10]. 

 Steganographic approach using DNA as a natural 

template for hidden messages [11]. 

 DNA watermarks to identify genetically modified 

organisms utilizing the DNA-Crypt algorithm permitting 

a user to insert encrypted data into a genome of choice 

[12], [13]. 

2. THE METHOD 

2.1 High-level description of the 

transmitter source coding process 
Consider a memoryless source generating letters from an 

alphabet A1 = {a1, a2, an} with a source taken from a 

probability mass function P = {p1, p2, pn}. Let the source 

generate a message X such that:  X=x1x2…xi  A  i where i
represents the word order of the message. The message X is 

serialized and subdivided into character blocks of size r, and 

r-sized blocks are arranged into k sized word blocks in a set L 

as shown in Figure 1.  

The words are lexicographically coded in the format of 

k where  is the Huffman decimal code for the first 

letter and k are the subsequent Huffman decimal codes for 

remaining letters. Clearly, if the character blocks are long 

enough, precision and accuracy of subsequent floating point 

computations would be a concern.  Therefore, the character 

block size is made adaptable to the floating point capabilities 

of the transmitting and receiving system. 
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Figure 1. Organization of words for the source coding 

protocol. Words are divided into equal blocks r characters 

long. The new blocks are coded in groups of k blocks at a 

time resulting in r x k x n organization to begin the source 

coding process. 

A pilot channel link between transmitter and receiver can be 

used to establish the optimal character block size based upon 

current channel state information. The source coding can be 

implemented in conjunction with a subsequent channel coding 

algorithm. 

Let R={R1, R2,…Rn}={(a1, a2,…,ar)1, (a1, a2,…,ar)2… (a1, 

a2,…,ar)n then: 
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And Qn is defined as: 
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This is transformed into a matrix of cofactors by: 

 

(3) 

 

 
Let C = {C11, C12, ….Cnk} which code the entire set of the 

original words in X. Treating C as a set of symbols from an 

alphabet of base 10 characters and sign characters A2 = {+,-

,0,1,2,3,4,5,6,7,8,9} the entropy in bits of code C can be 

derived from the standard definition 
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Every unique plaintext message will have a unique 

distribution of symbols for each set C. The entropy, H, 

represents the lower bound on symbol length. However, the 

goal of coding set C is not minimum symbol length but a 

prefix-free code with symbol error correction capability at the 

decoder codebook. Therefore, a modification to the Shannon-

Fano-Elias source coding algorithm has been developed for 

this purpose. Following Shannon-Fano-Elias, assume p(x) >0 

for all x, the cumulative distribution function, F(x) is: 
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Shannon-Fano-Elias modifies the CDF as [14]: 
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and the binary code length,remains as 
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with brackets indicate rounding to the next higher integer.  Let 
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where V(x) is an offset value that shifts the decimal value of  

into a desired range between adjacent values of F(x). The 

codeword is: 

                      )(|))(()( xxvbinaryxJ                          

(10)              

J(x) is the binary codeword truncated to x) bits. Table 1 

illustrates an example.  

Table 1. Modified Shannon-Fano-Elias Coding 
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0 0.2924 0.1462 3 0 2 010 

1 0.0903 0.3376 5 0 2 00010 

7 0.0832 0.4243 5 13 15 01111 

9 0.0744 0.5031 5 14 17 10001 

3 0.0743 0.5774 5 21 24 11000 

6 0.0675 0.6483 6 0 3 000011 

8 0.0672 0.7157 6 7 11 001011 

4 0.0671 0.7829 6 20 25 011001 

2 0.0670 0.8499 6 21 28 011100 

5 0.0666 0.9167 6 28 41 101001 

+ 0.0259 0.9630 7 0 28 0011100 

- 0.0241 0.9880 7 42 126 1111110 
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The expected length of this code versus the entropy is <  H(x) 

+ 2, as in Shannon-Elias-Fano. This construction produces a 

prefix-free code, which, as expected, satisfies the Kraft 

inequality,  

                                    1 

i
D i                                  (11)                                

The next step is to concatenate the binary code words for each 

k-sized block of codewords. Each k-sized block may be 

preceded with a prefix-free preamble code that is not a 

member of the codebook. The resulting series is labeled as XT, 

where the subscript T refers to the transmitter 

nkT CCCX ...
1211                                   (12)         

Two additional sequences are brought into the scheme. KT and 

PT. KT is a binary sequence representing a unique symmetric 

encryption key. Ostensibly for this application it is the binary 

translation of gene sequence from a genomic alphabet as 

described in the introduction, or it could be any user specified 

binary sequence satisfying the requirements of a symmetric 

encryption key. PT is a binary sequence representing a 

message authentication code that is a pre-shared secret 

between transmitter and receiver. For this application it is the 

binary translation of gene sequence from a genomic alphabet 

but it could also be any user specified binary sequence 

satisfying the requirements of keyed message authentication 

code. The final four steps are as follows: 
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Where the DNA alphabet can consist of symbols from a 

genomic alphabet such as: 

 

                            AD={A,T,C,G,MeC,H,X}                     (14) 

                   
One possible coding scheme for this alphabet using the 

previously described procedure is shown in table 2. 

 
Table 2. DNA Base Source Coding 
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A 0.2100 0.1050 4 0 2 0010 

G 0.2100 0.3150 4 4 6 0110 

C 0.2100 0.5250 4 6 9 1001 

T 0.2100 0.7350 4 8 12 1100 

MeC 0.0675 0.8738 5 12 20 10100 

H 0.0672 0.9411 6 0 17 010001 

X 0.0253 0.9874 8 0 80 01010000 

 

A, G, C, and T represent the four main nucleotide bases 

adenine, guanine, cytosine, and thymine. MeC represents 5-

Methylcytosine, an important epigenetic marker, H represents 

hypoxanthine and X represents xanthine. H and X are 

mutagenic deaminations of DNA bases that occasionally 

occur in gene sequences. MeC operates as an epigenetic 

marker by altering the pattern of gene expression without 

changing the basic sequence. Subsequent encryption steps can 

utilize all of the bases represented in this alphabet for creating 

different types of encrypted codes. The entropy of the DNA 

bases in a genomic sequence is also a source of potential 

encryption coding by skewing the code lengths of DNA based 

source code sequences. Certain genomes have A-T or G-C 

base pair contents the deviate significantly from a uniform 

distribution.  The genome of Mycoplasma genitalium G37 

(National Center for Biotechnology Information accession 

number NC_000908.2) has a low G+C content of 34% [15]. 

Utilization of a genomic sequence with a high concentration 

of CpG (cytosine-phosphate-guanine) islands can be used to 

alter the source code sequence lengths for each base from 

what would be expected in a uniform distribution of the four 

main bases (A-T, C-G). 

The resulting message is designated MT. MT contains the 

coded message contents and the required hash code necessary 

for the receiver to authenticate the transmitted message. MT 

represents the basic, unencrypted message unit that is to be 

subjected to higher level encryption at the transmitter. 

2.2 High-level description of the receiver 

source decoding process 
The receiver receives the message, and creates a bit stream 

labeled MR, which represents the best estimate at the receiver 

of the transmitted message. MR is decrypted and the receiver 

computes the PR pre-shared secret message authentication 

code and determines that it matches the PT. Then MR is sent to 

the receiver source decoder. The description of the process 

resumes at this point.  

The final four steps of the transmission source coding are 

reversed in decoding (the subscript R refers to processes at the 

receiver: 
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Extending from the previous definition at the transmitter: 

CCCX RnkRRR ,,12,11
...                      (16)     

Using linear algebra, the cofactor matrix is assembled and the 

inverse yields the original lexicographic codes. Summarizing 

these steps yields:                                                             
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X. R ={R1, R2,…Rn}→{(a1, a2,…,ar)1, (a1, a2,…,ar)2… (a1, 

a2,…,ar)n→ X=x1x2…xi  A  i 

3. Example  
An example is taken from a snippet from the script of the first 

line of Shakespeare’s Hamlet soliloquy: ‘HAMLET To be or 

not to be that is the question Whether’. We compare the 

effects of dividing the plaintext phrase into 3 word blocks, 6 

characters per block, versus 3 word blocks and 4 characters 

per block. The lexicographic codes and the uncorrected 

plaintext recovery are shown in table 3. Computations were 

performed on a 32-bit HP Pavilion dv4 PC under Windows 7 

using Microsoft Visual Basic 2010 and Microsoft Excel 2007.  

The remaining errors in the recovered 6 character block codes 

are easily corrected at the source codebook level.  

3.1 Genetic Algorithm (GA) for Source 

code error correction  
Errors may occur at any position within a coefficient.  

Assume that an error is received in the DNA code and is 

propagated into and the binary code received at the receiver is 

decoded and subsequently into the set of cofactors {Cn1-R, Cn2-

R,…,Cnk-R}. The remaining source of error is in inversion of 

the cofactor matrix. The receiver does not know the precision 

of the original cofactors; therefore arbitrary truncation will 

produce uneven results. The original source code and the 

recovered source code can be represented as vectors having 

magnitude and phase with an error vector. Let b = codeword 

Cnk-R and let a represent a candidate codeword for b. A genetic 

algorithm approach can be used to determine the fitness of a 

series of candidate codewords derived from the recovered 

codeword. The codeword with the highest fitness score is the 

best estimate of the recovered text. The highest fitness is 

derived by ordering a series of candidate codewords that 

minimize the distance, d, between the candidate codeword and 

the received codeword. Thus d = |b – a| → 0 is the criteria for 

optimal candidate codeword selection and the most fit 

codeword possessing a zero distance between candidate and 

received codeword. Thus, the genetic algorithm examines the 

jointly typical sequences between sender and receiver 

codebook to determine the fittest candidate among received 

codewords. There exists a fitness threshold such that 

codewords with values beneath the threshold value are 

excluded from consideration. The code is prefix-free; 

therefore, candidate codewords can be generated from 

recovered codewords before the entire code word is received. 

3.2 Error correction capability 
The matrix of cofactors, C is k-tuply redundant. For n=1, k=3,   

Cnk = {C11, C12, C13, C13, C11, C12, C12, C13, C11}. Assume Cnk 

are i.i.d in individual packets. For small k, a majority voting 

scheme would provide a good error correction performance 

against random and burst errors at sub-optimal Eb/N0 

conditions at the receiver. Let Pe = probability of a bit error in 

a packet.  For a majority voting receiver and k-tuple 

redundancy, total probability of error, Pequals: 

             jk
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Table 3. Comparison of 6 character block coding and 4 character block coding recovery 

6 Char  

block sourced 

6 Char block Recovered 4 char  

block sourced 

4 char block recovered 

86.96818292761 86.96818292760999999999999513 86.968182 86.96818199999999999910656396 

88.761766889592 88.76176688959199999999999506 92.76188761 92.76188760999999999905496473 

88.7667638876777 88.76676388767769999999999499 766.889592 766.88959199999999999236230939 

761.887617668895 761.88761766889499998025956122 88.76676388 88.76676388000000000231521412 

92.887618696761 92.88761869676099999760839515 767.7667619 767.76676188000000001957806511 

88.857628876186 88.85762887618599999771538748 761.7668895 761.76688950000000001939766504 

92.8876475892762 92.88764758927619999749257924 92.8876186 92.88761860000000000098708718 

761.857667678876 761.85766767887599997974157864 96.7618885 96.76188850000000000107561576 

86.927618692763 86.92761869276299999769217057 762.8876186 762.88761860000000000825690688 

88.8896969696 88.88969696959999999999996920 92.88764758 92.88764757999999999943083348 

96.9696969696 96.96969696959999999999996647 92.76276185 92.76276184999999999942229210 

96.9696969696 96.96969696959999999999996647 766.7678876 766.76788755999999999513732920 

  86.9276186 86.92761859999999999999995707 

  92.7638888 92.76388879999999999999995480 

  96.969696 96.96969599999999999999995438 

 

In the case of 6 characters coded per block at the source, 12 

coefficients are transmitted and the pre-corrected recovered 

text was: “hamlet to be or n77t to be that is the question 

76hether” In the case of the 4 characters coded per block at 

the source, 15 coefficients are transmitted and the pre-

corrected recovered text was: “hamlet to be or not to be that is 

the question whether”. The longer the block at the source, the 

fewer number of coefficients are required to be transmitted, at 

the cost of greater error correction at the receiver. For 8 

characters per block at the source, only 9 coefficients are 

required to code the block, but the number of error positions 

in the message requiring correction at the receiver increased to 

seven. 

4. CONCLUSIONS  
A source coding protocol has been presented for the 

generation of genomic code representations suitable for later 

encryption by gene expression encryption protocols. Such a 

protocol ingests plaintext and outputs into a genomic DNA 

code sequence with code lengths based upon the composition 

of a user selected source gene. Subsequent encryption directly 



International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.3, October 2012 

5 

converts the raw DNA output of the protocol into gene 

sequences with properly coded control regions for subsequent 

transcription and translation. This source coding scheme can 

be used by any application which converts plaintext input to a 

genomic sequence for transmission and then recovers the 

plaintext from the genomic sequence at a receiver. 
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