
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

1

Adaptive Self-Correcting Floating Point Source Coding

Methodology for a Genomic Encryption Protocol

Harry C. Shaw

Comm. Systems Branch
NASA/GSFC

Greenbelt, MD

Sayed Hussein
ECE Dept.

George Washington Univ.
Washington, DC

Hermann Helgert
ECE Dept.

George Washington Univ
Washington, DC

ABSTRACT

We address the problem of creating an adaptive source coding

algorithm for a genomic encryption protocol using a small

alphabet such as the nucleotide bases represented in the

genetic code. For codewords derived from an alphabet of N

plaintext with probability of occurrence, p, we describe a

mapping into a floating point representation of the codewords

which are translated into genomic codewords derived from a

novel modification of the Shannon-Fano-Elias coding process.

Errors in the reverse decoding process are processed through

an adaptive, self-correcting codebook to determine the best fit

codeword decoding solution. A genetic algorithmic approach

to error correction within the source coding is also

summarized.

General Terms

Data Confidentiality and Network Authentication

Keywords

Source coding, genetic algorithms, probability mass functions.

Shannon-Fano-Elias.

1. INTRODUCTION
Genomic encryption protocols are being widely studied for

implementation in advanced information security [1], [2]. In

this paper, we present a source coding system for subsequent

encryption via a system that emulates the mechanisms of

regulation of gene expression [3]. However, utilization of

such a protocol requires an efficient source coding scheme

that is optimized for the requirements of the electronic domain

(bandwidth and channel efficiency, error detection and

correction, signal recovery in the presence of noise and

interferers, etc.) In this paper, we address the mapping of a

plaintext source code alphabet into genomic codes using the

matrix cofactors of a solution of linear equations. The

transmitted data content is a series of floating point matrix

cofactors. At the receiving end, the receiver applies a

decoding algorithm to recover and invert the cofactor matrix

and correct the rounding and floating point errors via an

adaptive source codebook. A genetic algorithm provides an

efficient method to determine to correct errors in received

codewords based upon the fitness of approximated

codewords.

Codeword lengths are adaptable based upon the entropy of

user selected source. This source could be a user plaintext, the

selected genome of one or more species, or other sources as

required. The genomic alphabet can consist of the four most

commonly found nucleotides (adenine, cytosine, guanine and

thymine. It can be expanded to include epigenetic marking

(methyl-cytosine) [4], mutagenic base modifications

(xanthine, hypoxanthine) [5], the RNA base uracil, and so

forth. The method is extensible to the proteome and other

domains within the space of gene expression products.

A large variety of methods have been published to utilize

DNA transcription and translation in cryptographic systems.

DNA cryptography using the central dogma of biology has

been proposed for mobile ad hoc networks [6]. It takes

plaintext through a process of DNA→RNA→Amino Acid

coding. A combination of DNA computing and Elliptic Curve

Cryptography has been described [7] for a powerful form of

DNA encryption. It permits encrypted traffic over

communication links which may not be secure. A symmetric

key block cipher approach using DNA transcription and

translation has been demonstrated by [8]. Other forms of

DNA encryption include:

 Image compression – encryption using a DNA-based

alphabet and a genetic algorithm based compression

scheme [9].

 DNA encryption utilizing gel electrophoresis images and

a molecular checksum [10].

 Steganographic approach using DNA as a natural

template for hidden messages [11].

 DNA watermarks to identify genetically modified

organisms utilizing the DNA-Crypt algorithm permitting

a user to insert encrypted data into a genome of choice

[12], [13].

2. THE METHOD

2.1 High-level description of the

transmitter source coding process
Consider a memoryless source generating letters from an

alphabet A1 = {a1, a2, an} with a source taken from a

probability mass function P = {p1, p2, pn}. Let the source

generate a message X such that: X=x1x2…xi  A  i where i
represents the word order of the message. The message X is

serialized and subdivided into character blocks of size r, and

r-sized blocks are arranged into k sized word blocks in a set L

as shown in Figure 1.

The words are lexicographically coded in the format of

k where  is the Huffman decimal code for the first

letter and k are the subsequent Huffman decimal codes for

remaining letters. Clearly, if the character blocks are long

enough, precision and accuracy of subsequent floating point

computations would be a concern. Therefore, the character

block size is made adaptable to the floating point capabilities

of the transmitting and receiving system.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

2

Figure 1. Organization of words for the source coding

protocol. Words are divided into equal blocks r characters

long. The new blocks are coded in groups of k blocks at a

time resulting in r x k x n organization to begin the source

coding process.

A pilot channel link between transmitter and receiver can be

used to establish the optimal character block size based upon

current channel state information. The source coding can be

implemented in conjunction with a subsequent channel coding

algorithm.

Let R={R1, R2,…Rn}={(a1, a2,…,ar)1, (a1, a2,…,ar)2… (a1,

a2,…,ar)n then:

(1)

And Qn is defined as:

(2)

This is transformed into a matrix of cofactors by:

(3)

Let C = {C11, C12, ….Cnk} which code the entire set of the

original words in X. Treating C as a set of symbols from an

alphabet of base 10 characters and sign characters A2 = {+,-

,0,1,2,3,4,5,6,7,8,9} the entropy in bits of code C can be

derived from the standard definition

)(
12

1

log)(
2

p
i

pCH
ii



 (4)

Every unique plaintext message will have a unique

distribution of symbols for each set C. The entropy, H,

represents the lower bound on symbol length. However, the

goal of coding set C is not minimum symbol length but a

prefix-free code with symbol error correction capability at the

decoder codebook. Therefore, a modification to the Shannon-

Fano-Elias source coding algorithm has been developed for

this purpose. Following Shannon-Fano-Elias, assume p(x) >0

for all x, the cumulative distribution function, F(x) is:

 




xa

apxF)()((5)

Shannon-Fano-Elias modifies the CDF as [14]:

)(
2

1
)()(xpxFxF  (6)

We define instead

)(
2

1
)()(xpxFxF  (7)

and the binary code length,remains as

 1
)(

1
log)(























xp
x (8)

with brackets indicate rounding to the next higher integer. Let















)(

)(1

1
)(xV

xF
x (9)

where V(x) is an offset value that shifts the decimal value of 

into a desired range between adjacent values of F(x). The

codeword is:

)(|))(()(xxvbinaryxJ 

(10)

J(x) is the binary codeword truncated to x) bits. Table 1

illustrates an example.

Table 1. Modified Shannon-Fano-Elias Coding

S
y

m
b

o
l

p
(x

)

F
`(

x
)




V




C
o

d
ew

o
rd

0 0.2924 0.1462 3 0 2 010

1 0.0903 0.3376 5 0 2 00010

7 0.0832 0.4243 5 13 15 01111

9 0.0744 0.5031 5 14 17 10001

3 0.0743 0.5774 5 21 24 11000

6 0.0675 0.6483 6 0 3 000011

8 0.0672 0.7157 6 7 11 001011

4 0.0671 0.7829 6 20 25 011001

2 0.0670 0.8499 6 21 28 011100

5 0.0666 0.9167 6 28 41 101001

+ 0.0259 0.9630 7 0 28 0011100

- 0.0241 0.9880 7 42 126 1111110

...

...

...

...

...

...............

...............

...

...

2

1

2

1

1111312

1112111

1131211

nknknk

kk

k

y

y

y

q

q

q

RRRR

RRRR

RRRR







































































...

............

...

...

132

11

21

n

kk

k

n

qqq

qqq

qqq

Q






















n

kk

k

T

n

n

CCC

CCC

CCC

QDet
Q






















132

11

21

1

...

............

...

...

1

k ... 2 1

aaaaaaaaan

aaaaaaaaa2

aaaaaaaaa 1n x k x r

x,...,xxxx

rrr

rrr

rrr

i4321

),...,(),...,,...,(),,...,(

),...,(),...,,...,(),,...,(blocks

),...,(),...,,...,(),,...,()(

 : words

212121

212121

212121



International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

3

The expected length of this code versus the entropy is < H(x)

+ 2, as in Shannon-Elias-Fano. This construction produces a

prefix-free code, which, as expected, satisfies the Kraft

inequality,

 1 

i
D i (11)

The next step is to concatenate the binary code words for each

k-sized block of codewords. Each k-sized block may be

preceded with a prefix-free preamble code that is not a

member of the codebook. The resulting series is labeled as XT,

where the subscript T refers to the transmitter

nkT CCCX ...
1211 (12)

Two additional sequences are brought into the scheme. KT and

PT. KT is a binary sequence representing a unique symmetric

encryption key. Ostensibly for this application it is the binary

translation of gene sequence from a genomic alphabet as

described in the introduction, or it could be any user specified

binary sequence satisfying the requirements of a symmetric

encryption key. PT is a binary sequence representing a

message authentication code that is a pre-shared secret

between transmitter and receiver. For this application it is the

binary translation of gene sequence from a genomic alphabet

but it could also be any user specified binary sequence

satisfying the requirements of keyed message authentication

code. The final four steps are as follows:

)(

P| |

DNAMM

GM

PFG

KXF

TT

TTT

TTT

TTT









 (13)

Where the DNA alphabet can consist of symbols from a

genomic alphabet such as:

 AD={A,T,C,G,MeC,H,X} (14)

One possible coding scheme for this alphabet using the

previously described procedure is shown in table 2.

Table 2. DNA Base Source Coding

S
y

m
b

o
l

p
(x

)

F
`(

x
)




V




C
o

d
ew

o
rd

A 0.2100 0.1050 4 0 2 0010

G 0.2100 0.3150 4 4 6 0110

C 0.2100 0.5250 4 6 9 1001

T 0.2100 0.7350 4 8 12 1100

MeC 0.0675 0.8738 5 12 20 10100

H 0.0672 0.9411 6 0 17 010001

X 0.0253 0.9874 8 0 80 01010000

A, G, C, and T represent the four main nucleotide bases

adenine, guanine, cytosine, and thymine. MeC represents 5-

Methylcytosine, an important epigenetic marker, H represents

hypoxanthine and X represents xanthine. H and X are

mutagenic deaminations of DNA bases that occasionally

occur in gene sequences. MeC operates as an epigenetic

marker by altering the pattern of gene expression without

changing the basic sequence. Subsequent encryption steps can

utilize all of the bases represented in this alphabet for creating

different types of encrypted codes. The entropy of the DNA

bases in a genomic sequence is also a source of potential

encryption coding by skewing the code lengths of DNA based

source code sequences. Certain genomes have A-T or G-C

base pair contents the deviate significantly from a uniform

distribution. The genome of Mycoplasma genitalium G37

(National Center for Biotechnology Information accession

number NC_000908.2) has a low G+C content of 34% [15].

Utilization of a genomic sequence with a high concentration

of CpG (cytosine-phosphate-guanine) islands can be used to

alter the source code sequence lengths for each base from

what would be expected in a uniform distribution of the four

main bases (A-T, C-G).

The resulting message is designated MT. MT contains the

coded message contents and the required hash code necessary

for the receiver to authenticate the transmitted message. MT

represents the basic, unencrypted message unit that is to be

subjected to higher level encryption at the transmitter.

2.2 High-level description of the receiver

source decoding process
The receiver receives the message, and creates a bit stream

labeled MR, which represents the best estimate at the receiver

of the transmitted message. MR is decrypted and the receiver

computes the PR pre-shared secret message authentication

code and determines that it matches the PT. Then MR is sent to

the receiver source decoder. The description of the process

resumes at this point.

The final four steps of the transmission source coding are

reversed in decoding (the subscript R refers to processes at the

receiver:

KFX

PGF

GM

MDNAM

RRR

RRR

RR

RR









P| |

)(

R
 (15)

Extending from the previous definition at the transmitter:

CCCX RnkRRR ,,12,11
... (16)

Using linear algebra, the cofactor matrix is assembled and the

inverse yields the original lexicographic codes. Summarizing

these steps yields:

(17)

(18)

The R coefficients then map back to the original words in set

n

kk

k

n

n

kk

k

Rn

RRR

RRRR

RRR

R

CCC

CCC

CCC

Q















































111312

1112111

11211

1

132

11

21

,

...

............

...

...

............

...

...

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

4

X. R ={R1, R2,…Rn}→{(a1, a2,…,ar)1, (a1, a2,…,ar)2… (a1,

a2,…,ar)n→ X=x1x2…xi  A  i

3. Example
An example is taken from a snippet from the script of the first

line of Shakespeare’s Hamlet soliloquy: ‘HAMLET To be or

not to be that is the question Whether’. We compare the

effects of dividing the plaintext phrase into 3 word blocks, 6

characters per block, versus 3 word blocks and 4 characters

per block. The lexicographic codes and the uncorrected

plaintext recovery are shown in table 3. Computations were

performed on a 32-bit HP Pavilion dv4 PC under Windows 7

using Microsoft Visual Basic 2010 and Microsoft Excel 2007.

The remaining errors in the recovered 6 character block codes

are easily corrected at the source codebook level.

3.1 Genetic Algorithm (GA) for Source

code error correction
Errors may occur at any position within a coefficient.

Assume that an error is received in the DNA code and is

propagated into and the binary code received at the receiver is

decoded and subsequently into the set of cofactors {Cn1-R, Cn2-

R,…,Cnk-R}. The remaining source of error is in inversion of

the cofactor matrix. The receiver does not know the precision

of the original cofactors; therefore arbitrary truncation will

produce uneven results. The original source code and the

recovered source code can be represented as vectors having

magnitude and phase with an error vector. Let b = codeword

Cnk-R and let a represent a candidate codeword for b. A genetic

algorithm approach can be used to determine the fitness of a

series of candidate codewords derived from the recovered

codeword. The codeword with the highest fitness score is the

best estimate of the recovered text. The highest fitness is

derived by ordering a series of candidate codewords that

minimize the distance, d, between the candidate codeword and

the received codeword. Thus d = |b – a| → 0 is the criteria for

optimal candidate codeword selection and the most fit

codeword possessing a zero distance between candidate and

received codeword. Thus, the genetic algorithm examines the

jointly typical sequences between sender and receiver

codebook to determine the fittest candidate among received

codewords. There exists a fitness threshold such that

codewords with values beneath the threshold value are

excluded from consideration. The code is prefix-free;

therefore, candidate codewords can be generated from

recovered codewords before the entire code word is received.

3.2 Error correction capability
The matrix of cofactors, C is k-tuply redundant. For n=1, k=3,

Cnk = {C11, C12, C13, C13, C11, C12, C12, C13, C11}. Assume Cnk

are i.i.d in individual packets. For small k, a majority voting

scheme would provide a good error correction performance

against random and burst errors at sub-optimal Eb/N0

conditions at the receiver. Let Pe = probability of a bit error in

a packet. For a majority voting receiver and k-tuple

redundancy, total probability of error, Pequals:

   jk
Pe

j
Pe

k

j

k
P

k
j

 












1) (

2

1
 (19)

Table 3. Comparison of 6 character block coding and 4 character block coding recovery

6 Char

block sourced

6 Char block Recovered 4 char

block sourced

4 char block recovered

86.96818292761 86.96818292760999999999999513 86.968182 86.96818199999999999910656396

88.761766889592 88.76176688959199999999999506 92.76188761 92.76188760999999999905496473

88.7667638876777 88.76676388767769999999999499 766.889592 766.88959199999999999236230939

761.887617668895 761.88761766889499998025956122 88.76676388 88.76676388000000000231521412

92.887618696761 92.88761869676099999760839515 767.7667619 767.76676188000000001957806511

88.857628876186 88.85762887618599999771538748 761.7668895 761.76688950000000001939766504

92.8876475892762 92.88764758927619999749257924 92.8876186 92.88761860000000000098708718

761.857667678876 761.85766767887599997974157864 96.7618885 96.76188850000000000107561576

86.927618692763 86.92761869276299999769217057 762.8876186 762.88761860000000000825690688

88.8896969696 88.88969696959999999999996920 92.88764758 92.88764757999999999943083348

96.9696969696 96.96969696959999999999996647 92.76276185 92.76276184999999999942229210

96.9696969696 96.96969696959999999999996647 766.7678876 766.76788755999999999513732920

 86.9276186 86.92761859999999999999995707

 92.7638888 92.76388879999999999999995480

 96.969696 96.96969599999999999999995438

In the case of 6 characters coded per block at the source, 12

coefficients are transmitted and the pre-corrected recovered

text was: “hamlet to be or n77t to be that is the question

76hether” In the case of the 4 characters coded per block at

the source, 15 coefficients are transmitted and the pre-

corrected recovered text was: “hamlet to be or not to be that is

the question whether”. The longer the block at the source, the

fewer number of coefficients are required to be transmitted, at

the cost of greater error correction at the receiver. For 8

characters per block at the source, only 9 coefficients are

required to code the block, but the number of error positions

in the message requiring correction at the receiver increased to

seven.

4. CONCLUSIONS
A source coding protocol has been presented for the

generation of genomic code representations suitable for later

encryption by gene expression encryption protocols. Such a

protocol ingests plaintext and outputs into a genomic DNA

code sequence with code lengths based upon the composition

of a user selected source gene. Subsequent encryption directly

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

5

converts the raw DNA output of the protocol into gene

sequences with properly coded control regions for subsequent

transcription and translation. This source coding scheme can

be used by any application which converts plaintext input to a

genomic sequence for transmission and then recovers the

plaintext from the genomic sequence at a receiver.

5. ACKNOWLEDGMENTS
Thanks to NASA HQ Space Communications and

Navigations division and the NASA/Goddard Space Flight

Center Space Network project. This paper is developed from a

dissertation submitted to The George Washington University

in partial fulfillment of the requirements for the Ph.D. degree.

6. REFERENCES
[1] H. Shaw and S. Hussein, “A DNA-Inspired Encryption

Methodology for Secure, Mobile Ad-Hoc Networks

(MANET), Proceedings of the First International

Conference on Biomedical Electronics and Devices,

BIOSIGNALS 2008, Funchal, Madeira, Portugal, vol. 2,

pp. 472-477, January 28-31, 2008

[2] A. Gehani, T. LaBean, and J. Reif, “DNA-based

Cryptography, Aspects of Molecular Computing”,

Springer-Verlag Lecture Notes in Computer Science, vol.

2950, pp. 167-188, 2004.

[3] H. Shaw, S. Hussein, and H. Helgert, “Genomics-based

Security Protocols: From Plaintext to Cipherprotein”,

International Journal on Advances in Security, vol. 4 no

1 & 2, 2011

[4] M. Ehrlich and R.Y. Wang, “5-Methylcytosine in

eukaryotic DNA”, Science 19 June 1981: Vol. 212 no.

4501 pp. 1350-1357

[5] J. M. Berg, J. L. Tymoczko, and L. Stryer,

Biochemistry. 5th edition (online ed,), New York: W H

Freeman; 2002, sec. 27.6.1

[6] H. Singh, K. Chugh, H. Dhaka and A. K. Verma, “DNA

based Cryptography: an Approach to Secure Mobile

Networks”, International Journal of Computer

Applications 1(1):77–80, February 2010.

[7] P. Vijayakumar, V. Vijayalakshmi and G. Zayaraz.

“DNA Computing based Elliptic Curve Cryptography”,

International Journal of Computer Applications 36(4):18-

21, December 2011

[8] S. Sadeg, M. Gougache, N. Mansouri, and H. Drias,

“An encryption algorithm inspired from DNA”, Machine

and Web Intelligence (ICMWI), 2010 International

Conference on, 3-5 Oct. 2010, pp. 344 - 349

[9] N.G. Bourbakis, “Image Data Compression-Encryption

Using G-Scan Patterns”, Systems, Man, and

Cybernetics, IEEE International Conference on

Computational Cybernetics and Simulation, vol. 2, pp.

1117—1120, October 1997

[10] A. Leier, C. Richter, W. Banzhaf, and H. Rauhe,

“Cryptography with DNA binary strands”, BioSystems,

vol. 57, issue 1, pp. 13-22, June 2000

[11] C.T. Clelland, V. Risca, and C. Bancroft, “Hiding

Messages in DNA microdots”, Nature, vol. 399, pp.

533—534, June 1999

[12] D. Heider and A. Barnekow, “DNA-based watermarks

using the DNA-Crypt algorithm”, BMC Bioinformatics,

vol. 8, pp. 176, May 2007

[13] D. Heider and A. Barnekow, “DNA watermarks: A proof

of concept”, BMC Molecular Biology 2008, vol. 9, p, 40

[14] T. M. Cover and J. A. Thomas, 2006, Elements of

Information Theory, 2nd Ed., Wiley Interscience

[15] C. M. Fraser, J. D. Gocayne, O. White, M.D Adams, R.

A. Clayton, R. D. Fleischmann, et al., “The Minimal

Gene Complement of Mycoplasma genitalium”, Science,

vol. 270, No. 5235, pp. 397-403, Oct. 20, 1995

