
#08AE-67

The Role of Software Engineering in Future
Automotive Systems Development

Siobhán Clarke1, Brian Fitzgerald2, Paddy Nixon3, Klaus Pohl2,
Kevin Ryan2, David Sinclair4, Steffen Thiel2

Lero – The Irish Software Engineering Research Centre
1Trinity College Dublin, Dublin, Ireland

2University of Limerick, Limerick, Ireland
3University College Dublin, Ireland

4Dublin City University, Dublin, Ireland

Copyright © 2007 SAE International

ABSTRACT

The amount and complexity of software in automotive
systems is constantly increasing. Today’s luxury cars
include numerous electronic control units. A large part of
the functionality of these units is driven by software.

In the future even more software-intensive automotive
systems are expected as automotive manufacturers and
suppliers tend to integrate and combine applications on
more powerful platforms. The increasing amount and
complexity of software in these platforms has led to the
situation where software engineering has become an
essential discipline within automotive systems
development.

This paper identifies essential areas of software
engineering that will have a significant impact on future
automotive systems and systems development.
Particularly, it discusses how the software engineering
discipline can be developed in the context of overall
automotive systems development while considering
essential requirements and constraints that are or will
become prevalent in this domain.

1 INTRODUCTION

Over the past decade, the amount and complexity of
software in automotive systems has increased
substantially. Today’s luxury cars include more than 70
electronic control units (ECUs) that operate as partly
networked systems to improve passenger comfort,
safety, economy, and security. Many of these systems
are driven by software [1].

In the future more software-intensive automotive
systems are expected as automotive manufacturers and
suppliers tend to integrate and combine applications
such as driver assistance, car dynamics, and airbag
control systems on more powerful platforms (e.g., [2]).
The integration and combination of automotive

applications is particularly crucial for the exploitation of
strategic reuse that can drive the reduction of time-to-
market and of the costs of automotive applications.

The increasing amount and complexity of software in
automotive platforms has led to the situation where
software engineering has become an essential discipline
within automotive systems development [3].
Manufacturers and suppliers already make great efforts
in adopting, tailoring, and improving software
engineering processes and practices while working in
globally distributed teams to build high-quality systems
(e.g., [4]).

This paper identifies essential areas of software
engineering that will have a significant impact on future
automotive systems and systems development. Section
2 motivates domain-oriented software engineering as a
general approach to provide effective research results in
a given application domain, such as automotive.
Sections 3-6 discuss important areas of software
engineering that we believe will have an effect on
automotive systems development. The areas include
software product line engineering (Section 3), global
software development (Section 4), service-oriented
architectures (Section 5), and mathematics applied to
software engineering (Section 6). We describe particular
challenges with respect to the automotive domain and
outline approaches within the area to address these
challenges. Finally, Section 7 concludes the paper with a
summary.

2 DOMAIN-ORIENTED SOFTWARE
ENGINEERING

Software Engineering is a broad, dynamic and multi-
faceted field, where research can vary from highly
theoretical, abstract models, through the development of
numerous branches of technology, into empirical studies
of industrial practice.

The development of quality software requires, in addition
to software engineering capabilities, knowledge about
the application domain in which software is going to
operate. Research in Software Engineering has
progressed from seeking universal solutions, whether
through concepts, notations, methods or tools, to the
development of domain-specific solutions that take
advantage of domain specificities. Domain-specialised
workshops, conferences and publications have
increased and many general conferences and journals
devote sessions or issues to specific domains (e.g., [5]).

Domain-oriented research has the potential to

 narrow the problem focus,

 reflect domain standards, constraints, models and
priorities,

 facilitate rapid validation, and

 accelerate industrial uptake.

We believe that domain-oriented Software Engineering
can provide more effective research results as it
includes the peculiarities of the given domain. Once
domain-specific solutions have been developed they are
available for adaptation and exploitation in other
domains. Research outcomes that are proven useful in a
number of domains may be generalised to provide
domain independent solutions.

Within Lero, the Irish Software Engineering Research
Centre, we have chosen the automotive domain as our
initial focus. Within that we have identified different
research areas that we believe will have a significant
impact on the development of future automotive
systems. The research areas include:

 Software Product Lines

 Global Software Development

 Service-Oriented Architectures

 Mathematics Applied to Software Engineering

In the following sections we will introduce these areas,
describe particular challenges regarding automotive
system development, and propose approaches and
research directions to address these challenges.

3 SOFTWARE PRODUCT LINES

3.1 INTRODUCTION

Product line approaches are well-known in many manu-
facturing industries, such as consumer electronics,
medical systems and automotive [6]. In recent years, ap-
proaches with similar roots have rapidly emerged as im-
portant paradigms within Software Engineering, so

called Software Product Line (SPL) development ap-
proaches [7, 8].

As automotive manufacturers and suppliers design and
implement complex applications, such as driver assis-
tance systems [9], they strive for mechanisms that allow
them to implement major functionalities on integrated
platforms. The move towards those larger platforms has
provided an opportunity for strategic reuse of software
components. One key aspect of this strategic reuse is
the idea to build a variety of similar systems with a mini-
mum of technical diversity. This has resulted in a grow-
ing interest in SPL approaches both in the software en-
gineering and the automotive systems domains.

3.2 CHALLENGES

There are several challenges related to the adoption of
product line approaches in automotive software-based
systems (e.g., [3, 10]). The challenges include the fol-
lowing topics:

 Management of large numbers of variants

 Development of product line architectures

 Integration of model-driven practices

3.2.1 Management of Large Numbers of Variants

Many automotive suppliers and manufacturers such as
Cummins [7], Bosch [2, 4], and DaimlerChrysler [11] use
a product line approach so as to be able to build differ-
ent variants of their products for use within a variety of
automotive systems. The size of the product lines is
usually large since only in this case significant econo-
mies of scale can be achieved. Therefore, automotive
software platforms are typically developed in a way such
that they can be customized and used in hundreds of
products simultaneously (e.g., [4]). These platforms
could easily incorporate thousands of variation points
and configuration parameters.

Managing this amount of variability is extremely complex
and requires sophisticated modelling and representation
techniques that can cope with large data sets. In par-
ticular, there is a strong need for appropriate ap-
proaches that support the different stakeholders in carry-
ing out their development tasks in software product line
efforts with a large number of product variants [12].

3.2.2 Development of Product Line Architectures

Software architecture provides the key framework for the
earliest design decisions taken to achieve functional and
quality requirements. An architecture for a family of sys-
tems needs to identify the commonality among different
systems and must explicitly include a variability docu-
mentation. Architecting automotive systems is a complex
and challenging design activity, and architecting a prod-
uct family is even more challenging. It involves making

decisions about a number of inter-dependent design
choices that relate to a range of design concerns. Each
decision requires selecting among a number of design
options; each of which impacts differently on various
quality attributes. Additionally, there are usually a num-
ber of stakeholders participating in the decision-making
process with different, often conflicting, quality goals,
technical and project constraints, such as existing plat-
forms, cost and schedule.

3.2.3 Integration of Model-driven Practices

The intelligent use of models promises to be one of the
major foundations for efficient processes in automotive
systems engineering. Models can be used to describe
the different forms of knowledge which are captured and
transformed during the engineering process, such as
requirements, the high-level or detailed design, the im-
plementation or test cases. This is the foundation for
tooling and automation, which in turn promotes efficient
engineering processes [3].

However, the current use of models in automotive sys-
tems engineering does not realise its full potential. For
instance, models are used in isolated areas, without an
integrated flow of information. Often models are used
only in a semiformal way as a form of communication on
the whiteboard or as illustrations in a textual specifica-
tion.

This lack of clearly and precisely defined semantics un-
dermines the use of real model-driven approaches,
where models are expressive enough to be used in pow-
erful interactive tools and the automatic derivation of
further artefacts including the implementation.

3.3 APPROACHES AND RESEARCH DIRECTIONS

Our research focuses on the following approaches to
address the challenges mentioned:

 Visually informed variability management

 Architecture-Based Development

 Seamless model-driven development

3.3.1 Visually Informed Variability Management

As mentioned previously, industrial size automotive
product lines can easily incorporate thousands of varia-
tion points and configuration parameters for product cus-
tomization. A promising approach to address the com-
plexity problem in automotive systems engineering is to
improve the efficiency of variability management and
product derivation.

Variability management is the process by which the vari-
ability of the product line development artefacts (e.g.,

architectural models, software components, and hard-
ware components) is planned, documented, and man-
aged throughout the development lifecycle. Variability
management supports critical product line engineering
tasks such as product derivation. Variation points iden-
tify locations in product line artefacts at which variation
will occur [13].

A large part of the application engineering activities in an
established and optimized product line approach consist
of reusing the platform artefacts from domain engineer-
ing and binding the variability as required for the differ-
ent applications/products. In this process, the variability
is resolved and fixed to the particular customer product.
Potentially pre-developed customer-specific application
components are integrated into the product infrastruc-
ture. If domain and application engineering are coordi-
nated in such a way then product production becomes
more a configuration and composition than a develop-
ment activity. In this way, a mass-customization of prod-
ucts can be achieved and the upfront investment in do-
main engineering can be more than justified.

Systematic variability management and product deriva-
tion can and should be supported by visualisation tech-
niques and tools that support the understanding, man-
agement, and effective use of product line development
artefacts, their built-in variability, and the dependencies
among them. With suitable techniques such visualisa-
tions can also amplify the cognition about large and
complex data sets created and used in industrial soft-
ware product line engineering. Our research is focused
on exploring the potential of visual representations such
as trees and graphs combined with the effective use of
human interaction techniques such as dynamic queries
and direct manipulation when applied in a software prod-
uct line context.

3.3.2 Architecture-Based Development

Software architecture embodies some of earliest design
decisions, which are hard and expensive to change if
found flawed during downstream development activities.
The role of software architecture in a family of system
becomes much more vital as architectures of individual
products are derived from the core architecture. Hence,
any flaw in the core architecture usually has ramifica-
tions for the achievement of required quality attributes
for individual products in a family. A systematic and inte-
grated approach is required to address architectural is-
sues throughout the software development lifecycle.

Hofmeister et al. [14] have proposed a general model of
software architecture design. This model has three ac-
tivities: architectural analysis, architectural synthesis,
and architectural evaluation. However, it does not con-
sider the post-architecting activities, which are equally
vital to ensure that the intent behind the architecture de-
sign remains correct during implementation and mainte-
nance of the software architecture. One of the main
characteristics of architecture-based development is the
role of quality attributes and architecture styles and pat-

terns, which provide the basis for the design and evalua-
tion of architectural decisions in this development ap-
proach. Figure 1 shows a high level process model of
architecture-based development that consists of six
steps, each having several activities and tasks. Our re-
search is focused on developing an integrated frame-
work which consists of methods, models and tools to
systematically elicit and model requirements, effectively
and efficiently transform requirements into a product line
architecture, rigorously evaluate that architecture, and
establish and test traceability between requirements,
architecture and implementation.

Figure 1 – Architecture-Based Development Process

3.3.3 Seamless Model-driven Development

For seamless model-driven development with a flexible
combination of interactive tools and automation we need
semantically rich models. As a foundation for this, we
require well-defined languages that allow describing the
knowledge used in the particular domain.

Consequently, if we want to apply model-driven ap-
proaches in an SPL context we require languages to de-
scribe typical SPL aspects (variation points, variants,
features, configurations, realization of variability). These
modelling languages also have to support the different
conceptual levels of domain and application engineering.

Similarly, if we want to apply model-driven SPL ap-
proaches in an automotive engineering context we also
require languages to describe domain-specific know-
ledge, for instance the dynamic behaviour of electronic
components, the interplay between software and hard-
ware or the communication primitives exchanged on a
CAN-Bus network [9].

As part of our research we are developing such model-
ling languages that can be used to describe the models
processed in model-driven approaches. Within that we
are especially interested in modelling languages for the
SPL automotive context. Models described in the model-
ling languages can be used as a foundation for interac-
tive tools or automation.

For instance, we have defined a metamodel for feature
models [15]. Such models can be used in tools which
allow us to (a) visualise the complex dependencies be-
tween the numerous features and (b) interact with the
related feature configuration. At the same time, such
feature models can be used as input for model-driven
product derivation. For instance, we developed a model-
driven approach with model-transformations described in
ATL [16] that derives the architecture for a particular ap-
plication from the domain architecture for the overall
product line. The decision which components are in-
cluded in the application-specific architecture are based
on feature configurations based on the aforementioned
metamodel.

4 GLOBAL SOFTWARE DEVELOPMENT

4.1 INTRODUCTION

The significance and growth of software in the
automotive components industry has led to a move
towards standardisation (e.g., [9]) across the sector.
New software component suppliers have the potential to
claim a significant share of this global market.

Global Software Development (GSD) is the practice of
distributing software development across multiple sites,
either within the same organisation or across different
organisations. Various forms of GSD are possible: the
entire software development process can be outsourced
to another company, components of a software product
can be developed by another organisation or another
division within the same company, or a phase of the
development cycle (such as system testing) may be
carried out at a remote site, either in a subsidiary or a
third-party organization. Globalisation has resulted in
globally distributed software development with many
organisations setting up software development centres
in Eastern Europe, China and India that collaborate with
their counterparts.

4.2 CHALLENGES

GSD offers many potential benefits to the automotive
sector including reduced cost of development, quicker
time to market through ‘follow-the-sun’ development,
access to new markets and customers, increased
innovation and shared best practice, and access to
multi-skilled labour regardless of location.

However, GSD also introduces additional problems
relating to communication, coordination and control of
the development process. These arise due to the

distances involved in three dimensions – geographical,
temporal, and socio-cultural, as shown in Table 1.

Table 1: Different Dimensions in Global Software
Development

 Temporal
Distance

Geographical
Distance

Socio-cultural
Distance

C
om

m
un

ic
at

io
n Improved re-

cord of com-
munications

Reduced op-
portunities for
synchronous
communication

Closer proximity
to market

Access to remote
skilled workforces

Face to face
meetings difficult

Innovation and
sharing best prac-
tice

Cultural misun-
derstandings

C
oo

rd
in

at
io

n

Coordination
needs can be
minimised

Typically in-
creased coor-
dination costs

More flexible co-
ordination plan-
ning

Reduced informal
contact can lead
to lack of critical
task awareness

Greater learning
and richer skill set

Inconsistent work
practices can im-
pinge on effective
coordination

Reduced coopera-
tion arising from
misunderstanding

C
on

tr
ol

Time zone ef-
fectiveness can
be utilised for
gaining efficient
24x7 working

Management of
project artefacts
may be subject
to delays

Communication
channels can
leave an audit
trail

Difficult to convey
vision and strat-
egy

Perceived threat
from training low-
cost “rivals”

Proactiveness
inherent in certain
cultures

Different percep-
tions of authority
can undermine
morale

Managers must
adapt to local
regulations

4.3 APPROACHES AND RESEARCH DIRECTIONS

Within the GSD research area there are a number of
interesting research themes that we expect to have a
significant impact on future automotive systems devel-
opment. These include Agile and Open Source ap-
proaches, the socio-organisational influences on global
software development, and the future positioning of
small-to-medium sized enterprises within global value
chains.

 GSD for SMEs. Enabling small and medium sized
enterprises (SMEs) to benefit from GSD by adapting
the GSD processes that work for large corporations
to the smaller operation.

 Agile Approaches for GSD. While agile methods

would not be an obvious choice for a distributed en-
vironment, some of their principles may be effective
across a virtual team.

 Social and Cultural Aspects of GSD. The practice

of GSD has produced virtual teams comprising
members from Western, high-wage economies and
Eastern, low-wage economies. How can these

teams work together when their cultures are so dif-
ferent?

 Open Source Software. Open source software is a

hugely successful example of GSD. In many cases,
excellent software is produced by teams that have
never met. How has this been achieved?

 Requirements. If a third-party is going to develop

the software, then it is essential that the require-
ments are clearly understood. How can this be
achieved across the various flavours of GSD?

‘Two-stage offshoring’, for example, offers a
development model for cross-continental software
development. As part of these companies, the Irish sites
act as a ‘bridge’ in their offshoring arrangements: While
the US sites offshore work to Ireland, the Irish sites
offshore work further to India and hence, have
experience of being both customer and vendor in two-
stage offshore sourcing relationships.

Our research has found how tailored agile development
practices can reduce the challenges inherent in GSD.
Also, the reported potential benefits of GSD as listed
above are being studied for a deeper understanding,
leading to their greater realisation for companies
globalising their software development activities.

Open-sourcing, is a term we have coined for the
relatively recent phenomenon whereby a company may
‘liberate’ an open source version of hitherto proprietary
software and seek to grow a global development
community around it. We have investigated the
obligations which need to be fulfilled by both the
company and the community if open-sourcing is to be
successful. We believe this may be a viable and
valuable software development model for the automotive
sector.

Our research has also revealed an ongoing shift from
open source software (OSS) as community of individual
developers to OSS as community of commercial
organizations, primarily SMEs. Outsourcing to the OSS
community provides ample opportunity for companies to
headhunt top developers – hence moving from
outsourcing to a largely unknown OSS workforce
towards recruitment of talented developers from the
open source community

5 SERVICE-ORIENTED ARCHITECTURES

5.1 INTRODUCTION

In-vehicle software has controlled much of the
functionality of a car, from braking systems to fuel
economy systems, for some time [9]. In recent years,
more sophisticated software services have become
available, such as collision avoidance or parking
assistance services.

In parallel with the development of in-vehicle software
services, there has been a corresponding improvement
in networking technologies designed for automotive use.
For example, WAVE (Wireless Access in the Vehicular
Environment) [17] and CALM (Continuous Air Interface
Long and Medium range) [18] support communications
between vehicles and with the environment, and are
likely to drive the development of standardised
automotive communications protocols. In such an
environment, the potential for consideration of
automotive software as “service” software can be fully
realised. The software-as-services paradigm underpins
a flexible software deployment model that supports the
dynamic provision and integration of software services
on a large scale [19].

Where existing in-vehicle software services are statically
included in a vehicle’s capabilities, vehicle-to-vehicle
and vehicle-to-infrastructure communication opens up a
more dynamic market for software services, targeted as
relevant to the driver [20]. The range of possibilities is
large and includes services that benefit from cooperation
between vehicles such as forward collision warning and
adaptive cruise control, and services made available to a
vehicle from environment infrastructure such as
electronic parking payments and highway-rail
intersection warning.

5.2 CHALLENGES

While the scope for dynamic service provision in a large
scale is encouraging for automotive software providers,
the complexities of engineering such services are less
so. Many challenges exist, among them: composition of
the relevant services in a time-bounded fashion;
adaptation of the combination and behaviour of software
services in a manner appropriate to the vehicle’s
situation; coordination of multiple vehicles’ behaviour;
and integration of software services into heterogeneous
target environments.

There is also a need for significant flexibility in the
software process, as a reduced time to market in this
competitive market is a high priority. The service-
oriented engineering model must therefore itself be
highly adaptive and designed to consider target platform
heterogeneity in flexible manner.

5.3 APPROACHES AND RESEARCH DIRECTIONS

In our research we investigate the application and
combination of general advances in software
engineering techniques to provide a model for building
flexible service-oriented architectures that can take
advantage of the dynamic service deployment
possibilities associated with vehicle-to-vehicle and
vehicle-to-infrastructure communication. In particular, we
are using model-driven engineering (MDE) principles
[21] with the aspect-oriented development paradigm
[22].

MDE handles complexity by providing domain-specific
languages (DSLs) that capture the semantics of the

domain in a manner familiar to the domain expert, while
separating the domain concerns from models of other
elements of the software. In addition, MDE manages
flexibility by providing automated transformations from
the domain models to multiple target platforms. The
aspect-oriented paradigm handles complexity by
supporting the separation of the kinds of concerns that
cut across other parts of the system, and would be
otherwise scattered across multiple affected parts. In
particular, we are employing a number of DSLs to
address the challenges facing engineers of dynamic
services for the automotive domain (see Figure 2).

Figure 2: Model-Driven Engineering of Advanced

Driver Assistance Systems.

The adaptation DSL provides a means to specify the
required adaptation actions (such as merge, upgrade or
install) with corresponding properties (such as priority or
version number) [23]. The driver information system DSL
provides a means to specify the functionality of the
service including central concepts such as context,
message, driver and vehicle. The coordination DSL
models how vehicles coordinate with each other while
satisfying constraints such as real-time.

Standard marking techniques will be used to refine the
domain specific models with appropriate specifications
for each target platform. The transformation process
uses aspect-oriented programming techniques to
compose the modelled behaviour appropriately for each
targeted environment. Throughout, timing analysis is
applied to monitor the time-bounded requirements of
each individual service as well as the combination of
services

6 MATHEMATICS APPLIED TO SOFTWARE
ENGINEERING

6.1 INTRODUCTION
Today’s cars consist of highly sophisticated, interacting
software driven subsystems that manage various
aspects of car from comfort to safety. Current “top of the
line” cars can have up to 100MB of binary code
distributed over 70 subsystems [24]. The complexity of
current and future automotive software is so high that it
is humanly impossible to test all possible cases that may
occur. When the software forms part of a safety critical
component this is a major cause for concern. Suitably
chosen and tailored mathematical approaches can
greatly increase our confidence in the reliability and
correctness of highly critical software-intensive systems.

6.2 CHALLENGES

The research challenge in this area is to increase the
understanding of the abstract mathematical principles
underlying software, and how they can be exploited
together with other techniques to improve the confidence
that software works as it is intended. Our research
approach is to improve and apply mathematical
approaches and integrate them into the full software
development life cycle.

6.3 APPROACHES AND RESEARCH DIRECTIONS

Our research focuses on three specific approaches to
address the challenges mentioned:

 Hybrid Systems Design Methodology

 Feature Interaction Detection and Resolution

 SOA Integration and Migration

6.3.1 Hybrid Systems Design Methodology

This research addresses the specification, design and
verification of embedded software systems in environ-
ments with continuous dynamics. These hybrid systems
are characterised by both discrete and continuous state
changes. These hybrid systems, and hence their soft-
ware components, may also have to meet hard and soft
timing constraints.

We are developing a design methodology that will assist
the user in developing a specification that not only cap-
tures the behaviour of the embedded software but also
captures a description of the continuous dynamics of the
environment which is not only being controlled by the
software but is also interacting with the software. The
design methodology will guide the user from the initial
analysis phase through to architectural and detailed de-
sign phases. In order to encourage adoption of the
methodology it is vital that:

 the methodology is supported by a toolset; and

 initial stages of the methodology uses notations and
design practices that are commonly used by the de-
signers.

The internal formalism that is used to capture the dy-
namic behaviour of the subsystems is hybrid automata
[25]. This formalism extends the classical finite state
machines (FSM) by adding continuous state variables to
the states. States with continuous state variables also
have evolutionary equations that define how the con-
tinuous state variables change over time while the sys-
tem is in that state. However, the design methodology
will use notations that are commonly used by designers
and will seek to isolate the designer from the underlying
formalism.

6.3.2 Feature Interaction Detection and Resolution

Feature interaction is where at least two features within
a system, which operate successfully independently,
interfere with each other when used together. While
these features in isolation may be correctly designed
and implemented, unexpected interactions between the
features may occur when these features are integrated
into a larger system. Given that newer systems are usu-
ally built on top of legacy systems, the potential for inter-
actions is very large. It is essential that these potential
interactions are detected as early as possible in the soft-
ware development process.

We are using software verification techniques and tools
to analyse the specifications of various features, to de-
tect when possible interactions may occur, and to sug-
gest possible resolutions for such interactions. The ap-
proach is based on the distillation program
transformation algorithm [26]. This will enable wide
range of properties to be proved fully automatically, and
will also produce counterexamples that can help to iden-
tify interactions.

6.3.3 SOA Integration and Migration

The Service-Oriented Architecture (SOA) paradigm has
received a lot of attention as a methodological software
engineering framework for service-based platforms. In
particular, the interoperability benefits of service plat-
forms have given new impetus to the software integra-
tion and software migration problem.

In one of our research projects we use graph theory as a
rigorous mathematical approach to address the current
software engineering problem of SOA-based architec-
ture integration and migration. Graph theory provides a
rich description notation with transformation and gram-
mar aspects as well as algebraic and category-theoretic
foundations [27]. Graph transformations can be used to
support architecture transformation and integration.
They have been successfully used to capture the struc-
tures and dependencies of components and services in
software architectures [28]. However, the different types

of dynamic dependencies in service-based system archi-
tectures and their orchestration and interaction proc-
esses go beyond the current solutions for static and
structural connectivity dependencies. The central ques-
tion that we are addressing is how to use graph theory to
provide a formally sound and effective integration solu-
tion.

7 CONCLUSIONS

This paper has discussed essential areas of software
engineering and their relation to automotive systems
development. Particularly, we have introduced software
product line engineering, global software development,
service-oriented architectures, and mathematics applied
to software engineering as those areas where we expect
a major impact on how systems will be developed in
future in the automotive domain. We have highlighted
specific challenges in these areas and have outlined
approaches and research directions to address these
challenges.

Our future work will include the further development and
extension of these approaches and their evaluation and
improvement in industrial settings.

ACKNOWLEDGMENTS

This work is partially supported by Science Foundation
Ireland under grant number 03/CE2/I303-1.

REFERENCES

[1] R. Rajagopalan: “Automotive Software Market –
Mix of Opportunities and Implications”, Market
Insight Report, Frost & Sullivan, September 2004.

[2] A. Hein, T. Fischer, S. Thiel: “Product Line
Development for Driver Assistance Systems (in
German),” In: G. Böckle, P. Knauber, K. Pohl, K.
Schmid (Eds.): Software-Produktlinien: Methoden,
Einführung und Praxis, dpunkt-Verlag, 2004, pp.
193-205.

[3] M. Broy: “Challenges in Automotive Software
Engineering,” Proceedings of 28th International
Conference on Software Engineering (ICSE-
2006), Shanghai, China, May 20-28, 2006, pp. 33-
42.

[4] M. Steger, C. Tischer, B. Boss, A. Müller, O.
Pertler, W. Stolz, and S. Ferber, "Introducing PLA
at Bosch Gasoline Systems: Experiences and
Practices," Software Product Line Conference
(SPLC-2004), Boston, MA, USA 2004.

[5] 30th ACM/IEEE International Conference on
Software Engineering (ICSE 2008), Experience
Track on Automotive Systems.
http://icse08.upb.de/calls/ automotive.html

[6] F. van der Linden: “Software Product Families in
Europe: The ESAPS & CAFE Projects”, IEEE
Software, 19 (4), 2002. 41-49.

[7] P. C. Clements, L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley,
2001.

[8] K. Pohl, G. Böckle, F. van der Linden. Software
Product Line Engineering : Foundations,
Principles, and Techniques. Springer, New York,
NY, 2005.

[9] J. Schäuffele, T. Zurawka. Automotive Software
Engineering: Principles, Processes, Methods, and
Tools. SAE International, Warrendale, Pa, 2005.

[10] R. Baillargeon, “Vehicle System Development: A
Challenge for Ultra-Large-Scale (ULS) Systems,”
First Workshop on Software Technologies for
Ultra-Large-Scale Systems, Minneapolis, MN,
USA, 2007.

[11] M.-O. Reiser, M. Weber: “Using Product Sets to
Define Complex Product Decisions”, 9th
International Software Product Line Conference
(SPLC 2005), (Rennes, France, 2005).

[12] D. Nestor, L. O'Malley, A. Quigley, E. Sikora, S.
Thiel: “Visualisation of Variability in Software
Product Line Engineering”, 1st International
Workshop on Variability Modelling of Software
Intensive Systems (VaMoS-2007), Limerick,
Ireland, 2007.

[13] I. Jacobson, M. Griss, P. Jonsson. Software
Reuse. Architecture, Process and Organization for
Business Success. Addison-Wesley, 1997.

[14] C. Hofmeister: “A General Model of Software
Architecture Design Derived from Five Industrial
Approaches”. 5th Working IEEE/IFIP Conference
on Software Architecture (WICSA 2005),
Pittsburgh, PA, USA, 2005.

[15] G. Botterweck, D. Nestor, A. Preussner, C.
Cawley, S. Thiel: “Towards Supporting Feature
Configuration by Interactive Visualisation”,
Proceedings of 1st International Workshop on
Visualisation in Software Product Line
Engineering (ViSPLE 2007), collocated with the
11th International Software Product Line
Conference (SPLC 2007), Kyoto, Japan, 2007.

[16] J. Bézivin, E. Breton, G Dupé, P. Valduriez. The
ATL Transformation-based Model Management
Framework, 2003. http://www.sciences.univ-
nantes.fr/info/ recherche/Vie/RR/RR-IRIN2003-
08.pdf

[17] IEEE 802.11p Task Group
http://grouper.ieee.org/groups/802/11/Reports/tgp
_update.htm

[18] Continuous Communications for Vehicles.
http://www.calm.hu/

[19] T. Erl. “Service Oriented Architecture: Principles
of Service Design” Prentice Hall, Service-Oriented
Computing Series

[20] G. de Boer, P. Vogel. “Connecting the Vehicle
with the Environment – Trends and Challenges” in
Dagstuhl Seminar Proceedings: Mobile
Computing and Ambient Intelligence: The
Challenge of Multimedia, 2005.

[21] D. C. Schmidt. “Model-Driven Engineering” IEEE
Computer, 39(2), 2006.

[22] R. Filman, T. Elrad, S. Clarke, M. Aksit “Aspect-
Oriented Software Development” Addison-
Wesley, 2004.

[23] S. Fritsch, A. Senart, S. Clarke. “Addressing
Dynamic Contextual Adaptation with a Domain-
Specific Language” in Workshop on Software
Engineering of Pervasive Computing,
Applications, Systems and Environments
(SEPCASE) at ICSE 2007

[24] B. Emaus, “Hitchhiker's Guide to the Automotive.
Embedded Software Universe”, SEAS’05
Workshop, 2005

http://www.inf.ethz.ch/personal/pretscha/events/se
as05/bruce_emaus_keynote_050521.pdf

[25] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.
H. Ho. “Hybrid Automata: An algorithmic approach
to the specification and verification of hybrid
systems”, Hybrid Systems, vol. 736 LNCS, pp.
209-229, Springer-Verlag, 1993.

[26] G. W. Hamilton. “Distillation: Extracting the
Essence of Programs.” Proceedings of the
International Workshop on Partial Evaluation and
Program Manipulation, 61-70, 2007.

[27] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R.
Heckel and M. Löwe. Algebraic Approaches to
Graph Transformation; Basic Concepts and
Double Pushout Approach. In G. Rozenberg,
editor, Handbook of Graph Grammars and
Computing by Graph Transformation. World
Scientific, 1997.

[28] D. L. Metayer, “Describing Software Architecture
Styles Using Graph Grammars”, IEEE Trans.
Software Eng. 24(7): 521–553. 1998.

