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Abstract—A Neural Network architecture is applied to the problem
of Direction of Arrival (DOA) and state of polarization estimation
using a uniform circular cross and tri-crossed-dipoles antenna array.
A three layer Radial Basis Function Network (RBFN) is trained
with input output pairs. The network is then capable of estimating
DOA not included in the training set through generalization and
the corresponding state of polarization. This approach reduces the
extensive computations required by conventional super resolution
algorithms such as MUSIC and is easier to implement in real-time
applications. The results suggest that the performance of the RBFNN
method approaches the exact values. In real time, fast convergence
rates of neural networks will allow the array to track mobile sources.

1. INTRODUCTION

Super-resolution algorithms have been successfully applied to the
problem of Direction of Arrival (DOA) estimation to locate radiating
sources with additive noise, uncorrelated and correlated signals.
MUSIC [1] and [2] and ESPRIT [3] and [4] are some of the popular
conventional methods of DOA estimation. They have the advantage of
high resolution for signals with small angular separation (few degrees
to few tenths of a degree). However, one of the main disadvantages
of these algorithms is that they require extensive computation and are
difficult to implement in real-time.

Recently, neural networks have been proposed as successful
candidates to carry on the computational tasks required in several
array processing and real-time DOA estimation applications is
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presented in [5–10]. The main advantages of the neural network
methods are that they outperform conventional linear algebra based
methods in both speed and accuracy. Since neural methods avoid
the cumbersome eigen-decomposition process, they are found to be far
quicker than conventional methods. Apart from being computationally
efficient, neural methods have been observed to be more immune to
noise and are found to yield better performance in the presence of
correlated arrivals. However, a drawback of the neural schemes is the
selection of the network size which is usually done by trial and error.

In this paper, the application of neural networks to handle the
computational problem of the DOA estimation step is approached as
a mapping problem which is modeled using a Radial Basis Function
Network or (RBFN) that can be trained with input output pairs
[11–13]. The network is then capable of estimating or predicting
outputs not included in the learning phase through generalization.
Moreover, one of the main advantages of neural networks is that they
can be implemented in analog circuits with time constants in the order
of nanoseconds and consequently they have fast convergence rates.
Thus DOA estimation problem is viewed as a function approximation
problem, and the RBFNN is trained to perform the mapping from
the space of the sensor array output to the space of DOAs. It exploits
the universal function approximation capability of RBFNN to estimate
the DOA and the state of polarization and a successful classification
of closely separated sources (3 degrees) has been reported.

2. DOA ESTIMATION USING REAL ELEMENT
ARRAYS

The signal processing algorithms proposed for DOA estimation
provides accurate estimates, even in moderate signal to noise (SNR)
conditions, but generally ignore the electromagnetic behavior of the
receiving antenna. The receiver is assumed to be an ideal, equispaced,
linear array of isotropic point sources and does not reradiate the
incident signals. In practice, this ideal situation cannot be met.
The elements mutual coupling distorts the linear phase front of
the incoming signal, significantly degrading performance. Thus any
practical implementation of DOA estimation requires compensation for
mutual coupling. The compensation of mutual coupling using effective
techniques has been reported in [14–16].

By using impedance load at each element port as shown in Fig. 1,
the measured voltage at the port of the nth receiver antenna is given
by

Vmeasm = ZLIport = ZLI(P+1/2),m (1)
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Figure 1. The compensation for mutual coupling in real array
elements using load at terminal point ZL = 50 Ω.

i.e., the measured voltage at a port of the array is directly proportional
to the coefficient of the basis function corresponding to that port.

3. RBFNN MODEL FOR DOA PROBLEM

The DOA problem is approached as a mapping which can be modeled
using a suitable neural network (NN) trained with input output pairs.
The network capable of estimating or predicting outputs not included
in the learning through generalization. The advantages of NNs are that
it can be implemented in real time. The adaptive antenna array can be
linear array or circular array with isotropic or real elements. Neural
networks based direction finding algorithms have been proposed for
single and multiple source direction finding [17]. It has been shown
that the neural networks have the capability to track sources in real
time. It has been suggested that a radial basis function neural network
(RBFNN) could be used to track the locations of mobile users [18].

RBFNNs are member of a class of general purpose methods
for approximating nonlinear mappings since the DOA problem is
of nonlinear nature. The mapping from the input space to the
output space may be thought of as a hypersurface Γ representing a
multidimensional function of the input. During the training phase, the
input-output patterns presented to the network are used to perform a
fitting for Γ. The generalization phase represents an interpolation of
the input data points along the surface built as an approximation for
Γ . The architecture considered in this paper involves three layers, the
input layer (sensory nodes), a hidden layer of high dimension, and an
output layer, as shown in Fig. 2. The transformation from the input
space to the hidden-unit space is nonlinear, whereas the transformation
from the hidden layer to the output space is linear.
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Figure 2. Proposed architecture of DOA estimate using neural
network.

4. DATA PREPROCESSING

It considers a linear array composed ofM elements (point sources), and
let K(K ≤M) be the number of plane waves, centered at frequency ωo

impinging on the array from directions {θ1 θ2 . . . θK}. It performs the
mapping G: RK → CM from the space of DOA, {θ = [θ1, θ2, . . . , θK ]}
to the space of sensor output {s = [s1, s2, . . . , sM ]}, where sM is the
source output at element m, namely

sm =
K∑

k=1

ake
j(m(ωo/c)d sin θk+αk (2)

where ak represents the complex amplitude of the kth signal, αk the
initial phase, and ωo is the center frequency. Based on the information
theoretic criteria for model selection [19], one can estimate the number
of signals K a priori.

The RBFNN is used to perform the inverse mapping F : CM →
RK . The network is to be trained by N patterns generated by using
Eq. (2) so that it can associate the output vectors s(1), s(2), . . . , s(N)
with the corresponding DOA vectors θ(1), θ(2), . . . , θ(N). Input
vectors s are mapped through the hidden layer then each output node
computes a weighted sum of the hidden layer outputs. We can write
for a set data {(s(i), θ(i)), i = 1, 2, . . . , N}. The output of the neural
is given by

θk(j) =
N∑

i=1

wk
i fh(‖ s(j) − s(i)‖2) (3)

For k = 1, 2, . . . ,K, and j = 1, 2, . . . , N , where wk
i represents the ith
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weight of the network. Using the Gaussian function for hidden nodes
fh, we can rewrite Eq. (3) as

θk(j) =
N∑

i=1

wk
i e

−‖s(j)−s(i)‖2/σ2
g (4)

the parameter σg controls the influence of each basis function.
The main advantage of using an RBFNN over other approaches

is that it does not require training the network with all possible
combinations of input vectors. For the network to generalize it is
sufficient to perform the training with vectors that span the expected
range of input data.

x-axis 

z-axis 

Figure 3. 16-elements uniform circular array (crossdipole) geometry
in x-z plane.

5. NUMERICAL RESULTS

5.1. The Uniform Circular Array Geometry

In many applications, to provide full azimuthal coverage several
uniform linear arrays (ULA) arranged in triangular or rectangular
shapes are used. But the drawback of this solution is the requirement
of using several ULA, and hence increasing the cost, as well as the
collection and processing of additional data. The natural choice of
uniform circular array (UCA) which provides entire azimuthal coverage
and certain degree of source elevation information [20]. Referring
to Fig. 3 and Fig. 4, we assumed that a UCA with radius “a” and
consisting of “N” uniformly distributed antenna elements, assumed
to be identical, is located in the x-z plane and is illuminated by an
impinging planer wavefront. A spherical coordinate system is used to
represent the DOA from the incoming plane waves. The origin of the
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coordinate system is located in the center of the array. The angular
position of the nth element of the array is given by [20]

θn = 2π
(
n

N

)
, n = 1, 2, . . . , N. (5)

y

x

z  

Figure 4. 24-elements uniform circular array (tri-crossed-dipoles).

The narrowband plane wave with wavelength λ (and correspond-
ing wave number k = 2π/λ) arrives at the antenna from elevation angle
θ and azimuthal angle ϕ. The using of cross-dipoles and Tri-crossed-
dipoles as a UCA elements are useful in obtaining different states of
polarization ant different planes of incidence [21].

5.2. Example (1) Cross-dipole Uniform Circular Array

A circular array of M = 16 cross-dipoles each of length λ/2, are
terminated in loads ZL = 50 ohm is used. Therefore, the dimension of
the input layer of the neural network was set to 16 nodes (magnitude
of the input vector Vn(n)). The array receives signal with different
state of polarization (including linear θ-polarized, linear ϕ-polarized,
right-hand circular polarization and left-hand circular polarization)
from different directions. The results in Fig. 5 show that the network
successfully produced actual outputs very close to the desired DOA
at different incidence angles in the x-y plane. Also, the state of
polarization is detected clearly. The array is then exposed by eight
uncorrelated sources separated by ∆ϕ = 3◦ in the x-y plane. Fig. 6
shows the DOA estimation of the first source.
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Figure 5. DOA estimates versus number of samples N for cross-dipole
array. Incident Source (1) ϕ is varied from 0◦ to 180◦ and θ = 90◦ when
(a) linear-θ polarized, (b) linear-ϕ polarized, (c) right-hand circular
polarized, (d) left-hand circular polarized.
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Figure 6. DOA estimates versus number of samples N for cross-dipole
array. 8-Uncorrelated sources used with (∆ϕ = 3◦). Source (1) ϕ is
varied from 0◦ to 180◦ and θ = 90◦.
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Figure 7. DOA estimates versus number of samples N for tripole
array. Incident Source (1) θ is varied from −90◦ to 90◦ and ϕ = 0◦.
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5.3. Example (2) Tri-crossed-dipoles Uniform Circular Array

A circular array of M = 24 tri-crossed-dipoles array each of length
λ/2, are terminated in loads ZL = 50 ohm is used. The array receives
signal with different state of polarization. The array is exposed by
incident plane wave source in different planes and the performance
of the RBFNN is shown in the figures. Figs. 7, 8, and 9 shows
the RBFNN performance with DOAs were assumed to be uniformly
distributed from −90 to 90 in both the training and testing phases in
the planes ϕ = 0, 45◦, and 90◦ respectively. Fig. 10 shows the RBFNN
performance with DOAs assumed to be uniformly distributed from
0◦ to 180◦ in both the training and testing phases in the x-y plane.
Similarly Fig. 11 and Fig. 12 shows the network performance when
the array receives eight uncorrelated signals with different angular
separations (∆θ = 5◦ and ∆ϕ = 3◦) at different planes respectively.
The results show that the network successfully produced actual outputs
very close to the desired DOA.
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Figure 8. DOA estimates versus number of samples N for tripole
array. Incident Source (1) θ is varied from −90◦ to 90◦ and ϕ = 45◦.
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Figure 9. DOA estimates versus number of samples N for tripole
array. Incident Source (1) θ is varied from −90◦ to 90◦ and ϕ = 90◦.
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Figure 10. DOA estimates versus number of samples N for tripole
array. Incident Source (1) ϕ is varied from 0◦ to 180◦ and θ = 90◦.
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Figure 11. DOA estimates versus number of samples N for tripole
array. 8-Uncorrelated sources used with (∆θ = 5◦). Source (1) θ is
varied from −90◦ to 90◦ and ϕ = 0◦.
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Figure 12. DOA estimates versus number of samples N for tripole
array. 8-Uncorrelated sources used with (∆ϕ = 3◦). Source (1) ϕ is
varied from 0◦ to 180◦ and θ = 90◦.

6. CONCLUSION

The neural network is used to estimate the direction of arrival with
different arrays such as circular arrays with real elements of cross-
dipoles and tri-crossed-dipoles elements, where the RBFNN is trained
by input-output pairs to estimate the DOA with different separated
angles and tested with samples are not included in the learning phase.
Good agreement between the results using the RBFNN model, and the
exact values.
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