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Protein structure prediction can be shown to be an NP-
hard problem; the number of conformations grows exponen-
tially with the number of residues. The native conformations
of proteins occupy a very small subset of these, hence an ex-
ploratory, robust search algorithm, such as a genetic algo-
rithm (GA), is required. The dynamics of GAs tend to be
complicated and problem-specific. However, their empirical
success warrants their further study. In this paper, guidelines
for the design of genetic algorithms for protein structure pre-
diction are determined. To accomplish this, the performance
of the simplest genetic algorithm is investigated for simple
lattice-based protein structure prediction models (which is ex-
tendible to real-space), using energy minimization. The study
has led us to two important conclusions for ‘protein-structure-
prediction-genetic-algorithms’. Firstly, they require high res-
olution building blocks attainable by multi-point crossovers
and secondly they require a local dynamics operator to ‘fine
tune’ good conformations. Furthermore, we introduce a sta-
tistical mechanical approach to analyse the genetic algorithm
dynamics and suggest a convergence criterion using a quantity
analogous to the free energy of a population.

Short title: Genetic algorithm approach to struc-
ture prediction

Keywords: energy minimization; lattice models;
simple exact models

Abbreviations: PSP protein structure prediction;
GA genetic
algorithm; PSP-GA protein-structure-prediction-
genetic-algorithm; MC Monte Carlo; GA-MC ge-
netic algorithm-Monte Carlo; HZ hydrophobic
zipper; REM Random Energy Model

I. INTRODUCTION

Conceptually, proteins fold from their 1D polymer
chain of amino acids (primary structure) to 3D stable,
‘unique’ conformations (tertiary structure). Anfinsen [1]
showed that folding requires knowledge of the amino acid
sequence alone; the determination of the native (biolog-
ically functioning) structure from its sequence is known
as the protein folding problem. Much research has gone
into elucidating the folding dynamics [2] but a practical
theory is still beyond our understanding.

The folding problem attempts to understand the dy-
namics of the folding - how the sequence of amino acids
arrive at the native state. It is clear that a full solution to
this problem would be able to predict the tertiary struc-
ture of an amino acid sequence. Unfortunately, such a
solution is beyond our understanding at present.

However, amino acid sequences are effectively being
determined at a higher rate than that of their corre-
sponding native structures. Since knowledge of the native
structure is important to understanding the function of
a protein, a potentially more practical problem is pro-
tein structure prediction. There is a possible confusion
in terminology between the two terms, protein folding
and protein structure prediction,as researchers use the
terms loosely and interchangeably. The difference must
be stressed as there are ‘folding simulations’, in the liter-
ature, which carry out a conformational search in a man-
ner that is not attributable to the true folding dynamics
of proteins (e.g. [3]).

Protein folding mainly concerns the dynamics of the
problem which experimentalists study using hydrogen-
exchange techniques, for example; theorists often use
computer simulations of simple models, often on lat-
tices, to elucidate the folding dynamics. Protein struc-
ture prediction, however, is only interested in the end re-
sult; experimentalists often use crystallisation techniques
coupled with x-ray diffraction to determine the tertiary
structure, whereas theorists tend to use computer-based
optimization methods. This is the approach discussed
in this paper. The problem involves two aspects: (1)
the specification of the function to optimize and (2) the
choice of a search algorithm.
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The prediction of protein structures using optimization
methods have been more successful using comparative
modelling [4] techniques which include sequence align-
ment, threading [5] and the use of secondary structural
propensities [6]. However, a physical approach based on
energy minimization is used here. It is clear that the in-
teractions between the residues and the solvent molecules
drive the protein towards its native state. Determining
the fundamental interactions is important, not only for
protein structure prediction, but also for the protein fold-
ing problem. A further reason for the physical approach
is that comparative modelling requires the known struc-
ture of one or more homologous proteins - these cannot
always be guaranteed to exist.

The second aspect of the protein structure prediction
problem is concerned with designing a search strategy
for the energy minimization. It is clear that a blind
search through the conformational space is impossible,
as it would take a time greater than the age of the uni-
verse. A similar ‘paradox’ for real proteins, based on ob-
served protein folding times (∼ 10−3s), was first noted by
Levinthal [7]. Furthermore, several authors have proved
various models of protein structure prediction to be com-
putationally NP-hard 1 [9–11]. This implies that no effi-
cient algorithm can be designed to guarantee finding the
native state amongst the exponentially many. A related
idea to the complexity of the conformational search is the
concept of ‘rugged’ energy landscapes [12]. Although op-
timal solutions are not guaranteed, robust, exploratory,
non-deterministic search algorithms (e.g. simulated an-
nealing [13] and genetic algorithms [14]) can locate good,
near-optimal solutions, within a reasonable time. In the
present paper, we focus on the design of a good confor-
mational search strategy for the problem, leaving the dis-
cussion of the best choice of energy functions for protein
structure prediction to a later paper.

Genetic algorithms were invented by John Holland [14]
in his quest for a theory of adaptive processes. The
concept was inspired by Darwin’s evolutionary theory
(loosely ‘survival of the fittest’) and in particular ‘neo-
Darwinism’ according to which genetic recombinations
and mutations play a dominant role in the evolution of
a species. It is generally believed that Nature evolves
so that individuals that are the best adapted to their
co-evolving environment survive, while the poor ones die
off; this is an example of optimization, more commonly
referred to as ‘adaptation’ in biology [15]. Due to their
highly nonlinear nature, genetic algorithms are difficult
to analyse. There is no asymptotic global optimum con-
vergence proof, as there is in simulated annealing [16],
nor are there any general rules to design a GA for a spe-
cific problem. However, their empirical success for the

1A good introduction to the theory of NP-completeness and
NP-hardness can be found in [8].

solution of numerous NP problems ( [17] and references
therein) warrants their further study.

Previous applications of genetic algorithms to the pro-
tein structure prediction problem [18–20,3,21–23] have
not considered the GA design issue. As in any problem,
the simpler the algorithm is, the fewer the parameters it
requires, the easier it is to understand and improve the
performance. For this purpose we use a modified ver-
sion of Goldberg’s [24] Simple Genetic Algorithm (SGA),
written in C. Dandekar and Argos [18–20] also use a ver-
sion of the SGA but their work differs to ours in that
our objectives are different. Firstly, they optimize the
structural features of proteins (such as α-helices and β-
strands) rather than adopting an energy minimization
approach. Secondly, little comparison was made with
the performance of other algorithms. Schulze-Kremer
[22] wrote an elaborate genetic algorithm to optimize
real-space dihedral angles for a fully atomistic represen-
tation of proteins, based on CHARMM [25] energy mini-
mization. Unfortunately, results were poor. Clearly, our
principal research aim is to predict realistic structures
as well, but only when a good method has been estab-
lished. Unger and Moult [3,21] compared a Monte Carlo
search with a ‘genetic algorithm’, using simple exact lat-
tice models. However, their genetic algorithm is, strictly
speaking, a hybrid GA. It incorporates several Monte
Carlo conformers with the occasional crossover between
structures. For this reason, we call their approach a ‘Ge-
netic Algorithm-Monte Carlo’ (GAMC). They compared
this method with a Monte Carlo search and concluded
that the GAMC found lower energy solutions.

In this paper, we compare the Simple Genetic Algo-
rithm with work by Unger and Moult [21]; Yue et al. [26]
and Sali et al. [27] and determine guidelines for designing
protein-structure-prediction-genetic-algorithms.

The paper is structured in the following way. Section
II highlights the conformational search issue and the need
for a genetic algorithm approach. Following that, section
III provides a description of the method for determining
guidelines for GA design. Section IV discusses the Sim-
ple Genetic Algorithm used for the lattice conformational
search. The HP-model [28] and REM-model [29] are de-
scribed in section V, as are the various methods used to
minimize these potentials [26,3,21,27]. Lattice conforma-
tional search results from the SGA are compared with the
other methods in section VI, while section VII provides a
discussion of the ‘protein structure prediction-genetic al-
gorithm’ (PSP-GA) design principles that have emerged
from this work.

II. WHY GENETIC ALGORITHMS FOR
PROTEIN STRUCTURE PREDICTION?

Protein structure prediction is analytically difficult to
solve. The problem is thought to stem from the expo-
nential nature of the conformational search space. The
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number of conformations of a protein with N amino acid
residues grows exponentially as γN where γ is the aver-
age number of conformations per residue (typically ∼10).
This suggests that an algorithm would require an expo-
nential time to search the whole conformational space for
the native state.

However, problems with exponentially growing search
spaces are not new in physics (e.g. ideal gases) but many
are solvable due to the symmetries and conservation laws
that can be exploited. With proteins there is an added
difficulty that the interactions are complex - it is not clear
whether there are enough symmetries to reduce the prob-
lem to a tractable solution. In addition to this, proteins,
although macromolecular, do not contain ∼ 1023 atoms
to guarantee a valid statistical mechanical and thermo-
dynamic treatment.

Furthermore, work by Unger and Moult [9]; Fraenkel
[10]; Ngo and Marks [11] suggests that the protein struc-
ture prediction problem is NP-hard, that is computation-
ally impossible to guarantee an exact solution. Bryngel-
son, Wolynes et al. [12], for example, advocate that the
energy landscape of proteins must be ‘rugged’. This re-
flects the various energy barriers that have to be crossed
and thus the hurdles that a conformational search algo-
rithm must be able to deal with.

For these reasons ‘intelligent’ conformational search al-
gorithms have become popular in structure prediction.
Unlike gradient-based methods [30], which tend to termi-
nate at local minima, genetic algorithms ‘hop’ around the
conformational space independent of local derivatives. A
selection process focuses the search in low energy areas,
whereas a recombination stage maintains exploration of
the search space.

III. DESIGNING GENETIC ALGORITHMS FOR
PROTEIN STRUCTURE PREDICTION

A genetic algorithm is made up of 4 basic components:
representation; selection; recombination and evaluation.
Representation deals with formulating the specific prob-
lem as a digital string of parameters. This, combined
with the evaluation function (in our case conformational
energy) describes the optimization problem. The remain-
ing two components, selection and recombination, pro-
vide the dynamics of the GA search, which drive the pop-
ulation of solutions towards the global optimum. Within
each unit, there are several options leading to numerous
variations of genetic algorithms; some examples and cor-
responding parameters are listed in table I. To determine
guidelines for designing PSP-GAs, we used the following
principles:

1. A first approach should always be the simplest ap-
proach. In order to analyse the GA dynamics, we
used a GA with the simplest options and with the
fewest parameters - a Simple Genetic Algorithm -
to search lattice conformational space.

2. A systematic sample search of the parameter space
was carried out to determine optimal parameter
values for the SGA.

3. Having calibrated the SGA in step 2, we compared
the SGA conformational search ability using several
test energy functions.

4. Conformations, and their corresponding energies,
generated by the SGA were compared with confor-
mations predicted by other search methods.

5. The time evolution of conformations generated by
the SGA were observed. Minimal requirements and
improvements for PSP-GAs are proposed.

GA Options and Parameters

Population: static or variable size
Representation of solutions: bit string, reals, symbolic
Maximum number of generations or convergence criteria
Recombination operators: 1-pt crossover, uniform crossover,
mutation, perturbation
Recombination probabilities: static, variable or dynamic
Selection methods: roulette, tournament, rank, elitism
Fitness scaling: linear with cut-off, quadratic, exponential

TABLE I. Examples of various options in designing a ge-
netic algorithm.

The merit of simple exact lattice models [28] is the
ability to test ideas easily and suggest extrapolations to
real systems. Simple exact models are ‘simple’ since only
a few parameters are required, and ‘exact’ since physi-
cal properties can be calculated exactly. Lattice models,
although unrealistic in appearance, provide several ad-
vantages over real-space models. From a folding dynam-
ics point of view, they can explore long time behaviour;
while from a structure prediction/optimization point of
view, as in our case, they provide a valuable test-bed for
protein structure optimizers.

Runs with various initial conditions were carried out to
ensure that the GA produced similar results each time.

IV. THE SIMPLE GENETIC ALGORITHM FOR
LATTICE CONFORMATIONAL SEARCH

The Simple GA (SGA), as defined by Goldberg [24],
is the simplest of all genetic algorithms. The original
SGA manipulated binary strings which encode a trial so-
lution of the problem at hand. However, a major mod-
ification for searching protein conformations on a cubic
lattice is to use a more natural representation for this
problem. Since a simple cubic lattice is spatially restrict-
ing, a string of bond directions represents a folded chain
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of beads; each symbol corresponds to an increment or
decrement in the appropriate Cartesian coordinate of the
successive monomer beads (see table II). A conformation
of the polymer is then translated to a set of monomer
positions ri (i = 1, · · · , N) (where N is the number of
monomer beads (residues)).

Direction ∆r

(U)P rz 7→ rz + 1
(L)EFT rx 7→ rx − 1
(F)RONT ry 7→ ry + 1
(B)ACK ry 7→ ry − 1
(R)IGHT rx 7→ rx + 1
(D)OWN rz 7→ rz − 1

TABLE II. Bond directions describing lattice conforma-
tions. A bond direction corresponds to a change,∆r, in one of
the Cartesian coordinates of the successive monomer, keeping
all other coordinates the same as the previous monomer.

This representation has access to all 6N lattice confor-
mations, including all the non-physical, non-self-avoiding
conformations. Thus the search task is a formidable one.
A random population of conformations is generated and
manipulated according to the GA dynamics (selection
and recombination). The population size, S, is kept
fixed. All individuals are replaced at each iteration, ex-
cept for two copies of the current best conformation - this
is known as ‘elitism’.

Selection is linearly proportional to fitness so that the
probability, Pi, of selecting the ith conformation, with a
fitness value Fi, to propagate to the next time step is
given by:

Pi =
Fi∑S
j=1 Fj

(1)

Probabilities must be positive so a linear mapping with a
cut-off value is used to convert the energy (E) minimiza-
tion problem to a fitness (F ) maximization:

Fi =
{
−Ei if Ei < 0;
0 if Ei ≥ 0.

(2)

Selected individuals, strings, are modified in a recombi-
nation process, to generate new solutions. Figure 1 shows
a schematic representation of the one-point crossover and
gene-wise mutation operators used by the SGA. These
operators act stochastically on the selected individuals
with fixed probabilities. In one-point crossover, a random
crossover point is chosen for a pair of selected individu-
als, and the bond directions (‘genes’) are swapped up to
the crossover point. Mutations act on a single individual
and randomly change the value of bond directions along
the string. The workings of the SGA are summarised in
figure 2.

CROSSOVER

MUTATION

FIG. 1. The top half represents the action of a one-point
crossover operator. Below is an illustration of a single ge-
newise mutation. In both cases the left side represents the
‘before’ situation, and the right side, the ‘after’ state.

INITIALISE
POPULATION

SIZE N

POPULATION

EVALUATE

FITNESS

SELECT A PAIR

CROSSOVER?
PROB Pc

CROSS AT A 
RANDOM POINT

MUTATE GENE?
PROB Pm

CHANGE ALLELE 
RANDOMLY

SELECTED N/2 
PAIRS?

YN

Y

N

Y

N

FIG. 2. The simple genetic algorithm. A population of N
conformers is initialised. These trial conformations are eval-
uated and selected, based on their fitness. Pairs of selected
conformers are crossed over with a probability, Pc. Each bond
direction (‘gene’) is then randomly mutated with a probabil-
ity, Pm. A new population is selected in this manner and
repeated for many generations (typically 2000).
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V. TEST ENERGY FUNCTIONS

A. Random Energy Model

Originally used in spin glass theory, the Random En-
ergy Model (REM) [31] was applied to protein folding
by Bryngelson and Wolynes [32] and later formulated for
lattice protein models by Shakhnovich and Gutin [29].
In the REM, a protein is described by a fixed sequence
of random interaction energies. Although not discussed
here, the random interaction model lends itself for an-
alytical studies of the coil-globule transition in proteins
[29]. Specifically, the conformational energy is calculated
as:

E({r1..rN}) =
N∑

i,j=1;i<j

Bij∆(ri − rj) +

D2

N∑
i,j

δ(ri − rj) +

D3

N∑
i,j,k

δ(ri − rj)δ(rj − rk) (3)

∆(ri − rj) =
{

1 for i & j nearest neighbours
0 otherwise

δ(ri − rj) =
{

1 if monomers i,j occupy same site
0 otherwise

where,
D2 ≡ energetic penalty parameter for sites containing
2 or more monomers
D3 ≡ energetic penalty parameter for sites containing
3 or more monomers
Bij ≡ disorderly interaction energies
(energies are in units of kBT where kB is Boltzmann’s
constant and T is the temperature in Kelvin)

The interaction matrix, Bij , is symmetric but ran-
domly generated with a Gaussian distribution:

P (Bij) = (2πB2)−
1
2 exp(−(Bij −B0)2/2B2) (4)

The compactization observed in globule proteins is
modelled in Eq.(3) using Bij as a negative interaction po-
tential with mean B0. B defines the spread, i.e. the stan-
dard deviation, of the compactization interactions. The
greater the spread, the more heterogeneous the protein.
A zero-spread corresponds to uniform interactions; this
special case constitutes the Fixed Energy Model (FEM)
which we have used for the larger polymers studied here
(64mer, 125mer).

The last two terms in Eq.(3) represent excluded volume
effects, that is they are energetic penalties for conforma-
tions with lattice sites occupied by more than two (D2

term) or more than three (D3 term) monomers. The ob-
jective of the genetic algorithm is to find conformations
without multiple occupancies at a single site, by minimis-
ing this energy function.

B. HP-model

It is well known that correlations in the sequence of
amino acid residues lead to sub-structures (secondary
structures) common to all protein structures. These cor-
relations can reduce the size of the ‘alphabet’ (code) from
20 symbols to a lesser number. The simplest and most
interesting is the classification of residues into two types:
H and P [33]. The energy function for this system favours
interactions between HH monomer types and is indiffer-
ent to all other (PP and HP) interactions. This is known
as the HP-model. It aims to highlight the importance
of the hydrophobic effect in protein folding. In an aque-
ous medium, globular proteins tend to have a core of
hydrophobic residues, surrounded by polar residues on
the surface; in the HP-model, the H monomers corre-
spond to hydrophobic residues that collapse to form a
core surrounded by polar, P, monomers. Much work has
been carried out by Dill and co-workers on this model
[34,35,23,26,28].

The energy function for this model is:

E({r1..rN}) = −|ε|
N∑

i,j=1;i<j

∆(ri − rj) +

ε2

N∑
i,j

δ(ri − rj) +

ε3

N∑
i,j,k

δ(ri − rj)δ(rj − rk) (5)

∆(ri − rj) =
{

1 if i,j both H-type & nearest neigh.
0 otherwise

δ(ri − rj) =
{

1 if monomers i,j occupy same site
0 otherwise

where,
|ε| ≡ strength of HH attraction (usually taken as 1)
ε2 ≡ energetic penalty parameter for sites containing
two or more monomers
ε3 ≡ energetic penalty parameter for sites containing
three or more monomers

Strictly speaking, the final two terms (ε2, ε3) in Eq.(5)
are not included in the HP-model. We borrow these
terms from the Random Energy Model to drive the con-
formational search towards self-avoiding conformations.
This is necessary since all possible conformations are al-
lowed; an energetic penalty is required to penalise con-
formations with multiple occupancies at a single site. For
both models (REM and HP), the penalty terms reduce
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to zero if the search is successful and a low energy self-
avoiding conformation is found.

VI. RESULTS

The first test function used was that from the Random
Energy Model, Eq.(3). Shakhnovich et al. [27] used a
Metropolis Monte Carlo algorithm with this energy func-
tion to find the native states of 27mer heteropolymers.
They interpreted the Monte Carlo ‘folding’ algorithm as
modelling the folding dynamics of polymers. However,
although Metropolis Monte Carlo methods asymptoti-
cally guarantee finding the thermal equilibrium state, it
is unclear whether an interpretation beyond this has any
validity. We view their procedure as a protein structure
optimization approach. These authors enumerated all
compact (cubic) self-avoiding conformations, which al-
low them to determine the global minimum of each ran-
dom 27mer sequence generated. They reported [27] that
three out of thirty sequences found the known global
minimum; energies varied from -83.7 to -74.6 (in units
of kBT ). Using the SGA, we found that three out of
four sequences obtained compact, 100% cubic conforma-
tions (see fig. 3), with energies ranging from -78.1 to
-69.9 (units in kBT ). We cannot determine whether they
are the global energy-minimum structures without carry-
ing out a full enumeration; this is computationally time
consuming due to the NP-complete nature of the prob-
lem, and, more importantly, unnecessary for our design
purposes. Furthermore, we were unsuccessful in our cor-
respondence with the authors and were unable to obtain
the random interaction matrices specifically used in their
work ( [27]).

FIG. 3. Example of a 100% cubic 27mer conformation
found by the SGA.

Longer polymers (64mer, 125mer) are more challeng-
ing since the conformational space grows exponentially
with the polymer length. We continued to use the

REM with B=0. This corresponds to uniform in-
teractions and thus guarantees that cubic conforma-
tions (4×4×4, 5×5×5 respectively) occupy the multiply-
degenerate ground states. The 64mer reached 91% cu-
bicity and the 125mer runs found a conformation with
85% cubicity (fig. 4). Since we are restricting our dis-
cussion to cubic lattices, it is more accurate to describe
structures according to how ‘cubic’ they are, rather than
using the more general term ‘compactness’.

It is unfortunate that 100% cubic conformations were
not found; however, we are using the simplest genetic
algorithm. Nevertheless, this initial exercise was use-
ful to establish optimal values for the GA parameters.
The optimal GA parameters for short polymers were: a
minimum population size of 400; a 20% probability of
crossover and a 4% probability of mutating a bond direc-
tion. Longer polymers required a larger minimum popu-
lation size of 1000; a 90% probability of crossover and a
2% probability of mutation. Having established a good
set of GA parameters, the SGA was analysed using the
second test function, the HP-model.

Unger and Moult studied random HP-sequences of
length 27 and 64 monomers [21]. They used two op-
timization methods: a Metropolis Monte Carlo (MC)
method and a variation of the Monte Carlo method
that incorporates a genetic algorithm (GAMC). The
GAMC method corresponds to a population of Metropo-
lis Monte Carlo conformers which ‘mix’ between them-
selves through a crossover operation. The comparisons
between these methods and our SGA are shown in tables
III and IV.

Our SGA beat Monte Carlo in 17 of the 20 test se-
quences and equalled it in finding low energy conforma-
tions for two sequences. On average, conformations gen-
erated by our SGA were 1.1 energy units lower than those
found by the Monte Carlo method for the 27mers and 8.3
units lower for the 64mers.

When compared to the GAMC method, the SGA per-
formed on average as well as the GAMC for the 27mers;
SGA conformational energies were on average 0.5 unit
higher. In the 64mer case, SGA conformations were on
average 3.4 energy units higher than the conformational
energies found by the GAMC. There was one 64mer se-
quence for which the SGA found a lower energy confor-
mation than the GAMC. An important note is the speed
at which the SGA found low energy conformations. Only
a fraction of the total number of steps were required for
the SGA when compared to the Monte Carlo and GA-
Monte Carlo. For example, for the 27mer, to reach a solu-
tion of comparable quality, the number of steps required
by the SGA was 3% of the number of steps required by
the MC method, and 4% for the GAMC.

Further studies were carried out using HP-sequences
taken from Yue et al. [26]. They designed ten 48mer se-
quences and determined the native conformational states
using a constraint-based hydrophobic core construction
method. This method determines the global minima
of HP-sequences by constructing conformations with a
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number of nearest neighbours=74 number of nearest neighbours=149

FIG. 4. Left: 91% cubic conformation for a 64mer homopolymer. Right: 85% cubic conformation for a 125mer homopolymer.

sequence ESGA Num Steps ∆EMC ∆EGAMC

273d.1 -8 2.9E+04 -1 1
273d.2 -8 2.1E+04 1 1
273d.3 -8 1.1E+05 -2 0
273d.4 -15 2.7E+05 -4 0
273d.5 -7 9.6E+03 0 1
273d.6 -11 9.6E+04 -2 0
273d.7 -11 2.2E+04 -1 1
273d.8 -4 8.6E+04 0 0
273d.9 -7 6.0E+04 -1 0
273d.10 -10 5.6E+04 -1 1

AVERAGE -8.9 7.6E+04 -1.1 0.5

TABLE III. SGA comparisons with Unger and Moult’s
27mer results. The sequence number corresponds to the num-
ber used by Unger and Moult to label their HP sequences.
ESGA is the lowest energy found by the SGA. The ‘num
steps’ column reports the number of energy evaluations car-
ried out by the SGA to reach the lowest energy state. ∆EMC

is the energy difference between the lowest energies found
by the SGA and Unger & Moult’s Monte Carlo procedure:
∆EMC = ESGA − EMC . Similarly, ∆EGAMC is the energy
difference between the SGA and Unger & Moult’s GAMC
method.

sequence ESGA Num Steps ∆EMC ∆EGAMC

643d.1 -21 6.4E+05 -9 6
643d.2 -26 1.5E+06 -9 3
643d.3 -36 1.7E+06 -12 -1
643d.4 -30 1.9E+06 -12 4
643d.5 -28 6.3E+05 -8 4
643d.6 -22 4.6E+05 -6 7
643d.7 -17 2.1E+05 -2 3
643d.8 -28 1.4E+06 -9 1
643d.9 -29 9.8E+05 -10 3
643d.10 -20 3.1E+05 -6 4

AVERAGE -25.7 9.8E+05 -8.3 3.4

TABLE IV. SGA comparisons with Unger and Moult’s
64mer results. The sequence number corresponds to the num-
ber used by Unger and Moult to label their HP sequences.
ESGA is the lowest energy found by the SGA. The ‘num
steps’ column reports the number of energy evaluations car-
ried out by the SGA to reach the lowest energy state. ∆EMC

is the energy difference between the lowest energies found
by the SGA and Unger & Moult’s Monte Carlo procedure:
∆EMC = ESGA − EMC . Similarly, ∆EGAMC is the energy
difference between the SGA and Unger & Moult’s GAMC
method.

7



core of H (hydrophobic) residues that also minimize the
surface area of the conformation. The difference in the
conformational energies found by the SGA and the na-
tive state energy is labelled as ∆EN . Yue et al. also
used a conformational search algorithm for HP-sequences
called a ‘hydrophobic zipper’ (HZ). In this case, the H
monomers attract nearby H monomers and bring them
together in a process akin to nucleation. The energy dif-
ference between conformations found by this method and
the SGA is denoted as ∆EHZ . The comparisons are sum-
marised in table V. Conformations found by the SGA
were on average 6.0 energy units higher. An example of
a compact conformation by the SGA is shown in figure
5. In no cases did the SGA equal or beat conformational
energies obtained by the hydrophobic zipper method.

number of nearest neighbours=39

FIG. 5. Example of a compact HP conformation, with a
hydrophobic core, found by the SGA.

Runs took from several minutes for short polymers
(27mers, 48mers) to hours for longer cases (64mers,
125mers) on a DEC 3000 Alpha workstation.

VII. DISCUSSION

The conformations found by the SGA are not promis-
ing in themselves. However, the aim of the study is to
analyse the simple genetic algorithm and determine what
factors are important in designing PSP-GAs. What can
we learn from these results about PSP-GAs?

It is clear from the 27mer studies that the SGA per-
forms well for short polymers and tends to find compact,

sequence ESGA #Steps ∆EHZ ∆EN
483d.81 -24 1.6E+06 7 8
483d.82 -24 4.7E+05 8 10
483d.83 -23 1.9E+05 7 10
483d.84 -24 8.6E+05 7 10
483d.85 -28 2.4E+05 2 4
483d.86 -25 5.5E+05 4 7
483d.87 -27 3.8E+05 2 5
483d.88 -26 4.2E+05 3 5
483d.89 -27 1.3E+05 4 7
483d.90 -26 7.0E+04 3 7

AVERAGE -25.4 4.9E+05 9.4 7.3

TABLE V. SGA comparisons with Yue and Dill’s 48mer
studies. Sequence number corresponds to the number used
by Yue et al.to label their HP sequences. ESGA is the lowest
energy found by the SGA. The ‘num steps’ column reports the
number of energy evaluations carried out by the SGA to reach
the lowest energy state. ∆EHZ is the energy difference be-
tween the lowest energies found by the SGA and Yue et al.’s
hydrophobic zipper method: ∆EHZ = ESGA − EHZ. Sim-
ilarly, ∆EN is the energy difference between the SGA and
the native state energy found by Yue et al.using the con-
straint-based hydrophobic core construction method.

low energy structures. However, as was evident in our ini-
tial investigation of 64mers and 125mers using the REM,
the SGA performs below average. Although the SGA
method was better than the Monte Carlo method, it did
not perform as well as the GAMC and was even worse
than the HZ algorithm. To some extent, it is not sur-
prising that the hydrophobic zipper method performed
better than the SGA. HZ is a specialised search algo-
rithm for the HP-model and generates conformations by
explicitly forming H-H contacts. It is not uncommon for
specialised algorithms to solve certain cases of an NP-
complete problem - however, a general solution remains
difficult [36].

In general the SGA finds it hard to generate compact
conformations for the longer polymers - why? We in-
vestigated this further using the HP-model. The best
way to analyse the dynamics of the SGA is to observe its
time evolution rather than merely the end result. Thus,
the lowest energy conformations were observed at various
time points. In several cases, the SGA produced two clus-
ters of residues with hydrophobic (H) cores connected by
a ‘thread’ - similar to loop regions in real proteins. It is
promising that such conformations (see figure 6) are pos-
sible since proteins with sub-structures connected by loop
regions are common in Nature. However, this is not the
lowest energy conformation for the HP-model, so we con-
clude that the clustering is due to restrictions imposed by
the GA dynamics, that is to selection and recombination.
Selection is an important aspect of the GA dynamics but
we do not think it is the reason for the occurrence of clus-
tered solutions; if a lower energy globule existed in the
population, the selection function would have assigned it
a high probability and elitism would guarantee its selec-
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tion into the next generation.
The problem must therefore lie in the recombination

stage: it appears that the one-point crossover and mu-
tation operations cannot inter-digitate the clusters suc-
cessfully. We believe that these recombination operators
would fold the clusters into each other creating many
sites with multiple occupancies; these are penalised by
the excluded volume terms in Eq.5 heavily reducing the
‘survival probability’ of such structures. The difficulty
appears to be in the formation of only two large clus-
ters, or ‘building blocks’; we think that more clusters
but smaller in size would be easier to manipulate. How
do we promote this in the GA dynamics?

Genetic algorithms manipulate partial solutions in
their search for the overall optimal solution [14,24].
These partial solutions or ‘building blocks’ correspond
to sub-strings of a trial solution - in our case local sub-
structures within the overall conformation. Clearly, the
level of crossover influences the size of the building blocks.
A multi-point crossover would generate smaller building
blocks (a higher ‘resolution’) and consequently smaller
clusters that should facilitate their inter-digitation. In
the case of the 27mer, the one-point crossover generates
building blocks of 13.5 monomers, on average. Based
on this argument, 48mers and 64mers require at least
two to three point crossovers to reduce the size of the
building blocks to ∼ 10. Furthermore, the local pertur-
bation dynamics of the Monte Carlo methods aids the
local ‘fine tuning’ of conformations as manifested by the
GAMC method. It is believed that the two recombina-
tion operators of multi-point crossover and a local pertur-
bation are required for any PSP-GA to be fully effective.
Work is under way to design a PSP-GA to optimize real
protein structures (rather than lattice models) which in-
cludes these requirements.

One further problem with genetic algorithms is ‘know-
ing when to stop’. Most optimization algorithms deal
with a single solution at a time and decide to stop when
there has been no change in the cost or energy function
for a successive number of steps. Since GAs deal with an
ensemble of solutions, a quantity analogous to the statis-
tical mechanical free energy is used. The ‘population free
energy’, F , is calculated from its ‘partition function’, Z:

Z =
N∑
i=1

e−Ei (6)

where the sum is over the total number of conformers in
a population and Ei is the energy of the ith conformer.
Hence,

F = − ln(Z) (7)

This approach is advantageous over using the mean
energy of the population in two ways. Firstly, the mean
energy fluctuates around the equilibrium making it diffi-
cult to use as a stop criterion, and secondly, F contains
more information on the shape of the energy distribution,

including, in particular, its ‘entropy’. F appears to play
the role of a Lyapounov function in the GA dynamics -
convergence is synonymous with its minimal value. Fig-
ure 7 plots the energy distributions of the population at
various time steps. The plot shows very clearly that the
GA dynamics converge the population of conformations
to an equilibrium distribution. This is characterised by
F as shown in figure 8.
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FIG. 7. Evolution of a population: plotting the energy dis-
tributions at various time steps. t is the percentage of the
total run-time elapsed. The population converges within 50%
of the run time.
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FIG. 8. Evolution of the energies of a population. The
free energy, which characterises the energy distribution of a
population, reaches a convergence, or equilibrium point.

In conclusion, the genetic algorithm approach to the
protein structure prediction problem offers a promising
potential method of solution. GAs are fast and effi-
cient at searching the rugged conformational landscapes
presented by protein molecules. We have established
some guidelines for designing PSP-GAs in this paper and
are currently implementing them in an improved GA to
search for realistic protein structures.
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1. nearest=7 energy=−7.000 2. nearest=24 energy=−14.000

3. nearest=27 energy=−16.000 4. nearest=30 energy=−17.000

FIG. 6. Evolution of the best conformation per generation: formation of clusters in the Simple Genetic Algorithm.
Dark=H=hydrophobic, Light=P=polar.
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