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Analysis of the fatigue life of a semitrailer structure necessitates identification of the loads and dynamic solicitations in the structure.
These forces can be introduced in computer simulation software (multibody + finite element) for analysing the response of different
design solutions to them. These numerical models must be validated and some parameters need to be measured directly in a field
test with real vehicles under various driving conditions. In this study, a low-cost monitoring system is developed for application
to a real fleet of semitrailers. According to the definition of the numerical model, the guidance of a virtual vehicle is defined by
the three-dimensional kinematics of the kingpin. For characterisation of these movements, a monitoring system having a low-
cost inertial measurement unit (IMU) and global positioning system (GPS) antennas is developed with different configurations
to enable analysis of the best cost-benefit (result accuracy) solution, and an extended Kalman filter (EKF) that characterises the
kinematic guidance of the kingpin is proposed. A semitrailer was equipped with the experimental low-cost monitoring system and
high-precision sensors (IMU, GPS) in order to validate the results obtained by the experimental low-cost monitoring system and
the inertial-extended Kalman filter developed. The validated system has applicability in the low-cost monitoring of a fleet of real
vehicles.

1. Introduction

Vehicle weight reduction is one of the effective approaches for
reducing fuel consumption and emissions [1]. A simulation
has revealed that, for every 10% weight reduction from the
weights of an average new car and light truck, their fuel
consumption would reduce by 6.9% and 7.6%, respectively. In
the case of a commercial vehicle, a reduction in its kerbweight
corresponds to an increased payload capacity. Therefore,
weight reduction has a greater impact for this type of vehicle
than for other types of vehicles.

In semitrailers, the body frame represents more than
75% of the total weight; therefore, this component has the
most room for improvement. Weight reduction of the body
frame should be achieved while keeping the safety level of the

vehicle and the ability of the vehicle and of its components
to maintain their functions unchanged or while limiting the
vehicle’s degradation with aging to acceptable levels.

Today, for heavy-duty trucks, an adequate endurance
specification is assumed when 10% of the population of
vehicles produced exceed the 800,000 km without any failure
[2]. Phenomena that can influence the endurance of a vehicle
can be classified into the following categories: fatigue, wear,
corrosion, and shocks and collisions.

Weight reduction of the body frame of a vehicle affects
its fatigue life; therefore, to ensure that the aging and
endurance remain unaffected by this reduction, it is necessary
to establish the vehicle design on the basis of a detailed
study of the fatigue life. Fatigue life evaluation necessitates
an accurate identification of the loads that the body frame
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Figure 1: Methodology for fatigue life calculation.

will be subjected to during operation and performance of
optimization by the use of simulation techniques based on
the Finite Element Method. The methodology for fatigue life
calculation is established by means of a virtual test, as shown
in Figure 1.

As shown in this figure, a real vehicle is employed
for performing discretisation of the body frame by means
of finite element software (such as ANSYS or ABAQUS).
This chassis information is then introduced in multibody
dynamics simulation software (such as ADAMS of MSC
Software Co.) to develop a virtual experimental program.
This program includes different driving conditions (speed,
manoeuvres, obstacles, roads, etc.) with the aim of defining
the load cases to be introduced in fatigue life prediction
algorithms.

To determine the loads during vehicle operation, a
methodology based on the simulation of virtual models
using data acquired by low-cost instrumentation has been
developed. The effectiveness of this methodology—which
combines acquired real data and a virtual model to optimise
designs—for application to other types of vehicles has been
proved [3].Themain advantage of combining a virtual model
and real data is the reduction in the complexity of the
data acquisition system and the required number of sensors.
In a vehicle such as that analysed, the loads necessary for

calculation of the fatigue life are due to the actions of tractor,
suspension, load, and so forth [4, 5].This implies the need for
complex instrumentation, thereby making this methodology
unsuitable for application to a vehicle fleet.

The present paper presents the development and imple-
mentation of a low-cost instrumentation system that is
nonintrusive and robust; this system was developed with the
aim of applying the above-described methodology to trailer-
type vehicles. A semitrailer is a vehicle that can be coupled to
different tractor vehicles. Therefore, in order for the virtual
model to be able to calculate the loads regardless of which
tractor vehicle is connected to the semitrailer, the inputs to
the virtual model are proposed to be the actions of the tractor
vehicle at the point of connection.

The multibody model inputs developed for use with the
methodology can be forces, acceleration, velocities, and/or
positions. Given the need to develop a low-cost system to
provide inputs to the model, the kinematic guidance of the
connection point (i.e., kingpin) between the tractor and the
semitrailer was selected as the input in the present study.

2. Materials and Methods

2.1. Related Work. The most appropriate device for mea-
suring the velocity of the kingpin is a Global Navigation
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Figure 2: Variations in measured velocity due to noise in GNSS in
actual test.

Satellite System (GNSS) receiver, because two of the outputs
are the absolute speed and the course angle (as of April 2013,
only the United States NAVSTAR global positioning system
(GPS) and the Russian GLONASS were global operational
GNSSs). However, the velocity acquired with a low-cost
GNSS receiver causes two problems—a high level of noise
and low precision, which worsen under the influence of
external factors such as multipath and low satellite visibility
[8]. Given the environment in which these vehicles operate,
these problems occur frequently. Noise in the GNSS signal
implies variations in the measured velocity, which in turn
implies significant changes in acceleration (Figure 2). During
simulation, these variations in the input of the virtual model
translate into loads much higher than actual loads. Fatigue
analysis based on thus obtained loads would be unreliable,
and filtering of the input signal would not solve this problem.
Furthermore, speed measurement of the kingpin using a
GNSS receiver cannot be performed for all types of vehicles,
since the kingpin is usually hidden under the box or the load,
and this approach is applicable only in the case of a semitrailer
or container.

In consideration of both of these problems, the low-cost
system developed in the present study is equipped with an
inertial filter—specifically, an inertial-extended Kalman filter
(i-EKF)—for the estimation of velocity of the kingpin using a
GNSS receiver, which can be placed at a different location.
The proposed low-cost system is based on the concept of
fusion of an inertial measurement unit (IMU) and GNSS
receivers with low-cost sensors. Sensor fusion refers to the
combination of data acquired from multiple sensors with
related information, which facilitates achievement of more
specific inferences than those possible by using a single
independent sensor [9]. The following are the advantages of
using a multisensor approach over a single-sensor approach
[10]:

(i) Robust operational performance: any of the sensors
has the potential to provide information during
unavailability malfunctioning or failure of the other
sensors.

(ii) Extended temporal coverage: one sensor is able to
detect or measure an event at times when the other
sensors are unable to.

(iii) Extended spatial coverage: one sensor can cover what
other sensors cannot.

(iv) Increased confidence: multiple independent mea-
surements provide information on the same event.

(v) Improved detection performance: multiple indepen-
dent measurements of the same event are integrated
effectively.

(vi) Reduced vulnerability to denial: this occurs as a
result of increased dimensionality of the measure-
ment space.

The following are the advantages of sensor-fused data
over single-sensor data [9]:

(i) Improved estimate: if several identical sensors are
used, combination of observations from these sensors
may lead to an improved estimate. Furthermore, a
statistical advantage is gained by the addition of
independent observations, under the assumption that
the data are combined in an optimal manner.

(ii) Improved observation process: use of the relative
placement or motion of multiple sensors may result
in an improved observation process. For example,
two sensors that measure the angular directions to an
object can be coordinated to determine the position
of the object via triangulation.

(iii) Improved observability: broadening of the baseline of
physical observables can result in significant improve-
ments. If the observations are associated correctly, the
combination of sensors provides a better estimation
than what could be obtained by any of the sensors
independently. This results in a smaller error region.

The fusion of an IMU and GNSS receiver is frequently
used for accurate determination of attitude. In [11], with the
aim of determining the full attitude even for a nonaccelerat-
ing vehicle, a navigation system that incorporates inertial and
two-antenna carrier phase differential GPS measurements
was developed. Aided inertial navigation is a well-studied
problem [12–16]. Several GPS pseudorange and Doppler-
aided inertial systems have been documented in the litera-
ture; see, for example, [17].

A low-cost system that fuses inertial sensing and a two-
antennaGPSwith anunscentedKalmanfilter (UKF) has been
developed in [18]. Many previous works on low-cost attitude
estimation [19–28] have focused on the fusion of inex-
pensive sensors, including microelectromechanical system-
(MEMS-) based gyroscopes and accelerometers, magne-
tometers, and the GPS.

In low-cost land vehicle navigation applications, in addi-
tion to accurate position and velocity information being
required, an accurate attitude needs to be provided by the
navigation system [28–31]. Use of the GPS signal for attitude
determination has several advantages such as the small size,
low cost, lack of cumulative errors, and high accuracy of
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the GPS. However, attitude determination using the GPS
also has drawbacks such as its susceptibility to the external
environment and instability in dynamic applications [31].The
conventional method of attitude determination is to use an
inertial navigation system (INS). However, the INS has a
drawback in that errors accumulate over time, especially in
the case of a low-cost MEMS-INS. If the GPS and MEMS-
INS are combined effectively, the reliability and accuracy of
attitude determination can be improved [32–34].

The low-cost system proposed in this work differs from
conventional systems in that it entails estimation of the
velocities (to be used as inputs in computer simulation
models) at a point of the vehicle and not the position or
attitude. In any case, given the advantages of the fusion of
these sensors, estimation of other states that are inputs to
safety systems is a routine methodology for a vehicle.

Several works have proposed estimation methods of sev-
eral key vehicle states—sideslip angle, longitudinal velocity,
roll, and grade—for example, by combining automotive-
grade inertial sensors with a GPS receiver [35]. Kinematic
estimators that are independent of uncertain vehicle param-
eters integrate inertial sensors with GPS antennas to provide
high update estimates of the vehicle states and sensor biases.
Use of a two-antenna GPS system would enable quantifica-
tion of the effects of pitch and roll on the measurements,
which have been demonstrated to be quite significant in
sideslip angle estimation.

The sideslip angle is an important state of vehicle lateral
dynamics, and its estimation has been studied by many
researchers [36–45]. For example, Bevly et al. proposed an
estimation method that utilises a single-antenna GPS along
with an IMU [43, 44]. This method essentially integrates the
bias-corrected yaw rate to obtain the vehicle heading angle,
which can provide the sideslip angle along with the vehicle
velocity angle measured by the single-antenna GPS. In [46], a
newmethod was proposed that employs two low-cost single-
antenna GPS receivers to estimate the vehicle sideslip angle.
In the present study, four kinematics equations that relate
the velocities of two different GPS receivers to the heading
angle and to the longitudinal/lateral velocities of a vehicle
are presented. These equations are then analysed in order to
determine the theoretical limit of the sideslip/heading angle
estimation. Fusion of a GPS with an IMU through an EKF is
performed.

2.2. Mathematical Model. A mathematical model of a semi-
trailer is established in this section.Thismodel is then used in
a computer simulation to implement an EKF with a low-cost
IMU and GPS receivers. According to the definition of the
mathematicalmodel, the longitudinal and lateral acceleration
values (vehicle frame) and the yaw rate provided by the
IMU are used as inputs. The GPS speed (reference frame) is
considered as an output or measurement vector.

2.2.1. Reference and Vehicle Frames. For the definition of the
vehicle dynamics model and computer simulationmodel, the
kinematics of the kingpin should be defined as an input by
characterising its speed. According to the usual approach

of using a multibody system, it is necessary to define the
kinematics in local coordinates in accord with the motion of
the vehicle. Given that the employed sensing system includes
various types of sensors, two reference systems are defined.

Reference Frame. The following is the notation of coordinates
used for the reference frame (sometimes termed the local
vertical, local horizontal (LVLH) frame): east, north, up
(ENU). The local ENU coordinates are formed from a plane
tangential to the Earth’s surface, fixed at a specific location;
therefore, this plane is sometimes known as a “local tangent”
or “local geodetic” plane.

Vehicle Frame. In this case, the sensitive axes of the accelerom-
eter sensor are made to coincide with the axes of the
semitrailer. The origin coincides with the location of the
kingpin of the vehicle.

This frame is in accordance with the ISO standards,
specifically ISO 8855. In this coordinate system (Figure 3),
the forward movement of the vehicle is described along
the positive x-axis; the lateral movement of the vehicle is
described along the y-axis; it is positive when the vehicle
is oriented to the left (from the driver’s position); and the
verticalmovement of the vehicle is described along the z-axis.

2.2.2. Extended Kalman Filter. In order to apply the proposed
methodology, the equations of the virtual model must be
expressed in space-state form.The state-space representation
of a physical system is composed of a set of inputs, outputs,
and state variables related via first-order differential equa-
tions, which are combined in a first-order matrix differential
equation.The state variables or states are expressed as vectors
and the algebraic equations are written in matrix form,
provided that it is a linear system. A general way to represent
a nonlinear system with 𝑝 inputs, 𝑞 outputs, and 𝑛 states is as
follows: 𝑥̇ (𝑡) = f (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝑤 (𝑡)) ,𝑦 (𝑡) = h (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , V (𝑡)) . (1)

Here, the first equation is the state equation and the second
one is the output equation, where 𝑥(𝑡) is the “state vector,”𝑥(𝑡) ∈ R3; 𝑢(𝑡) is the “input vector,” 𝑢(𝑡) ∈ R3; 𝑦(𝑡) is the
“output vector,”𝑦(𝑡) ∈ R𝑞; and𝑤(𝑡) and V(𝑡) are randomvari-
ables that represent the process noise andmeasurement noise,
respectively.

Applying the concept of Taylor series expansion, the esti-
mation around the current estimate can be linearised using
the partial derivatives of the process and the measurement
functions in order to compute estimates even in the face of
nonlinear relationships. It can be assumed that the system
has a state vector 𝑥(𝑡) ∈ R𝑛 and that it is governed by the
nonlinear stochastic difference equation. In discrete form, the
equation can be expressed as𝑥 (𝑘) = f (𝑥 (𝑘 − 1) , 𝑢 (𝑘 − 1) , 𝑤 (𝑘 − 1)) ,𝑦 (𝑘) = h (𝑥 (𝑘) , 𝑢 (𝑘) , V (𝑘)) , (2)
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where the measurement equation is𝑦 (𝑘) = h (𝑥 (𝑘) , 𝑢 (𝑘) , V (𝑘)) . (3)

In this case, the nonlinear function “f” is the difference
equation that relates the state at the previous time step (𝑘−1)
to that at the current time step (k). The state vector (𝑥(𝑡) ∈
R3) is defined as follows:

𝑥 (𝑘) = [[[
𝑥1 (𝑘)𝑥2 (𝑘)𝑥3 (𝑘)]]] = [[[

𝑉𝑥 KP (𝑘)𝑉𝑦 KP (𝑘)𝜓 (𝑘) ]]] . (4)

Further, 𝑢(𝑡) ∈ R3, which represents the inputs from the
IMU (acceleration and yaw rate), is expressed as

𝑢 (𝑘) = [[[
𝑢1 (𝑘)𝑢2 (𝑘)𝑢3 (𝑘)]]] = [[[

𝑎𝑥 KP (𝑘)𝑎𝑦 KP (𝑘)𝜓̇ (𝑘) ]]] . (5)

𝑤(𝑡), which represents the process and measurement
noises, is given as

𝑤 (𝑘) = [[[
𝑤1 (𝑘)𝑤2 (𝑘)𝑤3 (𝑘)]]] = [[[[

𝜂𝑉𝑥 KP𝜂𝑉𝑦 KP𝜂𝜓 ]]]] . (6)

Finally, 𝑦(𝑡) represents the “output vector” and 𝑦(𝑡) ∈
R𝑞. Its value is obtained via different study cases and it
depends on the adopted instrumentation system and layout,
as described later.

In practice, the individual values of the noises 𝑤(𝑘 − 1)
and V(𝑘 − 1) at each time step are unknown. However, the
state and measurement vectors without these values can be,
respectively, approximated as𝑥̃ (𝑘) = f (𝑥̂ (𝑘 − 1) , 𝑢 (𝑘 − 1) , 0) ,𝑦̃ (𝑘) = h (𝑥̃ (𝑘) , 𝑢 (𝑘) , 0) , (7)

where 𝑥̃(𝑘) is some a posteriori estimate of the state (from a
previous time step 𝑘).
2.2.3. Development of the Mathematical Model of Semitrailer
Using i-EKF. It is considered that the vehicle (semitrailer)
performs a flat movement and that it is guided by the tractor
unit (truck), as described in Figure 3. The implemented
vehicular dynamics model takes into account the inertial
effects, but it does not consider dynamic roll, suspension
performance, inclination of the road, and so forth. For the
formulation of the system dynamics model in the state-space
form, the acceleration in the mobile system of the kingpin is



6 Journal of Sensors

considered; accordingly, the model can be expressed in terms
of linear and angular velocities as follows:𝑎𝑥 KP = 𝑉̇𝑥 KP − 𝑉𝑦 KP ⋅ 𝜓̇,𝑎𝑦 KP = 𝑉̇𝑦 KP + 𝑉𝑥 KP ⋅ 𝜓̇, (8)

where 𝑎𝑥 KP and 𝑎𝑦 KP are longitudinal and lateral accelera-
tion, respectively, at the kingpin (vehicle frame) and 𝜓, 𝜓̇ are
the heading angle and yaw rate, respectively, and𝑉𝑥 KP, 𝑉𝑦 KP
are the longitudinal and lateral velocities, respectively (vehi-
cle frame).

Then, the velocities in the vehicle frame are expressed as𝑉̇𝑥 KP = 𝑎𝑥 KP + 𝑉𝑦 KP ⋅ 𝜓̇,𝑉̇𝑦 KP = 𝑎𝑦 KP − 𝑉𝑥 KP ⋅ 𝜓̇. (9)

In discrete form, they can be expressed as𝑉̇𝑥 KP ≈ 𝑉𝑥 KP (𝑘) − 𝑉𝑥 KP (𝑘 − 1)Δ𝑇= 𝑎𝑥 KP (𝑘 − 1) + 𝑉𝑦 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) ,𝑉̇𝑦 KP ≈ 𝑉𝑦 KP (𝑘) − 𝑉𝑦 KP (𝑘 − 1)Δ𝑇= 𝑎𝑦 KP (𝑘 − 1) − 𝑉𝑥 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) ,𝜓̇ ≈ 𝜓 (𝑘) − 𝜓 (𝑘 − 1)Δ𝑇 = 𝜓̇ (𝑘 − 1) .
(10)

However, in the simplified model, these inaccuracies are
included in noise system. The model can be expressed in
matrix form as

[[[
𝑉𝑥 KP (𝑘)𝑉𝑦 KP (𝑘)𝜓 (𝑘) ]]] = [[[[

𝑉𝑥 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑎𝑥 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑉𝑦 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝑉𝑥 KP𝑉𝑦 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑎𝑦 KP (𝑘 − 1) − Δ𝑇 ⋅ 𝑉𝑥 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝑉𝑦 KP𝜓 (𝑘 − 1) + Δ𝑇 ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝜓 ]]]] , (11)

where 𝜂𝑉𝑥 KP , 𝜂𝑉𝑦 KP , and 𝜂𝜓 are white noise in the longitudi-
nal/lateral velocities and in the heading angle, respectively.

2.2.4. Measurement Equations for the Implemented Filter (i-
EKF). In order to define the best cost-benefit layout of the
proposed measurement system, different sensor configura-
tions are considered in this study (Figure 4). Three low-cost
GPS receivers, denoted as GPS 1, GPS 2, and GPS KP, are
considered, as shown in Figure 4.

The readings acquired from each of the receivers are the
speed and path angle of each of the points at which the
receivers are located.

GPS 1: 𝑉GPS 1, 𝜐1, coordinates (𝑥1, 𝑦1) in the vehicle
frame

GPS 2: 𝑉GPS 2, 𝜐2, coordinates (𝑥2, 𝑦2) in the vehicle
frame

GPS KP:𝑉GPS KP, 𝜐KP, coordinates (𝑥KP, 𝑦KP) = (0, 0)
in the vehicle frame

The measured speed for each GPS receiver is considered
to represent the horizontal velocity (E, N) of each point.

The speed of each of the points in the reference frame
(E, N) can be expressed in terms of the GPS measurement
(Figure 5). For instance, the speed of point 1 can be expressed
as 𝑉𝐸 1 = 𝑉GPS 1 ⋅ cos 𝜐1,𝑉𝑁 1 = 𝑉GPS 1 ⋅ sin 𝜐1. (12)

Furthermore, the speed of a point of the semitrailer can
be expressed in terms of the speed of another point (e.g.,
the kingpin). The velocity of point 1 in the vehicle frame is
expressed as 𝑉𝑥 1 = 𝑉𝑥 KP − 𝑦1𝜓̇,𝑉𝑦 1 = 𝑉𝑦 KP + 𝑥1𝜓̇. (13)

The velocity of point 1 in the reference frame can be expressed
as 𝑉𝐸 1 = 𝑉𝑥 1 ⋅ cos𝜓 − 𝑉𝑦 1 ⋅ sin𝜓,𝑉𝑁 1 = 𝑉𝑥 1 ⋅ sin𝜓 + 𝑉𝑦 1 ⋅ cos𝜓. (14)

The GPS planar velocities (east/north velocities of any GPS
antenna) can be expressed as functions of the longitudi-
nal/lateral velocities, yaw rate, and heading angle as follows:𝑉𝐸 1 = 𝑉GPS 1 ⋅ cos 𝜐1= (𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ cos𝜓− (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ sin𝜓,𝑉𝑁 1 = 𝑉GPS 1 ⋅ sin 𝜐1= (𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ sin𝜓+ (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ cos𝜓,



Journal of Sensors 7

Reference frame (E, N)
N (north)

E (east)

ax_KP

ay_KP

𝜓

𝜐KP

KP (GPS + IMU low cost)
IMU (ADMA-G)

𝜐1

𝜐2

GPS_1

GPS_2

VGPS_KP

VGPS_2

VGPS_1

+

Figure 4: Sensors configurations for the proposed measurements system.

VN_1

VE _1
GPS_1

GPS_2

𝜐1

KP

x

y

N

E

VGPS_1

Figure 5: GPS speed in reference frame.



8 Journal of Sensors𝑉𝐸 2 = 𝑉GPS 2 ⋅ cos 𝜐2= (𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ cos𝜓− (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ sin𝜓,𝑉𝑁 2 = 𝑉GPS 2 ⋅ sin 𝜐2 = (𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ sin𝜓+ (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ cos𝜓,𝑉𝐸 KP = 𝑉GPS KP ⋅ cos 𝜐KP= 𝑉𝑥 KP ⋅ cos𝜓 − 𝑉𝑦 KP ⋅ sin𝜓,𝑉𝑁 KP = 𝑉GPS KP ⋅ sin 𝜐KP= 𝑉𝑥 KP ⋅ sin𝜓 + 𝑉𝑦 KP ⋅ cos𝜓.
(15)

2.2.5. Implementation of i-EFK. For estimation of a system/
process with nonlinear difference andmeasurement relation-
ships, the linearisation and estimation equations are rewritten
as 𝑥 (𝑘) ≈ 𝑥̃ (𝑘) + F (𝑥 (𝑘 − 1) − 𝑥̂ (𝑘 − 1))+W𝑤 (𝑘 − 1) ,𝑦 (𝑘) ≈ 𝑦̃ (𝑘) +H (𝑥 (𝑘) − 𝑥̃ (𝑘)) + VV (𝑘) , (16)

where 𝑥(𝑘) and 𝑦(𝑘) are the actual state and measurement
vectors, respectively; 𝑥̃(𝑘) and 𝑦̃(𝑘) are the approximate state
andmeasurement vectors, respectively; 𝑥̂(𝑘) is an a posteriori
estimate of the state at step 𝑘; F is the Jacobian matrix of
partial derivatives of f with respect to 𝑥; that is,𝐹[𝑖,𝑗] = 𝜕𝑓[𝑖]𝜕𝑥[𝑗] (𝑥̂ (𝑘 − 1) , 𝑢 (𝑘 − 1) , 0) ; (17)

W is the Jacobian matrix of partial derivatives of f with
respect to 𝑤; that is,𝑊[𝑖,𝑗] = 𝜕𝑓[𝑖]𝜕𝑤[𝑗] (𝑥̂ (𝑘 − 1) , 𝑢 (𝑘 − 1) , 0) ; (18)

H is the Jacobian matrix of partial derivatives of h with
respect to 𝑥; that is,𝐻[𝑖,𝑗] = 𝜕ℎ[𝑖]𝜕𝑥[𝑗] (𝑥̃ (𝑘) , 0) ; (19)

V is the Jacobianmatrix of partial derivatives ofhwith respect
to V; that is,

𝑉[𝑖,𝑗] = 𝜕ℎ[𝑖]𝜕V[𝑗] (𝑥̃ (𝑘) , 0) . (20)

Note that, for simplicity of notation, the time-step subscript𝑘 is not attached to the Jacobians F,W,H, and V, despite the
fact that they are different at each time step.

i-EKF Time Update Equations. The complete set of EKF
equations is shown below. Note that we have substituted𝑥̃−(𝑘) for 𝑥̃(𝑘) to ensure consistency with the earlier “super
minus” a priori notation and that we now attach the time-
step subscript to the Jacobians F, W, H, and V to reinforce
the notion that they are different at (and therefore must be
recomputed at) each time step. The time update equations
project the state and covariance estimates from the previous
time step 𝑘 − 1 to the current time step 𝑘. F𝑘 and W𝑘 are
the process Jacobians at step 𝑘, and Q𝑘 is the process noise
covariance at step 𝑘.

𝑥̃− (𝑘) = f (𝑥̂ (𝑘 − 1) , 𝑢 (𝑘 − 1) , 0) ,
P−𝑘 = F𝑘P𝑘−1F

𝑇
𝑘 +W𝑘Q𝑘−1W

𝑇
𝑘 . (21)

i-EKF Measurement Update Equations. The measurement
update equations correct the state and covariance estimates
using the measurement 𝑦(𝑘). H𝑘 and V are the measure-
ment Jacobians at step 𝑘, and R𝑘 is the measurement noise
covariance at step 𝑘. (Note that we now attach the subscript
to the Jacobians, thereby permitting their change with each
measurement.)

K𝑘 = P−𝑘H
𝑇
𝑘 (H𝑘P−𝑘H𝑇𝑘 + R𝑘)−1 ,𝑥̂ (𝑘) = 𝑥̂− (𝑘) + K𝑘 (𝑦 (𝑘) − ℎ (𝑥̂− (𝑘) , 0)) ,

P𝑘 = (𝐼 − K𝑘H𝑘)P−𝑘 . (22)

f can be expressed in matrix form as follows:

f = [[[[
𝑓1 (𝑘)𝑓2 (𝑘)𝑓3 (𝑘)]]]] = [[[[[

𝑉𝑥 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑎𝑥 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑉𝑦 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝑉𝑥 KP𝑉𝑦 KP (𝑘 − 1) + Δ𝑇 ⋅ 𝑎𝑦 KP (𝑘 − 1) − Δ𝑇 ⋅ 𝑉𝑥 KP (𝑘 − 1) ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝑉𝑦 KP𝜓 (𝑘 − 1) + Δ𝑇 ⋅ 𝜓̇ (𝑘 − 1) + 𝜂𝜓
]]]]] . (23)
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[[[
[

]]]
]
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Figure 6: i-EKF for vehicle kinematics estimation.

The matrices F andW are, respectively, given as

F = [[[[[[[[[[
𝜕𝑓1𝜕𝑉𝑥 KP 𝜕𝑓1𝜕𝑉𝑦 KP 𝜕𝑓1𝜕𝜓𝜕𝑓2𝜕𝑉𝑥 KP 𝜕𝑓2𝜕𝑉𝑦 KP 𝜕𝑓2𝜕𝜓𝜕𝑓3𝜕𝑉𝑥 KP 𝜕𝑓3𝜕𝑉𝑦 KP 𝜕𝑓3𝜕𝜓

]]]]]]]]]]
= [[[[

1 Δ𝑇 ⋅ 𝜓̇ (𝑘) 0−Δ𝑇 ⋅ 𝜓̇ (𝑘) 1 00 0 1]]]] ,
W = [[[[[[[[[[

𝜕𝑓1𝜕𝜂𝑉𝑥 KP 𝜕𝑓1𝜕𝜂𝑉𝑦 KP 𝜕𝑓1𝜕𝜂𝜓𝜕𝑓2𝜕𝜂𝑉𝑥 KP 𝜕𝑓2𝜕𝜂𝑉𝑦 KP 𝜕𝑓2𝜕𝜂𝜓𝜕𝑓3𝜕𝜂𝑉𝑥 KP 𝜕𝑓3𝜕𝜂𝑉𝑦 KP 𝜕𝑓3𝜕𝜂𝜓
]]]]]]]]]]

= [[[[
1 0 00 1 00 0 1]]]] .

(24)

Table 1 presents the study cases corresponding to the different
sensor configurations analysed in this study.

Themeasurement vector𝑦(𝑘) and the related hmatrix for
the study cases described in Table 1 are presented in Table 2.

The complete set of i-EKF equations is shown in Figure 6.

2.2.6. Sensors and Covariance Matrices. In practice, the ma-
trices of the process noise covariance Q and measurement
noise covariance R may change with each time step or

Table 1: Study cases corresponding to different sensor configura-
tions.

Case Input Measurement Reference
IMU KP GPS 1 GPS 2 GPS KP ADMAKP REF

0 × ×
1 × 𝑉𝐸 KP, 𝑉𝑁 KP ×
2 × 𝑉𝐸 1, 𝑉𝑁 1 ×
3 × 𝑉𝐸 1, 𝑉𝑁 1 𝑉𝐸 2, 𝑉𝑁 2 ×
4 × 𝑉𝐸 1, 𝑉𝑁 1 𝑉𝐸 2,𝑉𝑁 2 𝑉𝐸 KP, 𝑉𝑁 KP ×
measurement.However, they can be assumed as constant.The
matrixQ can be expressed as𝐸 [𝑤 (𝑘)𝑤 (𝑘)𝑇] = Q,

Q = [[[[
𝜎2𝜂𝑉𝑥 KP 𝜎𝜂𝑉𝑥 KP𝜂𝑉𝑦 KP 𝜎𝜂𝑉𝑥 KP𝜂𝜓𝜎𝜂𝑉𝑥 KP𝜂𝑉𝑦 KP 𝜎2𝜂𝑉𝑦 KP 𝜎𝜂𝑉𝑦 KP𝜂𝜓𝜎𝜂𝑉𝑥 KP𝜂𝜓 𝜎𝜂𝑉𝑦 KP𝜂𝜓 𝜎2𝜂𝜓 ]]]] . (25)

If the errors are considered as being independent, the
covariance can be neglected; that is,𝜎𝜂𝑉𝑥 KP𝜂𝑉𝑦 KP = 𝜎𝜂𝑉𝑥 KP𝜂𝜓 = 𝜎𝜂𝑉𝑦 KP𝜂𝜓 = 0. (26)

For characterisation of the vehicle’s dynamics, it is instru-
mented using a low-cost IMU at the point of its coupling
with the truck, which is the kingpin (indicated as “KP” in
Figure 3). The following readings acquired from the IMU



10 Journal of Sensors

Table 2: Measurement vector (𝑦) and related hmatrix for the considered study cases.

Case 𝑦 h

0
No GPS signal

Integration of acceleration
signals acquired from IMU

—

1 (𝑉𝐸 KP𝑉𝑁 KP

) (𝑉𝑥 KP ⋅ cos𝜓 − 𝑉𝑦 KP ⋅ sin𝜓𝑉𝑥 KP ⋅ sin𝜓 + 𝑉𝑦 KP ⋅ cos𝜓)
2 (𝑉𝐸 1𝑉𝑁 1) ((𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ cos𝜓 − (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ sin𝜓(𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ sin𝜓 + (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ cos𝜓)
3 ( 𝑉𝐸 1𝑉𝑁 1𝑉𝐸 2𝑉𝑁 2 )

(
(

(𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ cos𝜓 − (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ sin𝜓(𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ sin𝜓 + (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ cos𝜓(𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ cos𝜓 − (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ sin𝜓(𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ sin𝜓 + (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ cos𝜓
)
)

4

((((((((
(

𝑉𝐸 1𝑉𝑁 1𝑉𝐸 2𝑉𝑁 2𝑉𝐸 KP𝑉𝑁 KP

))))))))
)

(((((((
(

(𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ cos𝜓 − (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ sin𝜓(𝑉𝑥 KP − 𝑦1𝜓̇) ⋅ sin𝜓 + (𝑉𝑦 KP + 𝑥1𝜓̇) ⋅ cos𝜓(𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ cos𝜓 − (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ sin𝜓(𝑉𝑥 KP − 𝑦2𝜓̇) ⋅ sin𝜓 + (𝑉𝑦 KP + 𝑥2𝜓̇) ⋅ cos𝜓𝑉𝑥 KP ⋅ cos𝜓 − 𝑉𝑦 KP ⋅ sin𝜓𝑉𝑥 KP ⋅ sin𝜓 + 𝑉𝑦 KP ⋅ cos𝜓
)))))))
)

(which includes three accelerometers and three gyroscopes)
are considered:𝑎accel𝑥 KP: longitudinal acceleration, vehicle frame𝑎accel𝑦 KP: lateral acceleration, vehicle frame𝑟gyro: yaw rate

If the effect of gravity is neglected and the movement plane is
considered (while neglecting the effects of pitch and roll), the
following expressions allow relating the dynamic behaviour
of the vehicle with the IMU measurement at the KP:𝑎accel𝑥 KP = 𝑉̇𝑥 KP − 𝑉𝑦 KP ⋅ 𝜓̇ + 𝑏𝑎𝑥 + 𝜂𝑎𝑥 ,𝑎accel𝑦 KP = 𝑉̇𝑦 KP + 𝑉𝑥 KP ⋅ 𝜓̇ + 𝑏𝑎𝑦 + 𝜂𝑎𝑦 ,𝑟gyro = 𝜓̇ + 𝑏gyro + 𝜂𝑟, (27)

where 𝑏𝑎𝑥 , 𝑏𝑎𝑦 , and 𝑏gyro are the biases of the longitudi-
nal/lateral accelerometer and rate gyro, respectively, and𝜂𝑎𝑥 , 𝜂𝑎𝑦 , and 𝜂𝑟 are white noise in the longitudinal/lateral
accelerometer and that in the rate gyro, respectively.

The three bias terms (𝑏𝑎𝑥 , 𝑏𝑎𝑦 , and 𝑏gyro) of the IMU
measurements are assumed to be constant throughout the

Table 3: Statistical characterisation of sensors and dispersion of
measurements as obtained from the experimental program.

Sensor Obtained error properties

IMU
𝑁(0, 𝜎𝑎IMU

𝑥
) = 𝑁(0, 1.8320𝑒 − 06)m/s2𝑁(0, 𝜎𝑎IMU

𝑦
) = 𝑁(0, 6.5881𝑒 − 07)m/s2𝑁(0, 𝜎𝑟IMU ) = 𝑁(0, 0.0085) rad/s

GPS Standard deviation of white noise𝑁(0, 𝜎𝑉 GPS) = 𝑁(0, 0.03)m/s

measurement windows [46]. To evaluate this case, the follow-
ing can be considered:𝜎𝜂𝑉𝑥 KP = Δ𝑇 ⋅ 𝜎𝑎IMU

𝑥 KP
;𝜎𝜂𝑉𝑦 KP = Δ𝑇 ⋅ 𝜎𝑎IMU

𝑦 KP
;𝜎𝜂𝜓 = Δ𝑇 ⋅ 𝜎𝑟IMU , (28)

where the matrixQ can also be expressed as follows:

Q = (Δ𝑇)2 ⋅ ( 𝜎2
𝑎IMU
𝑥 KP

𝜎𝑎IMU
𝑥 KP𝑎

IMU
𝑦 KP

𝜎𝑎IMU
𝑥 KP𝑟

IMU𝜎𝑎IMU
𝑥 KP𝑎

IMU
𝑦 KP

𝜎2
𝑎IMU
𝑦 KP

𝜎𝑎IMU
𝑦 KP𝑟

IMU𝜎𝑎IMU
𝑥 KP𝑟

IMU 𝜎𝑎IMU
𝑦 KP𝑟

IMU 𝜎2𝑟IMU

). (29)

The obtained dispersion of measurements and the statistical
characterisation of the low-cost IMU and GPS receivers
after completion of the virtual experimental program are as
presented in Table 3.



Journal of Sensors 11

(a) (b)

(c)

Figure 7: (a) Low-cost IMU [6]; (b) GPS VBOX Sport [7]; (c) vehicle sensing with high-accuracy IMU (ADMA-G-EntryLevel, GeneSys) of
the validation system.

Themeasurement noise covarianceR is a diagonal matrix
because all measurements are independent of each other and
their size is dependent on the analysed measures, according
to the study cases presented in Table 1.

R = (𝜎2𝑧1 ⋅ ⋅ ⋅ 0... d
...0 ⋅ ⋅ ⋅ 𝜎2𝑧𝑛) = (0.03 ⋅ ⋅ ⋅ 0... d

...0 ⋅ ⋅ ⋅ 0.03) . (30)

3. Results of the Implementation in
Real Vehicle

For application of the proposed instrumentation system to
a real vehicle and for analysing the best cost-benefit layout,
an experimental test program was developed. To this end, a
semitrailer was equipped with sensors required to apply the
proposed methodology and to validate its results. Details of
this test program are as follows:

(i) The developed measurement system included a low-
cost IMU (Figure 7(a)) and three GPS receivers
(Figure 7(b)). The chosen low-cost IMU was the
UM7-LT orientation sensor of CH Robotics [6], and
the GPS receiver was VBOX Sport by Racelogic [7].

(ii) The validation system was composed of a high-
accuracy IMU (ADMA-G-EntryLevel, GeneSys,
[47]), as shown in Figure 7(c).

In order to perform the validation, the relative errors of
the velocities (longitudinal and lateral) estimated in the vehi-
cle frame were calculated using the following expressions:

𝑒𝑉𝑥rel𝑘 = 󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑥IMUADMA G
− 𝑉𝑥estimated

󵄨󵄨󵄨󵄨󵄨󵄨
max (𝑉𝑥IMUADMA G

) ,
𝑒𝑉𝑦rel𝑘 = 󵄨󵄨󵄨󵄨󵄨󵄨𝑉𝑦IMUADMA G

− 𝑉𝑦estimated

󵄨󵄨󵄨󵄨󵄨󵄨
max (𝑉𝑦IMUADMA G

) , (31)
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Figure 8: Example of trajectory of instrumented vehicle in experi-
mental test program.
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Figure 9: Heading angle versus time of instrumented vehicle in
experimental test program.

Table 4: Maximum errors for different sensor configurations.

Case max(𝑒𝑉𝑥rel𝑘 ) max(𝑒𝑉𝑦rel𝑘 )
0: IMU KP only 0.020 0.0069
1: IMU KP + GPS KP 0.0051 0.0029
2: IMU KP + GPS 1 0.0095 0.002883
3: IMU KP + GPS 1 + GPS 2 0.0135 0.00183
4: IMU KP + GPS 1 + GPS 2 + GPS KP 0.000508 0.00165

where 𝑒𝑉𝑥rel𝑘 and 𝑒𝑉𝑦rel𝑘 are the relative errors of the longi-
tudinal and lateral velocities, respectively, estimated in the
vehicle frame in step 𝑘.Themanoeuvre shown in Figure 8was
performed using the instrumented vehicle. Then, following
the completion of the experiment, the errors for the different
sensor configurations considered were calculated. In Figures
9–13, different plots of measured variables are shown.

The plots of relative errors (longitudinal and lateral) are
shown in Figures 14 and 15 andmaximum values of errors for
the different sensor configurations are presented in Table 4.
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Figure 10: Yaw rate versus time of instrumented vehicle in experi-
mental test program.
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Figure 11: Velocities in reference frame (east coordinate) versus time
from GPS receivers in experimental test program.

Time (s)Ve
lo

ci
ty

 in
 re

fe
re

nc
e f

ra
m

e, 
no

rt
h 

(m
/s

)

−1.00E + 01

−8.00E + 00

−6.00E + 00

−4.00E + 00

−2.00E + 00

0.00E + 00

2.00E + 00

4.00E + 00

6.00E + 00

8.00E + 00

1.00E + 01

1.20E + 01

1.00E + 02 2.00E + 025.00E + 01 1.50E + 020.00E + 00

VN_KP
VN_2
VN_1
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time from GPS receivers in experimental test program.
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Figure 13: Velocities in vehicle frame (𝑥: longitudinal; 𝑦: lateral)
versus time of instrumented vehicle in experimental test program.
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Figure 14: Plot of relative errors of the longitudinal velocities in the
proposed cases.

4. Conclusions and Future Work

Study of the fatigue life of freight vehicles in general and
of semitrailers in particular requires knowledge of the loads
to which they are subjected. In the present study, dynamics
simulations were developed for this purpose, in which the
inputs of these simulations were the kinematic variables of
the kingpin. In order to determine the states of loads to which
a fleet of vehicles is subjected, a vehicle-mountable low-cost
instrumentation system was developed, which can be used in
real movement conditions with acceptable accuracy.

This flexible instrumentation system includes a combina-
tion of sensors, that is, an IMU and GPS antennas, as well
as a software-based extended Kalman filter for estimations in
consideration of system nonlinearities.
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Figure 15: Plot of relative errors of the lateral velocities in the pro-
posed cases.

Various sensor configurations were proposed to enhance
the estimation accuracy of the proposed system, and the best
sensor configuration was found to be the one corresponding
to Case 4 in Table 4.

Future work includes implementation of the developed
instrumentation system in a fleet of vehicles in collaboration
with a semitrailer manufacturer, with the aim of characteris-
ing the loads in service and estimating the vehicle fatigue life
as the basis for process redesign and structural optimisation.

Competing Interests

The authors declare no competing interests.

Authors’ Contributions
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