
Java Grande { High Performance Computing

with Java

Michael Philippsen, Ronald F. Boisvert, Valdimir S. Getov, Roldan Pozo, Jos�e

Moreira, Dennis Gannon, and Geo�rey C. Fox

Abstract. \Grande" applications are those with demanding CPU and

I/O requirements. They originate in many disciplines, such as astro-

physics, materials science, weather prediction �nancial modeling, and

data mining. Java has many features of interest to developers of such

applications. At the same time, there are currently many barriers to the

e�ective use of Java in this way. The Java Grande Forum is a group of

researchers and software developers from industry, academia, and gov-

ernment with an interest in the use of the Java programming language

and environment for grande applications. The Forum seeks to increase

awareness of issues important to this community, and to work towards

their solution. In this article we describe the workings of the Java Grande

Forum and the major issues that it has brought to the forefront. We out-

line approaches to the solutions of these problems, and describe e�orts to

standardize them within the larger Java community. Among the issues

addressed are: 
oating-point performance, multidimensional arrays, com-

plex arithmetic, fast object serializations, and high-speed remote method

invocation (RMI).

1 Introduction

The Java language and environment provide a number of well appreciated fea-

tures for software developers. Among these are

{ clean object-oriented approach
{ support for memory management, threads, exceptions

{ network, Web awareness

{ intrinsic portability
{ large collection of standard class libraries, including GUI components

{ growing user base

The promise of portability is a particularly compelling one. Java programs are

compiled into byte codes for the Java Virtual Machine (JVM). This machine is

emulated in order to execute Java programs. JVMs are now available on nearly

every computer platform, in Web browsers, and in many other devices. Thus,

compiled Java class �les are highly transportable. Since the semantics of a single-

threaded piece of Java code are de�ned precisely and deterministicaly, the results

of execution on any conforming JVM should be the same.

Other features of Java provide conveniences which lead to fewer errors and

more productive programmers. Among these is automated memory management.



Java programmers do not need to explicitly deallocate blocks of memory. Instead,

Java maintains a garbage collector which automatically recovers unused storage.

The safety of Java is enhanced by the absence of arbitrary pointers, and by the

requirement that all array bounds be checked before access.

Because of such features, Java is now widely used both in commercial software

development, in research, and as an educational tool in universities. Indeed,

computer science departments everywhere seem to be switching to Java as the

main language they teach their students. This, as much as everything else, will

assure Java's place in software development for some time to come.

While Java has made great inroads in a variety of areas, it is far from the

language of choice for \grande" applications, i.e., those with the most demanding

CPU and I/O requirements. (The term \grande", like many things associated

with Java, is inspired by co�ee house jargon, where grande means large.) They

originate in many disciplines, such as astrophysics, materials science, weather

prediction, �nancial modeling, and data mining. However, system requirements

for modern grande applications go far beyond mere compute cycles. Commu-

nication with distributed components in a heterogeneous environment must be

maintained. Graphical user interfaces must be developed. High levels of portabil-

ity must be maintained to insulate the application from changes in the underlying

hardware and software platform. Java is the �rst single environment to provide

all of these features.

Nevertheless, when Java is found in grande contexts today it is typically be-

ing used as glue, interconnecting existing high-performance applications, linking

computations realized in other languages to one another, and acting as a layer

between computations and the user. This a a perfectly reasonable use of Java

today. However, the bene�ts of portability a�orded by Java cannot be realized

unless the entire application is run in a Java environment.

Why isn't Java commonly used for the compute- or I/O-intensive core of

grande applications? The main reason is undoubtedly performance. In its early

days JVMs were strictly interpreters, resulting in very poor performance. In the

science and engineering community Java has not shaken this early perception.

Today nearly every JVM for traditional computing devices uses just-in-time

(JIT) compiler technology. JITs operate as part of the JVM; they compile Java

class �les into native code at runtime, thus providing a much higher level of

performance than interpreted code. Since JITs operate at runtime, they cannot

expend a lot of time performing extensive analysis of class �le code looking

for optimizations. Nevertheless, JITs have been improving steadily, and JIT

technologies such as Sun's Hotspot [], which only compiles those portions of the

code it deems necessary to improve performance, promise even greater strides

forward.

Still, some of Java's features, while kind to programmers, can be performance

reducers, and thus sore points for those developing grande applications. Things

like overactive garbage collection and unoptimized array bounds checking can

take a signi�cant toll on performance.
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How good is the performance that one can get out of Java today? Since Java

is available on so many platforms, and multiple JVMs are available on each of

these, this is somewhat di�cult to assess. Certainly, the variance in observed

performance for a given application remains great. In order to track the progress

of Java performance for numeric-intensive applications, Roldan Pozo and Bruce

Miller of NIST have developed a Web-based benchmark called SciMark [33]. Sci-

Mark combines �ve medium-sized numerical kernels: complex-valued fast Fourier

transformation, successive over-relaxation (SOR) iteration, Monte-Carlo quadra-

ture of e�x
2

, multiplication of sparsely populated matrices, and the LU factoriza-

tion of dense matrices with pivoting. These are representative of many scienti�c

and engineering computations. For each of these kernels, a Java and a C version

are available. In addition, there is a small memory version, appropriate for study-

ing cache-contained kernels, as well as one that exhibits out-of-cache behavior

typical of large memory applications.

The small problem Java version of the benchmark is available as an applet

at http://math.nist.gov/scimark/. This can be downloaded into a browser and

run to assess the local environment. Composite results of the benchmark are

reported in mega
ops (M
ops); results of the individual components are also

available. The applet supports upload of the benchmark data to NIST, and the

SciMark Web site maintains an archive of all uploaded results. These provide a

snapshot of typical Java performance. For example, the antiquated JVM 1.1.5 of

the Netscape browser reaches approximately 0.7 M
ops on an Intel Celeron 366

processor under Linux and is, as such, 135 times slower than a C implementation

on that platform. Java 1.1.8 is a huge improvement: using the same processor

(running on OS/2) about 76 MFlops have currently been achieved | only 35%

less than with C.

Table 1. Results of the SciMark benchmark on a Dell Pentium III 733 MHz system

running Windows NT 4.0 and Netscape VM 1.1.5.

Components M
ops

FFT 41

SOR relaxation 227

Monte Carlo quadrature 13

Sparse matrix multiplication 89

LU factorization 131

Average 100

As of this writing (June 2000), the fastest in-browser SciMark results posted

are over 100 M
ops. A typical one of these is for a Dell Pentium III 733 MHz

system running Windows NT 4.0 and Netscape VM 1.1.5. The individual results

reported for this system are as given in Table 1. However, Java performance re-

mains highly variable. The 20 most recent results reported, which come from sys-
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tems based on processors ranging from a 166 MHz AMD to a 700 MHz Celeron,

show SciMark composite ratings of from 1 M
ops to 89 M
ops.

The Ninja group at the IBM Thomas J. Watson Research Center uses a

set of eight benchmarks to evaluate the e�ect of their Java optimizations. The

bencmarks include dense matrix operations (matrix multiply, LU factorization,

Cholesky factorization), a neural network kernel, a PDE solver through Jacobi

relaxation, a shallow water simulation, an FFT computation, and a version of

the SPECfp benchmark TOMCATV. They report that, when a commercially

available environemnt (IBM DK 1.1.6) is used on a 200 MHz POWER3 plat-

form, Java performance ranges from 2 to 50% Fortran performance on the same

benchmarks. However, when a set of optimizations are applied to the Java code,

its performance improves to between 40 and 100% of Fortran. See Table 2 for

details.

Table 2. A summary of Java performance with the Ninja compiler.

benchmark IBM DK 1.1.6 Ninja

M
ops % of Fortran M
ops % of Fortran

MATMUL 7 1.7% 340 84%

MICRODC 53 26% 210 102%

LU 45 27% 154 93%

CHOLESKY 5 2.8% 167 97%

BSOM 47 22% 175 81%

SHALLOW 45 24% 156 83%

TOMCATV 50 27% 75 40%

FFT 101 53% 104 54%

The same group at IBM T.J. Watson has also reported good performance

results with a data mining application in Java [30]. Executing on a 4-processor

RS/6000 model F50, the computational part of the application achieves 109

M
ops for a single threaded Java execution, as compared to 120 M
ops for single

threaded Fortran. Moreover, when parallelism is exploited, the multithreaded

Java version achieves up to 340 M
ops with four threads. The portability and

convenience of parallel programming in Java is a major boost for those in the

�eld of high-performance computing.

Additional Java benchmarking e�orts are described in Section 4.4.

In summary, while Java is not yet as e�cient as optimized Fortran or C, the

speed of Java is better than its reputation suggests. Carefully written Java code

can perform quite well [27, 34], and Java compiler and JIT technology is still in

its infancy. Taken with the other advantages of Java, there is a real possibility

for Java to become the best ever environment for grande applications. In the

remainder of this article we explore this idea further in the context of the work

of the Java Grande Forum.
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2 The Java Grande Forum

The Java Grande Forum [21] is a union of researchers, company representa-

tives, and users who are working to improve and extend the Java programming

environment, in order to enable e�cient grande applications. The Forum was

founded in March 1998, during the ACM/SIGPLAN Workshop on Java for Sci-

ence and Engineering held at Stanford University. Geo�rey C. Fox of Florida

State University and Sia Zadeh of Sun Microsystems played key roles in the

initial organization of the Forum. Since then the Forum has organized regular

public meetings, which are open to all interested parties, as are its web site [21]

and mailing list [22].

The main goals of the Java Grande Forum are the following:

{ Evaluation of the applicability of the Java programming language and the

run-time environment for grande applications.

{ Bringing together the \Java Grande community" to develop consensus re-

quirements and to act as a focal point for interactions with Sun Microsys-

tems.

{ Creation of demonstrations, benchmarks, prototype implementations, ap-

plication programmer interfaces (APIs), and recommendations for improve-

ments, in order to make Java and its run-time environment utilizable for

grande applications.

The participants in the Java Grande Forum primarily represent American

and European companies, research institutions, and laboratories (see Table 2.

Cooperation with hardware and software vendors is crucial, especially in refer-

ence to questions dealing with high-speed numerical computing.

The scienti�c work of the Forum is important for establishing a cohesive

community of researchers and users of Java for grande applications. This makes

it possible to focus interests and to achieve consensus, thus making it easier to

achieve goals.

The Forum organizes scienti�c conferences, workshops, minisymposia, and

panels in order to present its work to interested parties; see Table 4. The most

important annual event is the ACM Java Grande Conference. A large portion of

the scienti�c contributions of the Java Grande community can be found in the

conference proceedings (Table 4) and in some issues of Concurrency { Practice

& Experience [14{17]. In addition, the Java Grande Forum publishes working

reports at regular intervals [37, 38].

The members are organized into two working groups. The Numerics Working

Group is co-chaired by Ronald Boisvert and Roldan Pozo of NIST. The Con-

currency and Applications Working Group is co-chaired by Dennis Gannon of

Indiana University and Denis Caromel of INRIA. The next two sections describe

the technical work of these groups in some detail.

The reports developed and events organized by the Java Grande Forum have

been well-received by key Java developers within Sun Microsystems, such as

Tim Lindholm, Bill Joy, James Gosling, John Gage, and Guy Steele. Impressive
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Table 3. Some participants in the Java Grande Forum

Companies

IBM

Intel

Least Squares Software

The MathWorks

MPI Software Technologies

NAG

Sun Microsystems

Unidata

Visual Numerics

Waterloo Maple

Universities

Florida State University

Karlsruhe University

Loyola University of Chicago

Syracuse University

University of California at Berkeley

University of California at Santa Barbara

University of Edinburgh

University of Houston

University of Maryland

University of North Carolina at Chapel Hill

University of Tennessee at Knoxville

Westminster University

Government Supported Laboratories

INRIA, Institute National de Recherche en Informatique et en Automatique, France

Institute for Computer Applications in Science and Engineering (ICASE)

Pittsburgh Supercomputer Center

Sandia National Laboratories

U.S. National Institute of Standards and Technology (NIST)
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public relations work was done by Bill Joy, who praised the work of the Java

Grande Forum in front of an audience of about 21,000 at the 1999 JavaOne

Conference.

Table 4. Some events organized by the Java Grande Forum

Workshop on Java for High Performance Computing, Syracuse University, December

1996, [14]

Workshop at Principles and Practice of Parallel Prog., Las Vegas, June 1997, [15]

Panel at SC'97, San Jose, November 1997

ACM SIGPLAN Workshop on Java for High Performance Network Computing,

Stanford University, February 1998, [16]

Workshop at EuroPar, Southampton, September 1998, [13]

Exhibit and Panel at SC'98, Orlando, November 1998, [37]

Panel at IEEE Frontiers of Massively Parallel Computing, Annapolis, February 1999

Workshop at HPCN/Europe, Amsterdam, April 1999, [36]

Workshop at IPPS/SPDP, San Juan, April 1999, [12]

Minisyposium at SIAM Annual Meeting, Atlanta, May 1999

Java Grande Forum Meeting, Palo Alto, May 1999

Mannheim Supercomputing Conference, June 1999

ACM Java Grande Conference, San Francisco, June 1999, [17]

Exhibit and BOF, JavaOne, San Francisco, June 1999, [38]

Workshop at ACM ICS'99, Rhodes, Greece, June 1999

Java Grande Forum Meeting, Palo Alto, August 1999

Exhibit and Panel at SC'99, Portland, Oregon, September 1999

Java Grande Day at ISCOPE99, December 1999, [35]

Workshop at HPCN/Europe 2000, Amsterdam, May 2000

Workshop at ICS2000, Santa Fe, New Mexico, May 2000

Workshop at IPDPS, Cancun, May 2000

ACM Java Grande Conference, San Francisco, June 2000

SIAM National Meeting (Minisymposium), Puerto Rico, July 2000

Seminar on High Performance Computing in Java, Dagstuhl, Germany, August 2000

3 Numerics Working Group

3.1 Goals of the Working Group

The Numerics Working Group set the evaluation of the applicability of Java

for numerical computing as its initial goal. Building on that e�ort, the group

developed consensus on basic requirements for numerical computing in Java.

These have led to a series of particular recommendations to eradicate a variety

of de�ciencies in the Java language and its runtime environment. Some of these

have been adopted by Sun. Related to these e�orts, group participants have

implemented a variety of prototype class libraries and language processors to

demonstrate the feasibility and utility of their recommendations.
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Among the areas of critical concern for the Working Group have been


oating-point performance, complex arithmetic, e�ciency of multidimensional

array operations, as well as the development of prototype class libraries for com-

mon mathematical operations. The following sections discuss individual prob-

lems and results. Futher details can be found at the Java Numerics web site

[23].

3.2 Improvement of Floating Point Arithmetic

One of the most important principles in the design of Java has been the porta-

bility of its class �les. This has led to a very precise de�nition of the semantics

of 
oating-point arithmetic in Java and its JVM. This precision in speci�cation

is unlike that in any language for scienti�c computing. While this can lead to

exactly reproducible results, it ties the hands of compiler optimizers, making it

very di�cult, and often impossible, to produce the most highly optimized code

on a given undelying hardware platform. Those who work on the most com-

putationally intensive problems | grande applications | have learned to deal

with architecture-speci�c di�erences in the details of 
oating-point arithmetic.

They are happy to live with some ambiguity in the quest for the highest perfor-

mance on a given processor. However, these are just a portion of those who do

numerical computing. The majority of users need a high level of predictability

(though not necessarily absolute), and good overall performance (though not

necessarily optimal). At the other extreme, some users do, in fact, need absolute

predictability. Someone writing software for realtime control of surgical instru-

ments might want to know precisely how every operation is to be preformed in

order to prevent unexpected cancellations, over
ows, etc. If Java is to be the

language of scienti�c computing it must satisfy all three types of users.

The original Java speci�cation [] uses the IEEE 754 arithmetic standard as

its basis. Since most general-purpose computing systems now follow this stan-

dard, this was a very rational choice to make. However, IEEE 754 itself is not

a narrow speci�cation; it admits a number of optional features, some of which

have become central design features of particular microprocessors. Originally,

Java mandated use of only the most basic subset of IEEE 754. This led to an

inevitable con
ict between advocates of reproducibility on the one hand, and

performance on the other. A related issue is the speci�cation of the results com-

puted by the elementary functions (like sin and exp). These too were precisely

laid out in the Java speci�cation, and this also led to a disconnect between the

speci�cation and practice. The Numerics Working Group has made e�orts, some

successful, to try and bridge the gap between these competing interests.

Floating Point Performance. In order to achieve exact reproducibility, Java

forbids common optimizations, such as making use of the associativity property

of mathematical operators, which does not hold in a strict sense in 
oating-point

arithmetic, (a+ b) + c may produce a di�erent rounded result than a+ (b+ c).

Further prohibitions a�ect the use of particular processor features.
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1. Prohibition on use of 80 Bit \double extended format". Processors of the x86-

family (e.g. the Intel Pentium) have 80-bit wide registers that use the double

extended format as de�ned in the IEEE 754 Standard. x86 double extended

numbers have a 15 bit exponent and a 65 bit mantissa, while regular IEEE

doubles precision numbers have an 11 bit exponent and a 53 bit mantissa. The

original Java speci�cation required the exclusive use of regular IEEE doubles to

represent the Java primitive type double. Thus, on the x86, every intermediate

result of a mathematical operation must be rounded to a more imprecise number

format. Even if the x86's precision control bit is set to enforce this rounding in

the registers after each step, a 15 bit exponent is still produced. This means that

over
ow and under
ow may not occur at the proper point. Thus, to conform to

Java's strict semantics, each intermediate result is typically stored to memory

(where IEEE double format is used) and reloaded to the register to continue

the computation. This is an extremely time consuming operation, leading to a

two to ten-fold performance hit in numeric-intensive applications. Many JVM

implementations ignored proper rounding for exactly this reason. Thus, on Intel

processors, Java's 
oating-point arithmetic was either wrong or impossibly slow.

2. Prohibition to use for Fused Multiply Add (FMA) machine instructions. Pro-

cessors of the PowerPC-family o�er a machine instruction that computes the

quantity ax + y as a single operation. This is the fused multiply-add, or FMA.

Operations of this type are found in many compute-intensive applications; they

are at the innermost loop of most matrix operations, for example. Use of this fa-

cility can lead to superscalar performance on these architectures, a highly prized

feature for grande applications. An added bene�t of the use of such instructions

is that only a single rounding occurs for the two arithmetic operations, yield-

ing a more accurate result in less time than would be required for two separate

operations.

Because of the single rounding, Java's strict language de�nition does not

permit use of FMAs and thus sacri�ces 50% of the peak performance on some

platforms. Figure 1 shows experiments in running a Java Cholesky factoriza-

tion code on a Power-2 processor at IBM's T.J. Watson Research Center using

an experimental static Java compiler, i.e., one that produces an executable by

staticaly translating from Java bytecode to machine code. Using the strict Java

semantics, and without any optimizations, only 3.8 M
ops is achieved. If com-

mon optimizations that are legal in the context of Java are carried out (including

the elimination of proveably redundant array boundary checks), then 62% of the

performance of an equivalent optimized Fortran program results (83.4 MFlop).

Finally, if FMAs are used { which the Fortran compiler does routinely { nearly

97% of the Fortran performance is achieved.

Improvements in Java Floating-Point Semantics. In the spring of 1999,

Sun introduced changes in the semantics of 
oating-point in Java (version 1.2).

These changes, which were part of a set of proposals made by the Java Grande

Forum, signi�cantly improve the performance of conforming Java platforms for
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Fig. 1. Cholesky Factoring on a 67 MHz Power-2-Processor. Information given in

MFlops and relative to optimized Fortran.

the x86 architecture. The main change was, in a sense, very small: to admit the

use of 15-bit exponents for anonymous double variables, i.e., for intermediate

results. (A similar change was made in the semantics of float). This eliminates

the need for store/reload after each operation on the x86, thus allowing the

processor to run at full speed. Note that this constitutes an exception to Java's

strict reproducibility | results on the x86 can be di�erent from those produced

on the SPARC, for example. Since use of 15-bit exponents is optional in the Java

speci�cation, these di�erences could conceivably occur in two di�erent JVMs

executing on the same processor. Fortunately, these di�erences will be rare in

practice. They only occur when a computation would over
ow or under
ow with

an 11-bit exponent, but not with a 15-bit exponent.

The principle of exact reproducibility has not been completely thrown to

the wind, however. A new keyword, strictfp was also added to the language,

again at the recommendation of the Numerics Working Group. When strictfp

is a�xed to classes or methods, the original Java semantics must be respected

in the execution of the corresponding (static) code. In this way, users who need

exact reproducibility for 
oating-point computations can still obtain it, but the

majority of users can opt for a slight relaxation of this requirement to achieve

greatly improved performance. The latter is now the default in Java.

Reproducibility of Math-Functions In its quest for exact reproducibility, the

original Java speci�cation also attempted to precisely de�ne the behavior of its

elementary mathematical functions such as sin and exp. These are found in the

package java.lang.Math. According to the speci�cation, this library must be

implemented by porting the fdlibm library.1 However, an actual port of this

library was never done, and hence most JVMs use the local libm, or the faster

1 The fdlibm library is the free math library distributed by Sun. Fdlibm is considerably

more stable, to a greater degree correct, and muchmore easily portable than the libm

libraries available on most platforms.
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hardware implementations of these functions. The result is that, in practice, Java

programs using the elementary functions produce di�erent results when run on

di�erent JVMs.

Another di�culty with an operational speci�cation of this type is that it

prohibits the use of more accurate methods should they be developed. (The

fdlibm algorithms are quite accurate, but they do not produce the correctly

rounded version of the exact result in all cases.)

Again, the Java Grande Forum's Numerics Working Group developed a rec-

ommendation for improvement, which was adopted in Java 1.3, unveiled in the

spring of 2000. The speci�cation for java.lang.Math states that the functions

must return a result which is within one unit in the last place (ulp)2 of the cor-

rectly rounded result. In addition, the results produced by the functions should

be monotone where the exact functions are monotone. Fdlibm, as well as exist-

ing hardware implementations, has these properties, but its use is not mandated.

This relaxes the exact reproducibility requirement, but admits implementations

which are faster or more accurate. For example, Abraham Ziv of IBM Haifa has

created a math library (in ANSI C), that is guaranteed to produce correctly

rounded results in IEEE arithmetic (i.e., errors less than 0.5 ulp) [40].

Proponents of exact reproducibility need not fear, however. Java 1.3 also in-

troduces an alternate math library java.lang.StrictMath, which must adhere

to the original Java speci�cation, thus providing a means to obtain the same

result on all platforms. Java Numerics Working Group member John Brophy of

Visual Numerics has developed a full implementation of fdlibm completely in

Java [4]. It is expected that this code will be provided with future standard dis-

tributions of Java, thus making it likely that Java implementations will faithfully

adhere to the speci�cation.

Further improvements in 
oating-point performance. The creation of

two separate 
oating-point modes in Java satis�es the needs of those who want

strict reproducibility and those who are willing to relax this slightly in hopes

of gaining much better performance. Unfortunately, this may not be enough for

those programmers, typically those with grande applications, who require the

fastest performance possible, and are willing to relax 
oating-point semantics

much further in order to achieve it. To begin to satisfy the needs of this latter

group, the Numerics Working Group is in the process of developing a speci�ca-

tion for a third 
oating-point mode. This mode would be designated by a new

fastfp keyword for classes and methods. In this new mode, FMAs would be

allowed in particular well-de�ned circumstances. The sensibility of also allowing

the use of the associative rule to rearrange the order of computations is also

being examined.

2 For doubles between 2k and 2k+1, 1 ulp = 2k�52.
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3.3 E�cient Complex Arithmetic

Another indicator of the ability of a programming language to support serious

scienti�c and engineering computing is the ease and e�ciency in which com-

putation with complex numbers can be done. Many applications, such as those

in electromagnetic and acoustic modeling, for example, are best accomplished

in the complex domain. Complex is just one example of an important alternate

arithmetic. Others of growing importance are interval arithmetic and multipreci-

sion arithmetic. A good scienti�c computing language would have the 
exibility

to incorporate new arithmetics like these in a way that is both e�cient and

natural to use.

In Java, complex numbers can only be realized in the form of a Complex

class whose objects contain, for example, two double values. Complex-valued

arithmetic must then be expressed by means of complicated method calls, as

in the following code fragment, which says y = ax + b, where a = 5 + 2i and

b = 2� 3i.

Complex a = new Complex(5,2);

Complex b = new Complex(2,-3);

Complex y = a.times(x).plus(b);

This has several disadvantages. First, such arithmetic expressions are quite dif-

�cult to read, and hence are error-prone to code and maintain. Second, complex

arithmetic is slower than Java's arithmetic on primitive types, since it takes

longer to create and manipulate objects. Objects also incur more storage over-

head than primitive types. In addition, temporary objects must be created for

almost every method call. Since every arithmetic operation is a method call, this

leads to a glut of temporary objects which must be frequently dealt with by the

garbage collector. In contrast, Java primitive types are directly allocated on the

stack, leading to very e�cient manipulation.

To illustrate the ine�ciencies of complex classes, researchers at IBM recently

analyzed the performance of class-based complex arithmetic in Java using Jacobi

relaxation as a computational kernel. This kernel is typical of iterative methods

for large sparse linear systems on grids. An implementation based on a class

Complex achieved only 1% of an equivalent Fortran code [39]. The main culprit

of Java's dismal performance is the voracious rate of temporary object creation

and destruction. This can be visualized in Figure 2. Figure 2(a) is a plot of

memory utilization over time for a version of the code that uses the primitive

double data type. Figure 2(b) is the same plot for a version using the Complex

class. We note that, in the second case, the memory is exhausted several times

during execution, forcing a garbage collection operation.

Finally, class-based complex numbers invariably cannot be fully integrated

in the system of primitive types. They are not integrated into the type relation-

ships that exist between primitive types, so that for example, the assignment

of a primitive double value to a Complex object does not result in any auto-

matic type cast. Equality tests between complex objects refer to object identities

rather than to value equality. In addition to this, an explicit constructor call is
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Fig. 2. Pro�le of memory utilization using (a) double and (b) Complex class.

necessary for a class-based solution, where a literal would be su�cient to repre-

sent a constant value. Thus, methods which manipulate complex numbers have

essential di�erences from their real number counterparts. This places a heavy

burden on library developers who would like to use automated tools to create

float, double, and complex versions of the same algorithm.

These same di�culties arise in the implementation of any other arithmetic

system in Java, such as intervals and multiprecision. A general solution to these

problems would be a�ored by the introduction of two additional features to the

language: operator overloading and lightweight objects.

Operator overloading is well known. It allows one to de�ne, for example, the

meaning of a + b when a and b are arbitrary objects. Operator overloading

is available in several other languages, like C++, and has been widely abused,

leading to very obtuse code. However, when dealing with alternative arithmetics,

the mathematical semantics of the arithmetic operators remain the same, and

hence it leads to naturally readable code. In Java, one would need to be able to

overload the arithmetic operators, the comparison operators, and the assignment

operator.

Lightweight objects are de�ned by �nal classes with value semantics. Their

instantiated variables cannot be changed after object creation. Lightweight ob-

jects can often be allocated on the stack and passed by copy. Their methods

could be inlined, thus leading to e�cient computations in JVMs which are seri-

ous about performance.

Unfortunately, it is not known when, or if, operator overloading or lightweight

objects will be integrated into Java. Since scienti�c computing only makes up

a small portion of total Java use, it is improbable that the Java Virtual Ma-

chine (JVM) or the bytecode format will be extended to include a new primitive

type complex, although this would probably be the most straightforward way

of introducing complex numbers into Java. As a result, the Java Grande Forum

regards the following twin-track strategy to be more sensible (see Figure 3).
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Fig. 3. Introduction of complex numbers and arithmetics

Class java.lang.Complex. The Numerics Working Group has de�ned and pro-

totyped a class java.lang.Complex that is similar in style to Java's other nu-

merical classes. In addition, method-based complex arithmetic operations are

provided. The Group plans to submit this class to Sun in the form of a Java Spec-

i�cation Request (JSR) for possible incorporation into the collection of standard

classes.

Researchers at the IBM T.J. Watson Research Center have built the seman-

tics of this Complex class permanently into their experimental native Java com-

piler using an approach they call semantic expansion [39]. Internally, a complex

value type is used in place of temporary objects in the code being compiled, and

the usual compiler optimizations for complex numbers (as in Fortran compilers)

are carried out. In particular, most of the arithmetic methods and constructor

calls that prevail in the Java code using this class are replaced by stack and/or

register operations. This provides an alternate way to e�ciently support a com-

plex class, but it requires special attention by compiler developers. Because of

this it is unlikely that such support will be widespread.

Primitive Data Type complex. The Numerics Working Group is also plan-

ning to submit a related JSR calling for a primitive type complex, with corre-

sponding in�x operations, in the standard edition of Java. In order to avoid the

need for changes to the bytecode format and existing JVM implementations, the

language extensions are mapped back to normal Java in a pre-processor step.

An additional imaginary data type for purely imaginary numbers as has been

included in C99 [26, 6] is also being considered.

Figure 3 illustrates two alternative pre-processor transformations. In the �rst

case, the primitive data type complex is mapped to a pair of double values. In

this way, all object overhead is avoided. In the second alternative, complex op-

erations are mapped to the previously described Complex class. In this case,

compiler-supported semantic expansion would be needed to achieve the neces-

sary e�ciency. The compiler cj, developed at the University of Karlsruhe, is a

prototype implementation based upon a formal description of this process [18].
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3.4 E�cient Multidimensional Arrays

In the same way as e�cient and convenient complex arithmetic must be made

available, numerical computing without e�cient (i.e., optimizable) and conve-

nient multidimensional arrays is unthinkable. Java o�ers multidimensional arrays

only as arrays of one-dimensional arrays. This causes several problems for op-

timization. One problem is that several rows of a multidimensional array could

be aliases to a shared one-dimensional array. Another problem is that the rows

could have di�erent lengths. Moreover, each access to a multidimensional array

element requires multiple pointer indirections and multiple bound checks at run-

time. By means of data
ow analysis and code cloning, plus guards, the optimizer

can only reduce the amount of boundary checks. The optimizer can seldom avoid

all run-time checks.

For this reason the Java Grande Forum has recommended a standard class

for multidimensional arrays (once again in the form of a JSR). The Multiarray

package implements true rectangular multidimensional arrays, in which all rows

have exactly the same length. Intra-array aliasing (aliasing of rows within an ar-

ray) never occurs, and inter-array aliasing (aliasing between rows of di�erent ar-

rays) is easier to analyze and disambiguate than with arrays of one-diemensional

arrays. The rectangularity and aliasing properties of the Multiarray package en-

able a number of compiler optimizations to be applied.

As with the class-based complex numbers, a multidimensional array class

requires awkward set and get accessor methods instead of elegant [] nota-

tion. Also, method-based access to multidimensional array elements would add

much overhead, diminishing many of the advantages of having a standard class.

Lightweight objects and operator overloading would again provide the general

solution to this problem. (In this case, [] is considered an operator.)

For this reason, a twin track solution is appropriate in this case, as well. IBM

has built permanent support for multidimensional arrays, based upon semantic

expansion, into their experimental static Java compiler, and report excellent

results from automatic loop transformations and exploiting parallelism [1, 29,

30].

At the same time, an extended multidimensional array access syntax will be

proposed, allowing elegant access to multidimensional arrays, e.g. with notation

like a[i,j]. Such a syntactic extension is quite tricky due to the necessary

interaction with regular one-dimensional Java arrays. Once de�ned, such syntax

can also be handled by a pre-processor, translating it either to operations on

one-dimensional arrays, or to calls on the standard Multiarray class.

3.5 Strategy

Why doesn't the Java Grande Forum try to introduce lightweight classes and

operator overloading into Java? The answer is quite pragmatic. The Java Grande

Forum hopes the above mentioned JSRs are light enough to withstand the formal

process of language alterations. The majority of Java users will remain almost

completely una�ected by the proposed changes, and quite possibly will not notice
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the changes at all. Very few of today's Java users are even aware of the existence,

much less the importance, of the strictfp keyword, for example. The smaller

the number of the people a�ected, the more likely the endorsement of the JSR.

Value classes and operator overloading demand a greater change to the lan-

guage as a whole. The former may impact the bytecode format and thus the

JVM. For this reason, and due to the almost religious character of arguments

about operator overloading, the outcome of such e�orts would remain open to

speculation. The recommendations made above seem to have better prospects.

3.6 Additional Standard Class Libraries for Mathematics

In addition to the proposed standard classes for complex arithmetic and mul-

tidimensional arrays, members of the Numerics Working Group have developed

a number of additional prototype classes for core numerical computing. These

include the following.

{ The JAMA package for basic matrix algebra developed by The MathWorks

and NIST [3].

{ The MPJAVA package for multiprecision arithmetic developed at the Univer-

sity of North Carolina [10]. This is based upon Bailey's well-known MPFUN

Fortran package [2].

{ The Sfun package of higher mathematical functions developed by Visual

Numerics [5].

In addition, packages for interval arithmetic and fast Fourier transforms have

been discussed. If these gain su�cient community support, then they too will be

submitted for approval in the formal standardization process for Java.

4 Concurrency and Applications Working Group

4.1 Goal of the Working Group

The Concurrency and Applications Working Group of the Java Grande Forum

evaluates the applicability of Java for parallel and distributed computing. Ac-

tions based on consensus are formulated and carried out, in order to get rid of

inadequacies in the programming language or the run-time system. The results

that have been achieved will be presented in the following sections. Further work

in the �eld of parallel programming environments and \Computing Portals" have

not yet been consolidated and will not be covered in this article.

4.2 Faster Remote Method Invocation

Good latency times and high bandwidths are essential for distributed and par-

allel programs. However, the remote method invocation (RMI) of common Java

distributions is too slow for high performance applications, since RMI was devel-

oped for wide area networks, builds upon the slow object serialization, and does
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not support any high speed networks. With regular Java, a remote method invo-

cation takes milliseconds { concrete times depend on the number and the types

of arguments. A third of that time is needed for the RMI itself, a third for the

serialization of the arguments (their transformation into a machine-independent

byte representation), and a third for the data transfer (TCP/IP-Ethernet).

In order to achieve a fast remote method invocation, work must be done

at all levels. This means that one needs a fast RMI implementation, a fast

serialization, and the possibility of using communication hardware that does not

employ TCP/IP protocols.

Within the framework of the JavaParty Project at the University of Karlsruhe

[24], all three of these requirements were attacked to create the fastest (pure)

Java implementation of a remote method invocation. On a cluster of DEC-Alpha

computers connected by Myrinet, called ParaStation, currently a remote method

invocation takes about 80 �s although it is completely implemented in Java.3

Figure 4 shows, that for benchmark programs 96% of the time can be saved, if the

UKA serialization, the high-speed RMI (KaRMI), and the faster communication

hardware is used. The central ideas of the optimization will be highlighted in

the next sections.
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Fig. 4. The bottom three box plots each show 2�64 measured results for diverse bench-

marks (64 points represent Ethernet on PC, 64 stand for FastEthernet on Alpha). The

�rst (bottom-most) box plot shows the run-time improvement that was achieved with

regular RMI and the UKA serialization. The second box plot shows the improvement

that KaRMI achieves when used with Java's regular serialization. The third box plot

shows the combined e�ect. The top line demonstrates what happens, if Myrinet cards

are used in addition to the UKA serialization and KaRMI (64 measured results).

3 Of course, the connection of the card driver was not realized in Java.
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UKA Serialization. The UKA serialization [19] can be used instead of the

o�cial serialization (and as a supplement to it) and saves 76%{96% of the seri-

alization time. It is based on the following main points:

{ Explicit serialization routines (\marshalling routines") are faster than those

used by classical RMI that automatically derive a byte representation with

the help of type introspection.

{ A good deal of the costs of the serialization are needed for the time-

consuming encoding of the type information that is necessary for persis-

tent object storage. For the purposes of communication, especially in work

station clusters with common �le systems, a reduced form of the type en-

coding is su�cient and faster. The Java Grande Forum has convinced Sun

Microsystems to make the method of type encoding plugable in one of the

next versions.

{ Copied objects need to be transferred again for each call in RMI. RMI does

not di�erentiate between type encoding and useful data, meaning that the

type information is transferred redundantly.

{ Sun has announced (without concretely naming a version) it will pick up on

the idea of a separate reset of type information and user data.

{ The o�cial serialization uses several layers of streams that all possess their

own bu�ers. This causes frequent copying operations and results in unac-

ceptable performance. The UKA serialization only needs one bu�er, which

the byte representation can be directly written in.

{ Although Sun remains steadfast about layering for reasons of clearer object-

oriented design, they are at least improving the implementation of the layers.

KaRMI. A substitute implementation of RMI, called KaRMI, was also created

at the University of Karlsruhe. KaRMI [32] can be used instead of the o�cial

RMI and gets rid of the following de�ciencies, as well as some others found in

o�cial RMI:

{ KaRMI supports non-TCP/IP networks. Suns plans to add support in the

o�cial RMI-Version as well.

{ KaRMI possesses clearer layering, which will make it easier to employ other

protocol semantics (i.e. Multicast) and other network hardware (i.e. Myrinet-

Cards).

{ In RMI, objects can be connected to �xed port numbers. Therefore, a certain

detail of the network layer is passed to the application. Since this is in con
ict

with the guidelines of modular design, KaRMI only supports use of explicit

port numbers when the underlying network o�ers them.

{ The distributed garbage collection of the o�cial RMI was created for wide

area networks. Although there are optimized garbage collectors for tightly

coupled clusters and for other platforms [31], the o�cial RMI sees no alter-

native garbage collector as being necessary, in contrast to KaRMI.
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4.3 Message Passing in Java

The Java language has several built-in mechanisms which allow the parallelism

inherent in scienti�c programs to be exploited. Threads and concurrency con-

structs are well-suited to shared memory computers, but not large-scale dis-

tributed memory machines. Although sockets and the RMI interface allow the

development of big network applications, they have been designed and optimized

for client-server programming, whereas the parallel computing world is mainly

concerned with a more symmetric model, where communications occur in groups

of interacting peers. Therefore, codes based on sockets and RMI would naturally

underperform platform-speci�c implementations of standard communication li-

braries based on the successful Message Passing Interface (MPI) standard [42].

By contrast with sockets and RMI, MPI directly supports the Single Program

Multiple Data (SPMD) model of parallel computing, wherein a group of pro-

cesses cooperate by executing identical program images on local data values.

With the evident success of Java as a programming language, and its in-

evitable use in connection with parallel as well as distributed computing, the ab-

sence of a well-designed language-speci�c binding for message-passing with Java

would lead to divergent, non-portable practices. The Message-Passing Working

Group of the Java Grande Forum was formed in the Fall of 1998 as a response

to the appearance of the various APIs for message-passing. Some of these early

\proof-of-concept" implementations [20, 28, 25] have been available since 1997

with successful ports on clusters of workstations running Linux, Solaris, Win-

dows NT, Irix, AIX, HP-UX, and MacOS, as well as on parallel platforms such as

the IBM SP-2 and SP-3, Sun E4000, SGI Origin-2000, Fujitsu AP3000, Hitachi

SR2201 and others. An immediate goal was to discuss and agree on a common

API for MPI-like libraries for Message Passing in Java (MPJ) [7].

The MPI standard is explicitly object-based. The C and Fortran bindings rely

on \opaque objects" that can be manipulated only by acquiring object handles

from constructor functions, and passing the handles to suitable functions in the

library. The C++ binding speci�ed in the MPI-2 standard collects these objects

into suitable class hierarchies and de�nes most of the library functions as class

member functions. The MPJ API speci�cation follows this model, lifting the

structure of its class hierarchy directly from the C++ binding. The purpose of

this phase of the e�ort is to provide an immediate, ad hoc standardization for

common message passing programs in Java, as well as to provide a basis for

conversion between C, C++, Fortran, and Java.

In this paper we present performance analysis and comparisons of evaluation

results for both Java and C/Fortran on three di�erent message-passing parallel

platforms { a shared memory multi-processor (Sun E4000), a Linux cluster, and

a distributed memory computer (IBM SP-2). The NAS parallel Embarrassingly

Parallel (EP) and the Integer Sort (IS) benchmarks were used in our perfor-

mance evaluation. The IS routine evaluates integer operations and bi-directional

communications (the sorted keys are exchanged between nodes), while the EP

kernel tests 
oating point operations performance but requires minimal commu-

nications.
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The JVM and the Java compiler used on the IBM SP-2 machine were part

of the JDK for AIX. The execution environment consisted of IBM's Parallel

Operating Environment (POE), which supports the loading and execution of

parallel processes across the nodes of the IBM SP-2. The machine is built of

thin nodes with POWER2 Super Chip (P2SC) processors and 256 Mbytes of

memory on each processor. The communication subsystem of the SP-2 features

a high-performance switch which was used throughout the experiments. The

NAS EP and IS benchmarks were also run on a 200 MHz dual Pentium Pro

processor cluster running Linux Red Hat 6.0 on a 10baseT Ethernet. The same

experiments were performed on a 14x336 MHz Ultra Sparc II processor Sun

E4000 running Solaris 2.6. The LAM MPI library was used on the Linux cluster,

whilst both the SP-2 and the E4000 provided native MPI libraries for message

passing.
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Fig. 5. Execution times for the NPB EP kernel (class B) on the IBM SP-2

A native code compiler for Java can be used instead of the JVM in or-

der to overcome the above problem. Fortunately, rapid progress is being made

in this area by developing optimizing Java compilers, such as the IBM High-

Performance Compiler for Java (HPCJ), which generates native codes for the

RS6000 architecture [?]. It works in the same manner as compilers for C, C++,

Fortran, etc. and unlike JIT compilers, the static compilation occurs only once,

before execution time. Thus, traditional resource-intensive optimisations can be

applied in order to improve the performance of the generated native executable
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code. In our experiments, we have used a version of HPCJ, which generates

native code for the RS/6000 architecture. The input of HPCJ is usually a byte-

code �le, but the compiler will also accept Java source as input. In the latter

case it invokes the JDK source-to-bytecode compiler to produce the bytecode

�le �rst. This �le is then processed by a translator which passes an intermediate

language representation to the common back-end from the family of compilers

for the RS/6000 architecture. The back-end outputs standard object code which

is then linked with other object modules and the previously bound legacy li-

braries to produce native executable code. Further experiments to evaluate the

performance of the environment based on HPCJ have been carried out with the

IS kernel on an IBM SP-2 machine. The results obtained are shown in Figure 6.
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Back in 1994, MPI-1 was originally designed with relatively static platforms

in mind. To better support computing in volatile Internet environments, mod-

ern message passing designs for Java will have to support (at least) features

such as dynamic spawning of process groups and parallel client/server interfaces

as introduced in the MPI-2 speci�cation. In addition, a natural framework for

dynamically discovering new compute resources and establishing connections be-

tween running programs already exists in Sun's Jini project [41], and one line of

investigation is into MPJ implementations operating in the Jini framework.

Closely modelled as it is on the MPI standards, the existing MPJ speci�ca-

tion should be regarded as a �rst phase in a broader program to de�ne a more

Java-centric high performance message-passing environment. In future a detach-
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ment from legacy implementations involving Java on top of native methods will

be emphasized. We should consider the possibility of layering the messaging

middleware over standard transports and other Java-compliant middleware (like

CORBA). Of course, a primary goal in the above mentioned, both current and

future work, should be the aim to o�er MPI-like services to Java programs in an

upward compatible fashion. The purposes are twofold: performance and porta-

bility.

4.4 Benchmarks

The Java Grande Forum has begun a benchmark initiative. The intentions are

to make convincing arguments for Grande applications and to uncover the weak-

nesses in the Java platform. The responsibility for this initiative is being carried

by the EPCC (Edinburgh) [11]. Currently a stable collection of non-parallel

benchmarks exists in three categories:

{ Basic operations are being timed (such as arithmetic expressions, object

generation, method calls, loop bodies, etc.)
{ Computational kernels: similar to the example of SciMark, numerical kernels

are being observed. The IDEA-encryption algorithm is also in the collection.
{ Applications: The collection is made up of an Alpha-Beta search with

pruning, a Computational-Fluid-Dynamics application, a Monte-Carlo-

simulation, and a 3D ray-tracing.

Thread benchmarks for all three categories are being worked on. For these

purposes, the basic operations are being timed (create, join, barrier, synchronized

methods); some of the applications (Monte Carlo and Ray-tracer) are being

implemented in parallel. In addition, for quantitative language comparisons it is

intended to provide equivalent implementations in C/C++.

5 Conclusion

Contributions of the Java Grande Forum are the keywords strictfp and fastfp

for improved 
oating point arithmetic, work in the �eld of complex numbers, the

multidimensional array package, the high-speed serialization, the fast RMI, and

�nally the benchmark initiatives.

Due to the cooperation with Sun Microsystems, due to the creation of a new

branch of research, and due to the focussing of interests of the \Java Grande

Community", the future holds the hope that the requirements of high perfor-

mance computing will be made a reality in Java.
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