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Adaptive Limited Feedback for MISO Wiretap
Channels With Cooperative Jamming
Minyan Pei, A. Lee Swindlehurst, Fellow, IEEE, Dongtang Ma, and Jibo Wei

Abstract—This paper studies a multi-antenna wiretap channel
with a passive eavesdropper and an external helper, where only
quantized channel information regarding the legitimate receiver is
available at the transmitter and helper due to finite-rate feedback.
Given a fixed total bandwidth for the two feedback channels, the
receiver must determine how to allocate its feedback bits to the
transmitter and helper. Assuming zero-forcing transmission at the
helper and random vector quantization of the channels, an ana-
lytic expression for the achievable ergodic secrecy rate due to the
resulting quantization errors is derived. While direct optimization
of the secrecy rate is difficult, an approximate upper bound for the
mean loss in secrecy rate is derived and a feedback bit allocation
method that minimizes the average upper bound on the secrecy
rate loss is studied. A closed-form solution is shown to be possible
if the integer constraint on the bit allocation is relaxed. Numerical
simulations indicate the significant advantage that can be achieved
by adaptively allocating the available feedback bits.

Index Terms—Cooperative jamming, feedback bits allocation,
limited feedback, MISO wiretap channel.

I. INTRODUCTION

P HYSICAL layer security has attracted considerable at-
tention recently as an alternative to or an augmentation

of traditional cryptography-based security. The goal of such
methods is to exploit the physical characteristics of the wireless
channel to enhance the security of wireless communication
systems. The pioneering work of Wyner introduced the concept
of the wiretap channel and secrecy capacity, and laid the basis
for information-theoretic approaches for secure communication
[1]. More recently, a significant effort has been invested in the
study of secrecy capacity in wiretap channels with multiple
antennas [2]–[8]. More detailed results are possible for mul-
tiple-input single-output (MISO) wiretap channels, which have
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been studied in [2]–[5] under different assumptions on channel
state information and fading. In particular, for the MISO case
where the channel to the legitimate receiver is known but only
trivial statistical information about the eavesdropper’s channel
is available, it was shown in [2] that the optimal communica-
tion strategy that achieves the highest secrecy rate, is based on
beamforming. With the additional degrees of freedom available
in multi-antenna systems, the use of artificial noise (AN) has
been proposed for selectively degrading the eavesdropper’s
channel, particularly in situations where no information or only
statistical information is available about the eavesdropper [9],
[10].
Recent work has also considered the use of friendly helpers to

provide jamming signals to confuse the eavesdropper [11]–[19].
The idea of a terminal helping another improve its secrecy rate
first appeared in 2006 [11], and later in [12], [13] the term coop-
erative jamming was introduced for this idea. It should be noted
that although in this paper we will study cooperative jamming
with Gaussian noise, cooperative jammers can also improve se-
crecy using Gaussian or lattice codewords, as in [14], [16]. The
MISO wiretap scenario was first considered in [18], where it
was shown that zero-forcing (ZF) beamforming at the helper is
nearly optimal in the high signal-to-noise ratio (SNR) regime.
The work of [19] showed how to obtain optimal transmit beam-
formers at the transmitter and helper, and also demonstrated that
using a ZF beamformer at the helper is a near-optimal choice for
obtaining the secrecy capacity in this scenario, assuming that
the transmitter and helper have perfect channel state informa-
tion (CSI) for the channels to the receiver. In practice however,
knowledge of the CSI at the transmitter and helper (referred to
as CSIT here) is destined to be in error. This is particularly true
in frequency-division duplex (FDD) systems, where the legiti-
mate user quantizes the CSI using a finite-sized codebook that
is known to both the transmitter and receiver, and then feeds the
quantized information back to the transmitter.
The effects of quantized channel feedback on transceiver

design have been studied extensively for both single and
multiuser downlink systems without secrecy considerations
[20]–[24]. Only the recent work of [25]–[27] has considered
the impact of limited feedback on secrecy for the simple
wiretap channel without a helper. In [25], the degradation in
secrecy rate for AN-assisted beamforming due to quantized
channel direction information was studied, and the optimal
power allocation between the message-bearing signal and the
AN for a given number of feedback bits was examined. A
lower bound on the ergodic secrecy capacity was obtained
using numerical integration in [26] for AN-assisted wiretap
channels. In [27], the secrecy outage probability was charac-
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terized for codebook-based transmit beamforming. However,
none of the prior work has addressed the impact of finite-rate
feedback in the context of multiple-antenna wiretap channels
with an external helper. This problem is interesting since each
receiver must feedback CSI to both the transmitter and the
helper. Errors in the CSI at the transmitter, which reduce the
gain available to the receiver, must be balanced against errors
in the helper CSI, which will lead to increased interference
due to imperfectly nulled AN transmissions. When the total
bandwidth of the two feedback channels is fixed, the optimal
feedback bit allocation must address this trade-off given the
available feedback throughput, SNR, number of antennas and
the channel conditions.
Feedback bit allocation strategies have been proposed for

other applications where both desired and interfering transmit-
ters are present [28]–[30], although again not for the physical
layer security problem. The two-user MIMO interference
channel was considered in [28], and cooperative feedback to
the interfering transmitter was proposed in addition to standard
feedback to the desired transmitter. Under a constraint on the
throughput loss caused by precoder quantization, the required
number of cooperative feedback bits was derived. Cooperative
multi-cell systems with limited feedback are another relevant
application. The authors of [29] proposed an approach where
the available bits assigned to the desired and interfering trans-
mitters were chosen to reduce the mean loss in sum-rate due to
quantization for a soft hand-off model. In their scheme, beam-
forming vectors were designed using a generalized eigenvector
approach to maximize the sum-rate assuming a single interferer
scenario, which leads to an objective different from the one
considered here. In [30], a multicell MISO system with joint
processing was considered, where the base stations exchange
both CSI and data, and a feedback bit allocation scheme was
proposed to maximize the quantization accuracy.
In this paper, we consider cooperative jamming for the MISO

wiretap channel with finite-rate feedback, where the transmitter
uses a maximum ratio transmission (MRT) strategy, and the
helper enhances the secrecy of the legitimate channels via a
ZF approach intended to produce AN that is ideally invisible to
the legitimate user. Assuming a fixed total number of feedback
bits available at the legitimate user, we study how to optimize
allocation of the bits for the two feedback channels assuming
random vector quantization (RVQ) codebooks, where the quan-
tization vectors are independently chosen from an isotropic dis-
tribution on the unit hypersphere [21]. We first consider the gen-
eral problem of maximizing the ergodic secrecy rate. While we
show how to obtain an analytic expression for the ergodic se-
crecy rate that can be used for performance optimization, it is
cumbersome and requires numerical integration. As an alterna-
tive, we then derive an upper-bound on the mean loss in se-
crecy rate assuming a fixed power allocation at the transmitter
and helper. We show that for the general scenario with a global
constraint on the feedback bandwidth, a closed-form solution
can be found by standard convex optimization techniques if the
integer constraint on the bits is relaxed. Our simulation results
show that proper allocation of the feedback bits to the trans-
mitter and helper can have a significant impact on the secrecy
of the wiretap channel.

In the next section, the system model is presented together
with the proposed transmission strategy. An analytical expres-
sion for the ergodic secrecy rate is developed in Section III, and
then an approximate upper bound for the secrecy rate loss is
derived in Section IV, together with the algorithm for adaptive
limited feedback that minimizes the upper bound under a con-
straint on the total number of feedback bits. Numerical results
are provided in Section V and we conclude in Section VI.
Notations: We use uppercase boldface for matrices and low-

ercase boldface for vectors. The superscripts and de-
note conjugate transposition and matrix inversion, respectively.

, and denote the trace, column vectorization
and determinant operations, respectively. denotes expecta-
tion with respect to , denotes the Euclidean norm of vector
, and the function represents . The notation

means that is a vector of circularly symmetric
complex Gaussian random variables with mean vector and co-
variance matrix . denotes an identity matrix (the
subscript is dropped when the dimension is obvious).

II. SYSTEM MODEL AND ASSUMPTIONS

A. System Model

We consider a MISO wiretap channel that includes a trans-
mitter (Alice), a legitimate receiver (Bob), a friendly jammer
(Helper) and an eavesdropper (Eve). We assume antennas at
Alice, antennas at Helper, antennas at Eve, and a single
antenna at Bob. In this model, the transmitter Alice wishes to
send a confidential message to Bob in the presence of Eve, with
the aid of the Helper. We assume that the Helper does not know
the confidential message and assists Alice by producing artifi-
cial Gaussian noise (jamming) to confuse Eve.
We assume the vector is the confidential in-

formation-bearing signal transmitted by Alice,
is the Gaussian jamming signal generated by the Helper, and
the signals satisfy the power constraints ,

. The received signal at Bob and Eve are respec-
tively given by

(1)

(2)

where are the channel vectors
to Bob from Alice and the Helper respectively, and

are the corresponding channels for
Eve. The terms and represent circularly symmetric unit-
variance Gaussian noise at Bob and Eve, respectively; their dis-
tributions are denoted by and .
All channels are assumed to be mutually independent and each
composed of circularly symmetric complex Gaussian entries,
i.e., and . The instan-
taneous realizations of both and are known perfectly to
Bob, but Alice and the Helper only have quantized information
about them obtained via distinct finite-rate feedback channels
from the legitimate receiver. We also assume that

and , and that these dis-
tributions are known to all legitimate parties (although we will
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see that this assumption can be relaxed when dealing with se-
crecy rate loss). All channels are assumed to remain constant
during the time required for channel estimation and feedback.
In the finite-rate feedback model, the legitimate receiver

first quantizes the channel direction information (CDI),
and , by exploiting two dis-

tinct quantization codebooks,
and , which consist of - and
-dimensional unit norm vectors and are of size and ,

respectively ( is the codebook at Alice, is the codebook
at the Helper). The codebooks are designed off-line and known
to all parties. Using the minimum chordal distance metric [20],
[23], the CDI indices are computed by Bob as

(3)

(4)

where and are the quantized CDI of the two links for
Bob. After quantization, Bob informs Alice and the Helper of
their respective codebook indices and through distinct
error- and delay-free feedback channels. Note that only the CDI
is quantized, since the transmission strategies discussed below
do not require knowledge of the channel gain.

B. Transmission Strategies

We focus on MRT beamforming at Alice and a ZF trans-
mission scheme at the Helper, which is a reasonable approach
for the MISO case considered here. Thus, the unit-norm
beamforming vector for Bob at Alice is chosen as .
The ZF constraint imposed on the jamming noise gener-
ated by the Helper can be expressed as , where

is an orthonormal basis for the null-space
of , and is a vector of independent and identically
distributed (i.i.d) Gaussian random variables of variance
. Due to the power constraint at the Helper, we have

. The received
signal at Bob and Eve are thus

(5)

(6)

The fundamental problem we are addressing is the following:
if the total number of feedback bits from the legitimate re-
ceiver is fixed, how should and be allocated among the
transmitter and helper for optimal secrecy? Besides optimiza-
tion of the feedback bit allocation, there is also an optimal power
level for ; if too much power is allocated to the Helper when
there are insufficient bits available for good CSI, the AN pro-
vided by the Helper does more harm than good due to interfer-
ence leakage. The choice of transmit power to use at Alice could
in principle also be optimized in order to maximize secrecy per-
formance, although our simulations indicate that the best per-
formance is achieved when Alice transmits with full power .
In the absence of a formal proof of this observation, we will as-
sume that Alice transmits with full power , recognizing that
this may not be optimal in all cases. In the next section, we at-
tempt a direct analysis using the ergodic secrecy rate. While our
resulting analytic expression can be used to solve the desired

optimization problem, a complicated process involving numer-
ical integration is required. Thus, in Section IV, we consider a
simpler approach based on secrecy rate loss, and we optimize
the bit allocation to minimize an upper bound on the loss for
fixed and .

III. ERGODIC SECRECY RATE ANALYSIS WITH LIMITED
FEEDBACK

A. Achievable Secrecy Rate With Quantized CDI

To quantify the secrecy performance of the scenario de-
scribed above, we assume that the channels are ergodic
block-fading that remain constant over a sufficient amount
of time for signal transmission and feedback, and that the
messages are coded across multiple fading blocks (a similar
model was used in the related study of [25]). We further assume
a scenario with delay-tolerant traffic, and use ergodic secrecy
rate as our performance metric rather than secrecy outage
rate [31]. For Gaussian signaling with , the
achievable ergodic secrecy rate at Bob for the above ZF-based
transmission strategy is given by [25]

(7)

where

To represent the effect of quantized CDI on the achievable
secrecy rate, we rewrite the actual channel direction vectors as

(8)

(9)

where , , and and are
unit-norm vectors orthogonal to and , respectively. Thus,
we have

(10)

The interference from the jammer is implicitly defined by
the first term in the denominator of (10).

B. Auxiliary Results

In this subsection, we provide three lemmas that will be used
in the ergodic secrecy rate analysis. The quantization cell ap-
proximation used in the proofs is based on the assumption that
each quantization cell is a Voronoi region with surface area
equal to of the total area of the unit sphere for a -bit code-
book. Details for this model can be found in [20], [24]. As shown
in [24], analysis based on the quantization cell approximation is
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close to the performance of random vector quantization, and so
we use this approach to analyze the achievable rate.
Lemma 1 (Signal Power Distribution): Define

, where is defined in (8). Then under the quan-
tization cell approximation model, the cumulative distribution
function (CDF) of is given by

(11)

where .
Proof: See Appendix A.

Lemma 2 (Interference Power Distribution): Under the quan-
tization cell approximationmodel, the interference term is an
exponential random variable with probability distribution func-
tion (PDF) given by

(12)

where .
Proof: See Appendix B.

Lemma 3 (Distribution of SINR for Eve): Define
, where , and

are independent zero-mean
complex Gaussian variables with . Then the
complementary CDF of is

(13)

where , ,

and is the coefficient of in .
Proof: This result is provided by eq. (11) in [32].

C. Ergodic Secrecy Rate

Using Lemma 1 and Lemma 2, we can derive an analytic
expression for the ergodic rate of the channel between Alice
and Bob averaged over the parameters of the quantization,
which we denote by , where
denotes expectation with respect to . Next we de-
fine and , and note that

are independent zero-mean
complex Gaussian variables. The SINR at Eve becomes

(14)

and we can derive an analytic expression for the ergodic rate
of the eavesdropper’s channel using Lemma 3. Putting these
results together, an analytic expression for the ergodic secrecy
rate can be obtained, which is provided below in Theorem 1.

Theorem 1: Denote ,

, and . Then
, Where

(15)

(16)

and is the integral

(17)

which can be evaluated as explained in (47), is the
integral

(18)

which can be evaluated as explained in (48).
Proof: See Appendix C.

The resulting expression is quite complicated in the general
case. In the following, we provide simplified or approximate
expressions for the ergodic secrecy rate in several special sce-
narios, where . These expressions
will be used to obtain analytical results and useful insights on
the achievable average secrecy rate and allocation of the feed-
back bits. Note that the derived approximation may not be an
achievable secrecy rate, although it is useful for feedback de-
sign.
1) High SNR Case: If we define and let grow

large, the noise term is negligible with respect to the interference
term in the SINR expressions. In this case, the ergodic secrecy
rate drops to zero when , since the eavesdropper can



PEI et al.: MISO WIRETAP CHANNELS WITH COOPERATIVE JAMMING 997

theoretically null the interference from the Helper. For the case
where , the ergodic secrecy rate can be expressed as
in Theorem 2.
Theorem 2: Denote , ,

. If , then

, where and are derived as (19)
and (20) at the bottom of the page.

Proof: See Appendix D.
2) Single-Antenna Eavesdropper: For the special case where

, , the achievable ergodic rates and
in Theorem 1 reduce to (21) and (22) at the bottom of the

page. This can be substituted into

to yield a simplified expression for the ergodic secrecy rate. For
high SNR with and , the expressions for

and in (21) and (22) can be approximated as (23)
and (24) at the bottom of the page.
Fig. 1 shows the ergodic secrecy rate as a function of the

transmit power , with , and
for , 5. The dash-dotted lines are obtained using the
asymptotic expressions in (23) and (24). We see that the secrecy
rate increases with (higher relative power at the Helper) and
as the total number of feedback bits for Bob is increased.
Also, for large , the secrecy rate yielded by (21) and (22)
asymptotically converges to the limiting value derived by (23)
and (24). Furthermore, the simplified expression for the ergodic

(19)

(20)

(21)

(22)

(23)

(24)
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Fig. 1. Achievable ergodic secrecy rate versus transmit power at the Helper for
, when , .

Fig. 2. Number of feedback bits allocated to Alice versus transmit power at the
Helper for , when , .

secrecy rate for , in the high SNR regime
yields a simple feedback bits allocation strategy, that is only one
bit allocated for Alice and the other bits allocated for the
Helper.
In Fig. 2, we further show the variation in the number of feed-

back bits allocated to Alice as a function of for several dif-
ferent values of available to Bob. In Fig. 2, for
, and , we see that as the power
transmitted by the Helper increases, the number of feedback bits
allocated to Alice is reduced, due to an increasing need to quan-
tize the interfering channel with greater resolution. In the limit
for very high , only one bit is allocated to Alice, and the re-
maining bits are used to quantize the Helper’s channel.
Note that this result is independent of .
While difficult, optimization of the derived ergodic secrecy

rate in the general case for arbitrary , , , and
over the parameters , and is possible, especially since
the expressions depend only on the channel distributions and

thus the required computation can be performed offline. As an
alternative, in the next section we consider a simpler approach
based on secrecy rate loss. We will see that an additional advan-
tage of using secrecy rate loss as a metric is that knowledge of
the eavesdropper’s parameters (channel variance and number of
antennas) is not necessary.

IV. SECRECY RATE LOSS WITH LIMITED FEEDBACK

Here we derive an upper bound on the secrecy rate loss due
to the use of quantized CSI, and then we find the feedback bit
allocation to minimize the bound for fixed . The advantage of
this approach is that it leads to a simpler closed-form solution,
but the disadvantage is that the solution depends on a fixed value
of , which must be optimized separately.

A. Characterization of the Secrecy Rate Loss

The secrecy rate loss at Bob due to quantized CDI is given by

(25)

where denotes the secrecy rate achievedwith perfectCSI:

(26)

and

Similar to our previous notation, is an orthonormal basis for
the nullspace of .
Note that and are isotropically distributed unit-norm

vectors independent of . Thus, and have the
same distribution. Furthermore, and are both
unitary matrices independent of , so and have the
same distribution. Therefore, the second terms inside the
operator in both (7) and (26) are identical, i.e.,

(27)

A similar observation was made in [25], [26]. Thus, for uncor-
related Rayleigh fading at the eavesdropper, analysis of the ef-
fect of feedback quantization does not require knowledge of the
variance of the eavesdropper’s channel nor the number of eaves-
dropper antennas. Note that while we assume Eve treats the in-
terference as noise here, our argument is still valid if Eve per-
forms interference cancelation.
Since it is clear that , the secrecy rate loss in

(25) becomes

if
if
if .

(28)
For all three cases in (28), the expression
serves as an upper bound for . For the first case, if
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, then and .
For the second case, when and , then

, and
thus . The third case is obvious.
Therefore the secrecy rate loss at the legitimate receiver can be
upper-bounded as

(29)

where results because and is monotonically
increasing, uses when , and is
obtained by applying Jensen’s inequality to and exploiting
the independence between the channel norm and channel direc-
tion vector. Note that the inequality in will typically be tight,
since when the power received from
Alice is much stronger than the interference leaked from the
Helper.
Since and each column of are independent and isotropi-

cally distributed dimensional vectors, we have as in [22,
Lemma 1] that

(30)

where is a Beta-distributed random variable with
parameters . Furthermore, using

and [23]:

we have

(31)
where we also use the fact that random variables ,

, are mutually independent [23, Lemma 2].
Finally, we obtain the upper bound of the secrecy rate loss at

the legitimate receiver as

(32)

where

B. Feedback Bit Allocation Policy

We assume that the legitimate receiver has a fixed constraint
on the total number of available feedback bits, i.e.,
. The feedback bit allocation problem that minimizes the

upper bound on the secrecy rate loss can be described as

(33)

The optimization of (33) is a non-linear integer programming
problem, and in general the optimal solution must be obtained
by an exhaustive search over with

. For the special case where , the following
closed-form solution can be found by relaxing the integer con-
straint on and treating them as continuous variables.
Solving for the resulting unique stationary point yields:

(34)

One then simply searches the integer values above and below
to determine the optimal allocation.
Note that (33) is a function of the total number of available

bits , the number of transmit antennas , , the transmit
power allocations , , and the channel statistics , .
Thus, the optimal feedback bit allocation remains fixed as long
as the channel statistics and transmit power allocations are con-
stant.

V. NUMERICAL RESULTS

For the simulation results presented here, we consider a flat
Rayleigh fading MISO wiretap channel with and

. All the channel coefficients were assumed to be i.i.d.
complex Gaussian random variables with zero mean and unit
variance. Each simulation result was obtained by averaging over
10000 independent channel realizations. Note that, since

in the following examples, taking the integer values closest
to the result in (34) can be used to find the bit allocation for
minimizing secrecy rate loss. The performance obtained using
this approach was found to be identical to that obtained by an
exhaustive search.
In the left side of Fig. 3, we plot the actual average achievable

secrecy rate assuming RVQ and the analytic ergodic secrecy
rate expression in Theorem 1 versus the number of feedback
bits allocated to Alice for two different Helper power alloca-
tions, where the total number of feedback bits available to Bob
is constrained as . The right side of the figure shows
the mean secrecy rate loss and the upper bound obtained using
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Fig. 3. Average secrecy rate and secrecy rate loss versus number of feedback
bits allocated to Alice with .

(32). In both cases, we see that optimizing the analytic expres-
sion provides essentially the same result as optimizing the ac-
tual rate or rate loss. The closed-form solution for the feedback
bit allocation in (34) yields and hence
when , and or
when , . More bits are allocated to the
Helper when its available power increases since the interference
leakage from Helper more severely impacts Bob than the loss of
gain from Alice.
Fig. 4 compares the average secrecy rate achieved by the

ZF-based transmission scheme using RVQ codebooks versus
the transmit power at the Helper with different feedback bit al-
location strategies. The total number of feedback bits for Bob is

and . The adaptive feedback bit allocation
strategy is obtained by solving the optimization problem (33)
using an exhaustive search. While there is a significant gap be-
tween the performance obtained with perfect and limited feed-
back, the adaptive bit allocation policy provides a substantial
gain over simply allocating the bits equally between Alice and
the Helper. For comparison, we also show the corresponding
analytic ergodic secrecy rate obtained in Theorem 1. Although
there is a gap in the secrecy rate between these curves as
increases, we see the same behavior as a function of . Note
there is clearly an optimal power level for . Use of the pro-
posed adaptive feedback bit allocation allows the Helper to be
useful for a wider range of ; for equal bit allocation, the se-
crecy rate decreases for values of greater than 12 dB, while
for the optimal allocation this only occurs when .
The secrecy rate as a function of for several different

values of available to Bob are compared in Fig. 5. Not sur-
prisingly, the secrecy rate increases with higher-quality quanti-
zation of the CDI. Again, we also see that the optimal transmit
power at the Helper decreases as the total number of feedback
bits decreases. For example, we see that if is only four, the
presence of the Helper actually makes the secrecy performance
worse at any power level. This implies that the presence of a
Helper providing cooperative jamming is only useful if a suffi-
cient number of bits are available to accurately characterize the

Fig. 4. Average achievable secrecy rate versus transmit power at the Helper for
, .

Fig. 5. Average achievable secrecy rate versus transmit power at the Helper
with different values of , for .

CSI. As more bits are added and the ZF-jamming constraint can
be more accurately achieved, the benefit of the Helper becomes
clear.

VI. CONCLUSIONS

In this paper, we have investigated the effect of quantized
channel state information on the secrecy rate achievable with a
ZF-based transmission strategy in theMISO channel with coop-
erative jamming. We derived an analytic expression for the er-
godic secrecy rate and an upper bound for the secrecy rate loss
as a function of the feedback bit allocations to the transmitter
and cooperative jammer assuming random vector codebooks.
We then studied the problem of optimizing the ergodic secrecy
rate and the bound on secrecy rate loss as a function of the feed-
back allocation, assuming a fixed feedback bandwidth for the
legitimate user. Direct maximization of the ergodic secrecy rate
is difficult and requires cumbersome numerical methods, but al-
lows one to find the optimal power assignment at the Helper
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in addition to the optimal feedback bit allocation. On the other
hand, minimizing the bound on secrecy rate loss requires a fixed
Helper power allocation, but leads to a closed-form solution.
Simulations demonstrate that optimally allocating the feedback
bits between the transmitter and Helper can lead to a significant
improvement in secrecy.

APPENDIX A

Proof of Lemma 1: Based on the quantization cell approxi-
mation [24], the CDF of is obtained as

(35)

where . Thus, the CDF of is given by

(36)

Noting that has a distribution, the first term in
(36) is given by

(37)

and the second term in (36) can be written as

(38)

Thus,

(39)

APPENDIX B

Proof of Lemma 2: Let ,
, and suppose is independent of . Then the interference

term due to quantization is , where .
Noting that has a Gamma distribution with parameters

, we have with
[24, Lemma 1]. Thus the CDF of is

(40)

which is the CDF of an exponential random variable with mean
. From this, it is easy to show that is an exponential

random variable with mean .

APPENDIX C

Proof of Theorem 1: First denote ,
, then . Using Lemma 1 and Lemma 2, the

CDF of the random variable can be derived as

(41)

Then

(42)

where follows from integration by parts, and

(43)
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From Lemma 3, we have the complementary CDF of as
follows:

if

if ,

(44)

where ,

and is the coefficient of in . In order to

obtain a unified expression for , we rewrite it as follows:

(45)

Thus

(46)

A closed-form expression for the integral can be found as
follows:

(47)

where

(48)

and is the integral

(49)

with closed-form expression

(50)

where is the exponential integral function of the first
order [33].

APPENDIX D

Proof of Theorem 2: The proof is similar to the one in
Appendix C for Theorem 1. For simplicity, we only pro-
vide some key steps of the proof. First, let ,

, using Lemma 1 and Lemma 2, the
CDF of the random variable can be derived as

(51)

Then

(52)

The quantity is equivalent to
the signal-to-interference ratio of an -branch MMSE
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diversity combiner with interferers. The CDF of
is given in [32, eq. (18)] as

(53)

Thus,

(54)
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