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ABSTRACT
Software product lines allow programmers to reuse code
across similar software products. Software products are de-
composed into separate modules representing user-visible
features. Based on a selection of desired features, a cus-
tomized software product can be generated automatically.
However, these reuse mechanisms challenge existing tech-
niques for specification and verification of software. Speci-
fying and verifying each product involves redundant steps,
and is often infeasible. We discuss how method contracts
(i.e., preconditions and postconditions) can be used to effi-
ciently specify and verify product lines.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Languages, Verification

Keywords
Software product lines, feature-oriented programming, de-
sign by contract, verification, Java Modeling Language

1. INTRODUCTION
In software engineering, a major challenge is to reduce

the effort for software development. On the one hand, the
effort can be reduced using high-level reuse techniques for
source code and specification. On the other hand, efficient
techniques for testing and verification are needed. We focus
on both, reuse for specifications and efficient verification.

In object-oriented programming, reuse within one soft-
ware system is achieved by reuse techniques such as class
inheritance. Feature-oriented programming facilitates reuse
across several software systems based on object orienta-
tion [5]. Software systems are decomposed into feature mod-
ules according to user-visible features. Given a selection of
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desired features, a software product can be generated auto-
matically by composing the respective feature modules. The
set of software products that can be generated from a set of
feature modules is called software product line [1].

We discuss how to specify feature modules such that the
specification for each software product can be generated
based on a feature selection. For specification, we rely on de-
sign by contract; a methodology to formally specify object-
oriented systems in terms of method contracts [16, 11]. A
method contract consists of a precondition stating properties
the caller of a method needs to ensure, and a postcondition
stating properties the caller can rely on.

In addition, we discuss approaches to verify software prod-
uct lines based on feature-oriented contracts. An advantage
of contracts compared to other specification techniques is
that they can be used for runtime assertion checking, static
analysis, and deductive verification [8, 4]. We discuss how all
these verification approaches can be applied to feature mod-
ules. In our experience, each approach has unique strengths
and weaknesses regarding soundness, completeness, and ef-
ficiency. Consequently, we need these approaches in concert
when verifying software product lines.

2. STATE OF THE ART
In a recent survey [19], we give an overview and classi-

fication of product-line specification and verification. For
brevity, we select representative approaches to illustrate the
state-of-the-art and the research gap we are aiming at.

Product-Line Specification. A product line can be spec-
ified using a global specification that all products need to
establish [19]. For instance, in a product line of pacemakers,
all products must generate a heart beat whenever the heart
stops beating. Global specifications were used for model
checking [9] and static analyses [6]. We found that a global
specification is too restrictive for product lines, because only
behavior that is common to all products can be specified [24].

Another strategy is to specify each product separately in
a product-based specification [19]. There is no proposal pur-
suing a product-based specification in the literature. How-
ever, in principle, every specification approach for a single
software system can be applied to products individually. A
product-based specification does scale well, because it does
not facilitate any reuse opportunities across products, and
thus is not an option for us.

In contrast, feature-based specifications aim at reuse: We
can specify each feature individually, and compose these
specifications based on a feature selection [19]. Feature-
based specifications have been used only for model check-
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ing [15]. We rely on feature-based specifications, because
we can define contracts directly at the source code, as pro-
posed by design by contract [16].

Product-Line Verification. A strategy for product-line
verification is to generate and verify all products separately
in a product-based verification [19]. In principle, any stan-
dard verification technique applicable to the generated prod-
ucts can be used for product-based verification. Product-
based verification is used for model checking [14] and theo-
rem proving [7]. However, product-based verification inher-
ently involves redundant effort.

In a feature-based verification, the implementation of each
feature is verified in isolation, without considering other fea-
tures [19]. As feature-based verification can detect only
issues within features and not across features, it is often
combined with product-based verification to achieve syner-
gies [19]. In such a feature-product-based verification, fea-
tures are verified as far as possible in isolation, and all
remaining verification tasks are done for each product. A
feature-product-based strategy has been proposed for type
checking [2], model checking [9], and theorem proving [17].

A further strategy is to verify all products simultane-
ously using a family-based verification [19]. To simulate all
products, verification tools are made variability-aware, or
compile-time variability is translated into runtime variabil-
ity [19]. A family-based strategy has been applied to type
checking [13], model checking [10], and static analyses [6].

3. PROBLEM STATEMENT
Software product lines require reuse mechanisms for both,

source code and specifications. While there are several mech-
anisms for code reuse [1], there is a lack of sophisticated reuse
mechanisms for specifications. Some approaches to define
feature-based specifications have been presented in the lit-
erature (e.g., [15], see further examples in our survey [19]).
However, specification approaches are usually taken as given
and not justified by theoretical or practical evaluations, as
the focus is on the verification, rather than specification.

Besides reuse in source code and specifications, we need
efficient techniques for product-line testing and verification.
In our survey [19], we noticed that existing work usually fo-
cuses on one verification technique (e.g., model checking),
and thus the specification approach is usually specific to a
certain technique. For example, a system specified in the
input language of a model checker can hardly be verified by
means of theorem proving. However, we and others [8, 4] ar-
gue that once a system is specified formally, we need a com-
bination of several static and dynamic techniques for verifi-
cation. When formally proving the correctness, the program
should already be tested forehand, because formal verifica-
tion is too expensive for extensive bug finding [8]. Further-
more, certain properties are hard to be proved statically
and should be checked at runtime, whereas not all proper-
ties should be checked at runtime to minimize the runtime
overhead [4]. Even static techniques such as theorem prov-
ing, model checking, and static analysis may be combined
to achieve synergies and efficiently prove product lines.

We tackle both problems with design by contract, because
it is a well understood approach to formally specify and ver-
ify software [16, 8, 4, 11]. In particular, we can use contracts
for both, dynamic and static verification techniques [8, 4].
In addition, contracts bring a new form of compositionality

class Account { feature module BankAccount
int balance = 0;
/∗@ requires true;
@ ensures balance == \old(balance) + x; @∗/

void update(int x) {
balance += x;

} }

refines class Account { feature module DailyLimit
final static int DAILY_LIMIT = −1000;
int withdrawal = 0;
/∗@ requires \original &&
@ (withdrawal + x >= DAILY_LIMIT)
@ ensures \original &&
@ (x>=0 ==> withdrawal == \old(withdrawal)) &&
@ (x<0 ==> withdrawal == \old(withdrawal)+x); @∗/

void update(int x) {
original(x);
if (x < 0) withdrawal += x;

} }

Figure 1: Feature modules specified using explicit
contract refinement.

into static verification, because methods can be analyzed in
isolation with only referring to the contracts of other meth-
ods. The benefit of such compositionality is twofold. First,
the static verification of a product line can be split into
manageable pieces. Second, once a product line is verified,
we only need to consider parts of it when the product line
evolves. Both advantages are especially helpful for product-
line verification, as product lines inherently have a larger
code base than single systems and evolve more frequently.
In particular, we address the following research questions:

RQ1 How to make product-line specifications reusable and
applicable to several verification techniques?

RQ2 Which combinations of verification techniques (e.g.,
theorem proving) and strategies (e.g., family-based)
are feasible and what are their advantages?

4. CONTRACTS IN FEATURE MODULES
We answer RQ1 by extending an existing implementation

technique for product lines with support for design by con-
tracts, because contracts should be defined directly at the
source code [16]. While there are several implementation
techniques for software product lines, we focus on techniques
that allow to automatically generate products for a given
feature selection [1]. We choose feature-oriented program-
ming for our work, because it enables the modularization
of large-scale refinements [5] (e.g., in contrast to preproces-
sor directives). Furthermore, feature-oriented programming
supports the modularization of most cross-cutting concerns
with lightweight language extensions [12] (e.g., in contrast
to aspect-oriented programming).

Feature-Oriented Programming. A feature module en-
capsulates a set of classes and class refinements. A class
refinement is a set of methods and fields [5]. When com-
posing class A with a class refinement A′, all methods and
fields of A′ are added to A and existing methods are refined.

In Figure 1, we illustrate two feature modules of a bank-
account product line (ignore comments for now). Feature
module BankAccount provides a base implementation, which
can store and update the current balance of an account.
Feature module DailyLimit adds a field withdrawal to store
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class Account { product {BankAccount, DailyLimit}
final static int DAILY_LIMIT = −1000;
int balance = 0;
int withdrawal = 0;
/∗@ requires true && (withdrawal + x >= DAILY_LIMIT)
@ ensures balance == \old(balance) + x &&
@ (x>=0 ==> withdrawal == \old(withdrawal)) &&
@ (x<0 ==> withdrawal == \old(withdrawal)+x); @∗/

void update(int x) {
balance += x;
if (x < 0)
withdrawal += x;

} }

Figure 2: Composition of feature modules BankAc-
count and DailyLimit.

the withdrawal of the day. Method update is refined to alter
the withdrawal whenever the balance is decreased. Keyword
original refers to the method being subject of the refine-
ment and is similar to super for inheritance.

A product can be generated by composing feature mod-
ules according to a selection desired features [5]. In Fig-
ure 2, we illustrate the result of composing the feature mod-
ules BankAccount and DailyLimit. Classes are merged with
identically named class refinements. The resulting classes
contain all fields and methods defined in the composed fea-
ture modules. Already existing methods such as method
update are replaced, whereas the keyword original is sub-
stituted by the method body of the replaced method. In
our example, only feature DailyLimit is optional giving rise
to two products. In general, with n optional, independent
feature modules, we can generate 2n products.

Explicit Contract Refinement. We extend feature mod-
ules with support for design by contract. Methods and
method refinements can be annotated with method con-
tracts to formally specify their behavior. In explicit contract
refinement, contracts of method refinements can refer to the
contract of the method that is subject to refinement [24].

We use a feature-oriented extension of the Java Model-
ing Language (JML) [8] for illustration. To realize the con-
cept of explicit contract refinement, we extend JML by the
keyword \original to support feature-oriented composition
similar to method composition [24]. In Figure 1, we illus-
trate contracts for the feature modules BankAccount and
DailyLimit. In JML, a contract is defined using keywords
requires and ensures, denoting the precondition and post-
condition, respectively. In our example, the precondition of
method update in feature BankAccount is always fulfilled,
and the postcondition is stating that the account balance
is updated correctly. In feature DailyLimit, a new contract
is defined for method update stating that the daily with-
drawal is within the limit. Previously defined preconditions
and postconditions are referenced using keyword \original.
We illustrate the result of composition in Figure 2.

Explicit contract refinement is only one approach to define
and compose feature-oriented contracts. In previous work,
we proposed and discussed five approaches to define con-
tracts for feature modules and evaluated them by means of
case studies [24]. All approaches enable feature-based spec-
ifications from which the specification of each product can
be derived automatically. However, they differ in their ap-
plicability and expressiveness. In future work, we want to
formalize these approaches and evaluate them using further
case studies to assess to which extent variability is required

in contracts (RQ1). For evaluation, we specify existing fea-
ture modules, decompose existing programs with contracts,
and develop feature modules with contracts from scratch.

5. FEATURE-MODULE VERIFICATION
Once we annotated feature modules with feature-oriented

contracts, we can analyze whether these feature modules are
correct with respect to their contracts. In principle, we can
use any verification technique available for contracts such as
runtime assertion checking, test-case generation, static anal-
ysis, model checking, and theorem proving [8, 4]. When ver-
ifying feature modules, a multitude of techniques is needed
to efficiently detect errors as well as to prove the absence of
errors. In the following, we discuss which verification strate-
gies are applicable to which verification technique (RQ2).

Product-Based Runtime Assertion Checking. With
special compilers (e.g., JMLc), contracts can be translated
into runtime assertions [16, 8, 4]. We extended Feature-
House [3] and FeatureIDE [21] to check the syntax of
feature-oriented contracts (as shown in Figure 1), and auto-
matically compose these contracts when generating products
(as shown in Figure 2). As the result of composition is a Java
program with JML annotations, we can use any JML com-
piler for product-based runtime assertion checking [20]. In
contrast, feature-based runtime assertion checking for fea-
ture modules is hardly possible, because feature modules
are fragments of a program, which cannot be compiled and
tested in isolation. However, a possible optimization for
product-based runtime assertion checking is to choose a sub-
set of all products that is likely to detect many errors [19].
The advantage of runtime assertion checking is that con-
tracts may be checked only when debugging the program,
but do not cause runtime overhead in a release version com-
piled with a standard Java compiler.

Product-Based Static Analysis. The generated Java
programs with JML specifications can also be used as input
for static analysis tools. We pursued product-based static
analysis using ESC/Java2 for the detection of feature inter-
actions [18]. We were able to detect all feature interactions
in a small product line of list implementations. However,
ESC/Java2 is unsound and incomplete (e.g., false positives
and false negatives may occur), because loops are only un-
rolled a fixed number of times. Hence, the tool can neither
be used to prove the absence nor presence of errors, but it
is still valuable for bug finding.

Feature-Product-Based Theorem Proving. The ab-
sence of errors can be proved with verification tools trans-
lating the program and its specifications into the input lan-
guage of a theorem prover. We used the verification frame-
work Why/Krakatoa for feature-product-based theorem
proving [23]. The framework supports automated theorem
provers such as Simplify and interactive theorem provers
such as Coq. We used Coq, in which the user needs to
write textual commands (i.e., a proof script) that apply cer-
tain proof steps until the proof is finished. We wrote feature-
oriented proof scripts for each feature, and composed them
together with feature modules and contracts. The composed
proof scripts are checked for every product, but the user only
needs to write proof scripts once per feature. This approach
reduces the effort to write proof scripts by 88 % [23].
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Family-Based Theorem Proving. All approaches dis-
cussed above rely on the generation of products, which is
infeasible for the verification of large product lines. We pro-
posed family-based theorem proving avoiding the generation
of all products [22]. By translating compile-time into run-
time variability, we generate a metaproduct simulating all
products and a metaspecification equivalent to all product
specifications. We can use the theorem prover KeY as-is,
because the metaproduct is a standard Java program with
JML specifications. We measured that automatic verifica-
tion of the metaproduct saved 85 % of the calculation time
compared to product-based theorem proving [22].

6. CONCLUSIONS AND FUTURE WORK
With feature-oriented programming, we can modularize

large-scale refinements into feature modules. Feature mod-
ules can be composed automatically to generate products of
a software product line. We argue that such a high-level
reuse is also necessary for specifications, and apply design
by contract to feature modules. We formally specify feature
modules with feature-oriented contracts, and use them for
testing by means of runtime assertion checking and verifica-
tion by means of static analysis and theorem proving.

In ongoing and future work, we formalize different ap-
proaches to define and compose feature-oriented contracts,
and evaluate these approaches with further case studies to
asses their reuse capabilities. In addition, we plan to com-
pare product-line approaches for runtime assertion check-
ing, model checking, static analysis, and theorem proving
regarding their efficiency and effectiveness. We want to ver-
ify product lines from scratch and apply techniques known
from mutation testing to introduce bugs into already verified
product lines. The comparison of approaches is crucial for
product-line developers, as they need to choose an approach
from a pool of available approaches.
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Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013. To appear.

[2] S. Apel and D. Hutchins. A Calculus for Uniform
Feature Composition. TOPLAS, 32:19:1–19:33, 2010.
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[23] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel.
Proof Composition for Deductive Verification of
Software Product Lines. In VAST, pages 270–277.
IEEE, 2011.
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