
A Service Oriented QoS Architecture Targeting the
Smart Grid World & Machine Learning Aspects

Christos Chrysoulas and Maria Fasli
School of Computer Science & Electronic Engineering, University of Essex,

Essex, United Kingdom
{cchrys, mfasli}@essex.ac.uk

Abstract—Dynamic selection of services and by extension of
service providers are vital in today’s liberalized market of
energy. On the other hand it is equally important for Service
Providers to spot the one QoS Module that offers the best QoS
level in a given cost. Type of service, response time, throughput,
availability and cost, consist a basic set of attributes that should
be taken into consideration when building a concrete Grid
network. In the proposed QoS architecture Prosumers request
services based on the aforementioned set of attributes. The
Prosumer requests the service through the QoS Module. It is then
the QoS Module that seeks the Service Provider that best fits the
needs of the client.

Keywords— QoS; Service Oriented Architecture; Smart Grid;
Mining; Machine Learning

I. INTRODUCTION
In a constantly growing and demanding market of energy

environment, there arises the need for a Quality of Service
(QoS) mechanism to properly support the constraints that are
imposed by the consumers of energy, without neglecting the
importance of keeping the balance of energy flow in the
network in an as stable as possible level.

In today’s liberalized market of energy playground, it is
more crucial than ever to seamlessly provide the end users
with the requested services, without putting in jeopardy the
grid’s stability. In order to properly achieve this goal, an in
advance way of placing, scheduling, and assigning the
requests for energy consumption (or even for energy
production) should be considered. A mechanism with respect
to attributes like: type of service to be served, response time,
availability, cost and probably throughput should be
developed and adopted in order to smoothly pass from the
classic energy grid to this new more intelligently build Smart
Grid era.

In the proposed approach, we try to enforce the Service
Oriented Architecture Approach (SOA) to the Smart Grid
field. The idea was born by noticing that in the Smart Grid
field the whole action is initiated by two main actors, namely
the Consumer (in our case the Prosumer/User) and the
Provider (in our case the Aggregator) of energy (the service).
This is exactly the view from which the SOA is overlooking a
system. So we tried to get the best of what this promising SOA
field has to offer in order that different Providers be able to
independently create their services and seamlessly “feed” the

Consumers. This approach is worth adapting to the Smart Grid
environment.

The rest of the paper is structured as follows. In Section II,
the motivation for bringing QoS in SOAs is described. Section
III gives a detailed presentation of the proposed QoS
approach. Section IV presents a mining approach for the
Smart Grid, while Section V provides the conclusions, and
outlines future work.

II. QOS IN SERVICE ORIENTED ARCHITECTURES
SOA is a way of developing software in the form of

interoperable services. The promise that the service-oriented
development brings to the IT world stems from providing a
common programming interface, through which any
application can be accessed [1]. A service can be defined as a
discrete unit of functionality that is made available through a
service contract [2]. The service contract specifies all
interactions between the service consumer and service
provider and includes: i) Service interface, ii) Interface
documents, iii) Service policies, iv) Quality of service (QoS),
and v) Performance.

One of the main differences between a service and other
software constructs (such as components or objects) is that a
service is explicitly managed. The QoS and performance are
managed through a service level agreement (SLA). In
addition, the entire service life cycle is managed — from
design, to deployment, to enhancements, to maintenance.

SOAs can easily support QoS features and behavior by
putting their characteristics in the WSDL description of a
requested or provided service. Since SOAs message exchange
is based on XML, we only need to flourish a bit the
description in order to make it possible.

Figure 1 Service Oriented Architecture Overview

Normally the need for code and systems re-use is the

driving force for adopting SOAs [3] instead of using highly

specialized building blocks, focusing on a certain application.
A service must hide its internal logic. A service should be
loosely coupled, with no predefined connections, but with
clearly defined inputs and outputs.

QoS in Grid computing was studied in GARA [5]. In
GARA approach, the separation of resource reservation and
actual allocation is proposed for supporting critical requests.
Studies of Ran [6] and Tian [7] concentrated on extending the
first one the UDDI registry and the second one extended the
WSDL files in order to bridge the gap between the Web
Service layer and the network layer. To our knowledge both
approaches lack implementation and validation reports.

Numerous approaches for providing QoS support in
middleware based models, and specifically message oriented
middleware models can be found in the bibliography. The
Quartz [8] approach needs a large dataset (meaning large
number of attributes) in order to provide adequate QoS
support amongst different application areas. In [9] the QoS
negotiation is in advance takes place by communicating a QoS
contract amongst the involved parties. Our approach is in
position to also send alternative offers to the Prosumers.

Cucinota et al [10] presented a SOA approach that allows
negotiation of the individuals QoS characteristics. In this way
any unwanted interference amongst different services can be
avoided. In [11] a negotiation architecture was developed
where a QoS Manager detects any possible QoS violations,
communicates with the resource manager and starts a new
negotiation among the interested parts. Our model is
proposing the most fitted to the Prosumer’s needs QoS offer
based on mining techniques and by processing the outcome
with the help of machine learning algorithms.

III. PROPOSED ARCHITECTURE
The QoS architecture presented in the paper consists of the

following components: the Aggregator [4], the Aggregator
Agent (AA), the Prosumer/User [4], the Flex-Offer Agent
(FOA) [4], the QoS Agent, the Aggregator Registration, and
databases: to store information regarding the Prosumers/Users,
the Contracts (closed, served, etc.), and information regarding
the available Aggregators and their characteristics. See Figure
2.

The Prosumers/Users send their micro flex-offers to the
Aggregator, through the FOA and QoS Module. A micro flex-
offer states the possibility of a Prosumer/User to consume a
certain amount of energy and the time interval during which it
has the flexibility to schedule that consumption. There is also
the possibility the flex-offer to be generated by the Flex-Offer
Agent or by a Flex-Offer Agent that resides on the
Aggregator’s side, but we will not consider these two options
in the present work.

The Aggregators are capable of joining several micro flex-
offers into larger macro flex-offers, which are then placed on
the electricity market. The energy market will answer with
bids to buy and sell energy at given times. Aggregators receive
and respond to the bids which allocate energy consumption
periods to the macro flex-offers. After, they disaggregate
macro flex-offer responses and send an answer to the

Prosumers/Users which specify the periods of time to
consume the required energy amount from the grid at a lower
cost. It is the QoS Module that has the responsibility to find
the best matching between the Prosumer’s request for a
service and the Aggregator that best covers its needs, in terms
of response time, availability, and cost.

Figure 2 Proposed QoS Architecture

A. Aggregator
The Aggregator is responsible for the handling of flex-

offers from the FOA, joining (aggregating) several micro flex-
offers into a larger macro flex-offer, placing the macro flex-
offer on the Virtual Market of Energy, disaggregating
scheduled macro flex-offers, sending scheduled micro flex-
offers to FOAs, controlling the execution of a micro scheduled
flex-offer, determine if the execution of the flex-offer by the
Device had been done according to the scheduled flex-offer.
Each Aggregator can be specialized on different types of
devices, by running the most adequate algorithms for the
aggregation and disaggregation of flex-offers.

B. Aggregator Agent (AA)
Every Aggregator has an agent that provides information to

the QoS Module. The Aggregator provides information to the
QoS Module that has to do with the number of the users it is
able to serve, possible cost of the provided service, time to
respond to the Prosumer’s request. It can also provide
information regarding the type of services it can provide. It is
common in the energy market to have a range of different type
of Aggregators to cover the needs for home appliances (e.g.,
washing machines, heat pumps, etc.) and different ones to
cover the needs of Electric Vehicles charging. This information
is of great importance to the QoS Module in order to correctly
and fast identify the most appropriate Aggregator to deliver the
service to the Prosumer. The AA is indirectly connected to
Flex-Offer Agent (FOA) via the QoS Module.

C. Aggregator Registration
The Aggregator Registration allows Aggregators, through

the Aggregator Agent (AA) to submit: their id, service
descriptions, cost functions, availability, and number of
Prosumers/Users they can serve, to the QoS Module.

Figure 3 QoS delivery Sequence Diagram

D. Prosumer/User
A Prosumer (or User) owns devices and has an agreement

with an Aggregator regarding utilizing the devices power
consumption or production flexibility. Devices are the end
equipment that consume or produce the energy belonging to a
flex-offer, e.g., an EV, a heat pump or a washing machine.
Devices can have the capability of being remotely controlled
or might not have any computer interfacing capabilities. The
Prosumer has to set up all relevant constraints/comfort
requirements, which the flex-offer must fulfill. The Prosumer
might be a household, factory, an office building, i.e. a legal
entity that owns devices. A Prosumer uses a Flex-Offer Agent
to generate flex-offers or it can configure these parameters
through a user interface.

E. Flex-Offer Agent (FOA)
Every Prosumer/User has an agent that provides

information to the QoS Module. FOA is a software module,
which acts as an intermediate between Devices and
Aggregators, being able to be executed on a variety of
hardware platforms and easily configured to use different
protocols. Based on constraints set up by the Prosumer and on
power consumption measurements taken from devices it uses
a specific algorithm to automatically generate micro flex-
offers.

Other inputs like weather forecasts might also be used. The
FOA can send the micro flex-offers to the Aggregator and
receive the micro scheduled flex-offers from it. Another kind
of information the Prosumer/User passes to the QoS is the
type of service it needs (domestic appliances, heat pumps, or
EVs). As in the case of the Aggregator Agent, this
information is of great importance to the QoS Module in order
to correctly and fast identify the most appropriate Aggregator
to deliver the service to the Prosumer. The Flex-Offer Agent
passes the request for a service to the QoS Module through the
QoS Agent.

F. QoS Agent (QA)
QoS Agent (QA) is responsible for evaluating the

Prosumer request, and identify an Aggregator that properly
meets the client’s needs. The QoS Agent receives the request
from the Flex-Offer Agent (FOA) and evaluates the
Prosumer/User request against each available Aggregator in
order to identify the one that best fits the Prosumer/User
needs. A Prosumer’s request will probably contain a service
type, cost constraint and the preferred comfort level. Once the
time the mapping is succeeded the micro flex-offer is passed
to the Aggregator to continue with the building of the macro
flex-offers and the placement to the market of energy.

G. User Interface
The User Interface can take care of the interactions among

the Prosumers/Users, the FOA, and QoS Agent through a web-
based interface. It can be used to allow generation of flex-
offers by a Prosumer/User or just to enforce attributes like a
particular comfort level to the QoS Module.

H. Gateway
The Gateway can be seen as a device that converts

between the protocols used internally on a Home Area
Network and the internet. It is possible to have the capability
of executing the Flex-Offer Agent.

I. Contracts and Aggreagator Information Databases
The Contracts Information Database is a databases to store

SLAs, closed, scheduled, and served contracts. The
Aggregator Information database is a database for keeping
information regarding the Aggregators, Aggregator’s
information like type of services, availability, response time
and cost models. Also the id of the Aggregator is stored on the
Aggregators Information database. The id of the Aggregator is
important in order the the Prosumer/User through the FOA,
and the QoS Module to identify the correct one.

J. Prosumer/User Database
The Prosumer/User Database is a database that holds

information regarding the Prosumers/Users. Information like:
power consumption, type of Prosumer/User (flex-offer
enabled or legacy device), if he was served or not.

K. QoS Module Interactions
The available Aggregators register themselves to the QoS

Module and particular to the Aggregators Information
Database, providing information like type of provided
services, response time and cost models. The Prosumer asks
for a service, which in our case is a need for energy
consumption. This type of information is named micro flex-
offer. It is then the responsibility of the QoS Module to
perform all the needed steps in order to spot the Aggregator
that best serves the needs of the Prosumer. Figure 3 (see p. 3)
presents the interactions between the Prosumer, the QoS
Module and the Aggregator:

1. Aggregators register themselves (with their id), and
their services (type of services, response time, cost
models, and number of Prosumers/Users each can
serve) with the QoS Module.

2. A Prosumer/User initiates the sequence of steps, by
sending to the QoS Module a QoS request (pointing
out the requested service type, amount of needed
energy, cost constraints, time flexibility).

3. The QoS Module identifies the Aggregator that best
fits the needs of the Prosumer/User. The QoS Module
creates a token that includes information like the id of
the Aggregator, a session id, the service id, expiration
date and time for the offer.

4. If the Prosumer accepts the offer, the QoS Module
saves it in the Contract database. The Prosumer only

needs the created token to request the service in the
given time.

5. The Prosumer makes a service request to the
Aggregator using the created token.

6. The Aggregator creates the macro flex-offer and
places a bid to the Virtual Market of Energy. The
market answers back with a schedule.

7. The Aggregator sends the Schedule to the
Prosumer/User, through the Flex-Offer Agent.

8. The Prosumer consumes the service and reports back
to the Aggregator the power consumption.

IV. MINING & MACHINE LEARNING ASPECTS TO SMART
GRID

In classical machine learning, the complexity and diversity
of the field is controlled by the “Black-box” principle, where
each machine learning method is expected to fit a simple mold.
We will try to provide some insight to the “Black-box” in order
to present its architecture and functionality. The Query Results
Management (QRM) component/module will be responsible
for managing the data that are extracted from the queries to the
QoE system and for assembling the dataset that will be fed to
the machine learning algorithm. In Figure 4, an illustration of
where the QRM manager component is situated in relation to
QoE’s system and to the Machine Learning module is
presented. The QRM module, a fundamental component of a
more complete system, will be responsible for supporting the
following functionalities:

1. Establishing a safe connection to the QoE databases;
2. Querying the databases, receiving the data; and
3. Saving the data in a file and in the proper format for

the Machine Learning Management (MLM) module.

Figure 4 Proposed QoS Architecture

Even though many of the algorithms are different there are
some common steps that should be followed while developing
and applying a machine learning algorithm. These
needed/common steps are the following:

1. Data Collection: Meaning the method for collecting
the data. It varies from obtaining the data through an
API, RSS feed, or even a device that collects data and
sends them to you, etc.

2. Data Preparation: Making sure that the data are in a
usable format. Some algorithms need features in a
special format. Some can deal with features and
variables as strings, and some others need them to be
transformed into integers.

3. Training the algorithm: In this step, you feed the
algorithm with “clean” data from the previous steps
and obtain knowledge and insight from the data. In
the case of unsupervised learning, there is no training
step, since there is no target value.

4. Testing the algorithm: In this step, the evaluation of
the algorithm takes place. In the case of supervised
learning, you have known values for evaluating the
algorithm (i.e. you have examples of data known as
the ground truth that you can check against the
performance of the algorithm). In unsupervised
learning, there is a need to use other metrics like
support and confidence to evaluate its success.

5. Usage: The actual implementation of the algorithm in
practice that includes all the previous steps. There is
also a need to continuously check if all the previous
steps are working as expected. The QRM component
will be responsible for the two first steps of the
aforementioned procedure. Figure 5 presents the
interactions of the QRM module with the Databases
and the Machine Learning Module.

A. Query Results Management (QRM) Module
The QRM module will be responsible for the two first

steps of the aforementioned procedure. Figure 5 presents the
interactions of the QRM module with the Databases and the
Machine Learning Module.

Figure 5 QRM component interactions

B. Machine Learning Management (MLM) Module
The MLM module will be responsible for the three last

steps of the aforementioned procedure (steps 3 to 5). It will
provide the needed functionality for the system to be in
position to get the clean data, pass them to the machine
learning algorithm and return useful conclusions. The MLM
module should be in position to find interesting relationships
in a large dataset. Quantifying interesting relationships is
twofold. The first way is a frequent itemset, and the second is
the one measuring interesting relationships in association
rules.

One such approach is the Apriori [12] algorithm. Apriori
uses the so-called Apriori principle to reduce the number of
sets that are checked against the dataset. The Apriori principle
denotes that if an item is infrequent, then supersets containing
that specific item will be infrequent too. Apriori starts from
single itemsets and creates larger sets by combining sets that

meet the minimum support measure. Support is used to
measure how often a set appears in the original dataset. Once
frequent itemsets are found, someone may use them to
generate association rules. The importance of an association
rule is measured by the confidence. Confidence denotes the
number that this rule applies to the frequent itemsets. The
pseudocode of the Apriori algorithm is presented in Algorithm
1.

Algorithm1. The Apriori algorithm.

Ck: Candidate itemset of size k
Lk : frequent itemset of size k

(1) L1 = {frequent items};
(2) for (k = 1; Lk != ; k++) do begin
(3) Ck+1 = candidates generated from Lk;
(4) for each transaction t in database do
(5) increment the count of all candidates in
(6) Ck+1 that are contained in t
(7) Lk+1 = candidates in Ck+1 with min_support
(8) end
(9) return kLk;

Another approach is the FP-growth [14] algorithm. The
FP-growth algorithm is another efficient way of finding
frequent patterns in a dataset. Even though it follows the
Apriori principle, it is much faster than the Apriori one, since
it goes over the dataset only twice. The data is stored in an FP-
tree structure. After you can find frequent itemsets by finding
conditional bases for an item, and eventually building a
conditional FP-tree. The aforementioned process is repeated,
by conditioning on more items, until the conditional FP-tree
has only one item. The pseudocode for the FP-growth
algorithm is presented in Algorithm 2.

Algorithm2. The FP-growth algorithm.

Input: constructed FP-tree
Output: complete set of frequent patterns
Method: Call FP-growth (FP-tree, null).
Procedure FP-growth (Tree,)
{
(1) if Tree contains a single path P then
(2) for each combination (denoted as) of the nodes
 in the path P do

(3) generate pattern with support = minimum
 support of nodes
(4) else for each ai in the header of Tree do {

(5) generate pattern = ai with
 support = ai.support;
(6) construct ’s conditional pattern base and
 then ’s conditional FP-tree Tree
(7) if Tree !=
(8) then call FP-growth (Tree ,)
}

V. CONCLUSIONS
In this paper we presented an outline for a Quality of

Service architecture targeting the Smart Grid world. All the
involving parts were in detail described and documented. QoS
attributes like: type of service to be served, response time,
availability, and cost where taken into consideration while
sketching the proposed architecture. Future work will include
definition of algorithms to be used for the QoS provisioning
and implementation of the proposed architecture. Another
equally important step is handling the different ways that a
flex-offer can be generated and come up with an as common as
possible approach. In this paper we considered the flex-offer to
be created by the Flex-Offer Agent that is actually connected to
the Prosumer/User. Other identified formal cases are the
generation of the flex-offer on the Aggregator, by using power
measurement data available on the cloud, and the flex-offer to
be initiated by the Prosumer/User, through a User Interface
provided by the Flex-Offer Agent. We also presented an initial
supplementary architecture to mine the information stored in
the databases and further process the data with the use of
machine learning algorithms to extract useful information, like
identifying common patterns amongst multiple
users/prosumers. Common patterns for instance in electricity
usage in terms of time and amount. In this way the market of
energy will be in position to better regulate its production thus
leading to a more stable and economically sustainable power
grid.

ACKNOWLEDGMENT
Special thanks to former WP5 partners from the Arrowhead

project [13], and to Prof. L.L. Ferreira from CISTER Research
Unit for sharing their views and thoughts on defining a QoS
architecture for the Smart Grid world.

REFERENCES
[1] E. Newcomer, G. Lomow, “Understanding SOA with Web Services,”

ISBN-10: 0321180860, ISBN-13: 9780321180865, Publisher:
Addison-Wesley Professional, Copyright: 2005

[2] M. Rosen, B. Lublinsky, T.K. Smith, J.M. Balcer, Applied SOA:
Service-Oriented Artchitecture and Design Strategies. John Wiley &
Sons; Pub. Date: June 16, 2008 , Print ISBN: 978-0-470-22365-9; Web
ISBN: 0-470223-65-0

[3] E. Thomas, SOA Design Patterns. Prentice Hall PTR, ISBN:
0136135161 (2009)

[4] L.L. Ferreira, L. Siksnys, P. Pedersen, P. Stluka, C. Chrysoulas, T.
Guilly, M. Albano, A. Skou, C. Teixeira, T. Pedersen, “Arrowhead
compliant virtual market of energy,” in Emerging Technology and
Factory Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–8 (2014).

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, “A
distributed resource management architecture that supports advance
reservations and coallocation,” in: Proc. Intl. Workshop Quality of
Service 1999, UCL, 1–4 June, London, 1999, pp. 27–36. (1999)

[6] S. Ran, “A model for web services discovery with QoS,” ACM
SIGEcom Exchanges 4 (1) 1–10. (2003)

[7] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, “A concept
for QoS integration in web services,” in: Fourth Intl. Conf.Web
Information Systems Engineering Workshops, WISEW’03, Roma, Italy,
December 2003, pp. 149–155. (2003)

[8] F. Siqueira, V. Cahill, “Quartz: A QoS architecture for open systems,”
in: The 20th Intl. Conf. Distributed Computing Systems, ICDCS 2000,
10–13 April, Taipei, Taiwan, 2000, pp. 197–204 (2000)

[9] D.L. Tien, O. Villin, C. Bac, “Resource managers for QoS in CORBA,”
in: Second IEEE International Symp. Object-Oriented Real-Time
Distributed Computing, 2–5 May, Saint-Malo, France, 1999, pp. 213–
222. (1999)

[10] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca, R.
Checcozzo, F. Rusinà, “A real-time service-oriented architecture for
industrial automation,” IEEE Trans. Ind. Informat., vol. 5, no. 3, pp.
267-277 (2009)

[11] C. Cavanaugh, L.R. Welch, B. Shirazi, E. Huh, S. Anwar, “Quality of
service negotiation for distributed, dynamic real-time systems,” in:
IPDPS Workshop on Bio-Inspired Solutions to Parallel Processing
Problems, BioSP3, 15 April, Fort Lauderdale, FL, 2002, pp. 757–765
(2002)

[12] R. Agrawal, R. Srikant, “Fast algorithms for mining association rules,”
in: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1994, pp. 487
499 (1994)

[13] The Arrowhead project: http://www.arrowhead.eu/ [accessed May 2016]
[14] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Chang, “PFP: Parallel FP-

Growth for Query Recommendation,” RecSys 2008, Proceedings of the
2008 ACM Conference on Recommender Systems, pp. 107-114. (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

