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Abstract—The Compute-and-Forward relaying strategy
achieves high computation rates by decoding linear combinations
of transmitted messages at intermediate relays. However, if the
involved relays independently choose which combinations of the
messages to decode, there is no guarantee that the overall system
of linear equations is solvable at the destination. In this article
it is shown that, for a Gaussian fading channel model with two
transmitters and two relays, always choosing the combination
that maximizes the computation rate often leads to a case where
the original messages cannot be recovered. It is further shown
that by limiting the relays to select from carefully designed
sets of equations, a solvable system can be guaranteed while
maintaining high computation rates. The proposed method has a
constant computational complexity and requires no information
exchange between the relays.

I. I NTRODUCTION

In wireless multiuser relay networks, both interference
from multiple transmitters and noise degrade the system
performance. To combat these issues, Nazer and Gastpar
recently introduced a new relaying strategy called Compute-
and-Forward (CaF) [1]. Their key idea is to decode an integer
linear combination of the transmitted messages at intermediate
relays, and then forward the combinations to the destination.

Finding integer combinations that yield high transmission
rates turns out, however, to be a complicated task. Particularly,
finding the equation coefficients of the linear combinationsthat
maximize the data transmission rate coincides with a Shortest
Vector Problem (SVP) [2], for which various algorithms have
been proposed [3], [4], [5]. Unfortunately, these algorithms
tend to be either highly complex or suboptimal. Recently,
algorithms of polynomial complexity for finding the equation
coefficients that maximize the rate have been presented [6],
[7]. However, choosing the coefficient vectors that maximize
the instantaneous computation rate might result in an overall
unsolvable system of linear equations at the destination due
to linear dependency of the coefficient vectors – that is, the
original messages might not necessarily be recoverable even
if the combinations are successfully decoded at the relays.

The message recoverability problem has been addressed in
[4], where precoding at the transmitters is used to increase
the probability of receiving independent combinations at the
destination, while [5], [8], [9] allow cooperation between
the relays. These methods either require preprocessing at the
transmitters or signaling between the relays.

In [10], this problem is mitigated by choosing a subset of

relays with suitable equation coefficients. This approach can
however not be used in the symmetric case, that is if the
number of relays equals the number of transmitters.

In this paper, we introduce a new, efficient approach to
finding the coefficient vectors for a system with two trans-
mitters and two relays. We observe that, in a Gaussian fading
channel, there are only few coefficient vectors that typically
maximize the computation rate. Based on this observation,
we compile small coefficient vector candidate sets for both
relays so that the probability of the relays choosing linearly
dependent vectors vanishes.

Our proposed method does not require jointly finding the
coefficients at the relays, thus there is no need for cooperation.
Furthermore, searching for appropriate coefficient vectors only
over a small set of vectors reduces the computational complex-
ity as opposed to solving the corresponding SVP.

The main benefits of our proposed method are twofold.
Firstly, the end-to-end information outage probability vanishes
as the message rate at the transmitters approaches zero. Sec-
ondly, the computational complexity of our scheme is constant
while still providing a relatively high throughput. Our findings
are supported by extensive computer simulations.

The paper is organized as follows. We give a brief introduc-
tion of the CaF protocol in Section II, and introduce methods
for finding suitable equation coefficients in Section III. Sec-
tion IV presents the performance metrics and corresponding
numerical results, while Section V concludes the paper.

II. T HE COMPUTE-AND-FORWARD PROTOCOL

In this article, we focus on a wireless multiple-access
system withL = 2 transmitters andM = 2 relays, as
illustrated in Figure 1. The first hop from the transmitters

Relay 1
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Tx 1
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h22
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Fig. 1. System model with two transmitters and two relays connected to
a destination. The first hop is modeled as a wireless multipleaccess fading
channel. The relays are connected to the destination with error-free bit pipes.

to the relays is modeled as a Gaussian fading channel. The
relays are connected to a destination with error-free bit pipes
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with unlimited capacities. The goal of the system is to reliably
transfer information from both transmitters, via the relays, all
the way to the destination. The relays apply the original CaF
strategy introduced in [1], briefly exposed in the following.

The transmitters want to communicate messageswl ∈ F
k
p,

l = 1, 2, where p is prime. Before transmission, these
messages are encoded inton-dimensional codewordsxl that
are subject to the power constraint||xl||2 ≤ nP . Note
that throughout this paper, we assume that both transmitters
use identical transmission powers, and that the relays have
identical noise levels with normalized variance,i.e., SNR= P .
This is justified as allowing asymmetric SNR values affects
the performance metric used for simulations for all three
considered strategies equally, and hence does not affect the
comparison results.

Definition 1. Themessage rateat transmitterl is defined as

Rs
l =

k

n
log2 p. (1)

For the received signal at relaym, we use the following
channel model:

ym =
L
∑

l=1

hmlxl + zm, (2)

wherezm is additive white Gaussian noise with normalized
varianceσ2 = 1, and the channel coefficients are assumed
to be i.i.d. and real-valued,hml ∼ N (0, 1) [1]. Let hm =
[ hm1 hm2 ··· hmL ]

T denote the channel vector for relaym.
Channel state information is only available at the relays.

Further, it is important to note that we assume that each relay
only knows the channels to itself, i.e., relay 1 knowsh11 and
h12, while relay 2 knowsh21 andh22.

The key feature of CaF is to decode and forward linear com-
binations of the transmitted messages. In this paper, we only
consider integer combinations of the transmitted codewords.

Remark 1. As noted above, each transmitter encodes its
messagewl ∈ F

k
p into a lattice vectorxl. Hence, although

the destination ultimately wants to decode the messageswl,
the relays decode linear equations involving the codewords
xl, and it is thus meaningful to considerZ-linear rather than
Fp-linear combinations. The destination, upon reception of
enoughZ-linearly independent equations, can solve for the
codewords and recover the original messages [1].

The integer combination of relaym is represented by an
equation coefficient vectoram, more explicitely

am = [ am1 am2 ··· amL ]
T
. (3)

These vectors form theequation coefficient matrix

A = [ a1 a2 ··· aM ]T , (4)

and the destination can recover the single codewords if and
only if A is invertible, that isdet(A) 6= 0.

Figure 2 shows that, if the relays always choose the equation
coefficient vector that maximizes their instantaneous compu-
tation rate, the probability of the matrixA being singular

is noticeable. This phenomenon is more pronounced for low
SNR values, and even more considerable for more than two
relays and transmitters. In this article, we focus on the case
M = L = 2.
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Fig. 2. Probability of the equation coefficient matrixA being singular for
various numbers of relaysM and transmittersL when independently choosing
the coefficient vectors that maximize the computation rate.

The most important performance metric of CaF is the
so-calledcomputation rate, whose meaning is explained in
the following. If relay m achieves computation rateRr

m =
Rr

m(hm, am), then it is able to decode a linear combination
of the codewords whose corresponding message rates satisfy
Rs ≤ Rr

m. That is, relaym can support message rateRr
m if

Rs
l ≤ min

aml 6=0
Rr

m, (5)

whereRs
l is the message rate at transmitterl, andaml 6= 0

means that the message of transmitterl is included in the linear
combination decoded by relaym.

In the scenario considered in this paper, we have two
transmitters with identical message ratesRs = Rs

1 = Rs
2.

Both relays can support this message rate if

Rs ≤ min{Rr
1,R

r
2}. (6)

The main observations about the computation rate derived
in [1] are summarized in the following theorem.

Theorem 1. In the above setup, a computation rate region of

Rr
m(hm, am) = max

α∈R

1

2
log+

(

P

α2 + P ||αhm − am||2

)

(7)

is achievable. This expression is further maximized by choos-
ing α to be

αMMSE =
PhT

mam

1 + P ||hm||2
, (8)

resulting in a computation rate region of

Rr

m(hm,am) =
1

2
log+

(

(

||am||2 −
P |hT

mam|2

1 + P ||hm||2

)

−1
)

. (9)

The computation rate is thus a function of the channel
coefficients and the equation coefficients. While the channel



coefficients are random variables, the relays are free to choose
their desired equation coefficients. In this paper, we mainly
focus on how to efficiently find equation coefficient vectors
which yield high computation rates while ensuring that the
vectors chosen by the relays are linearly independent.

III. SELECTING THE EQUATION COEFFICIENT VECTORS

In this section we present three methods in detail for finding
equation coefficient vectorsam at the relays, all of which
require no cooperation between the relays.

The main interest in this article is to guarantee a solvable
system of equations at the destination, while still being able
to support high message rates. To that end, we will include
the following indicator function in our performance metric:

1{det(A) 6=0} =

{

1 if det(A) 6= 0,

0 if det(A) = 0.
(10)

1. Exhaustive search:Each relay searches over all possible
equation coefficient vectors and chooses the one that maxi-
mizes its instantaneous computation rate (9).

Lemma 1. [3] Finding the coefficient vector that maximizes
the instantaneous computation rate is equivalent to solving

am = argmin
a∈ZL\{(0,...,0)}

aTGa, (11)

where

G = IL −
PhmhT

m

1 + P ||hm||2
, (12)

and corresponds to finding the shortest vector in the lattice
whose Gram matrix isG.

While maximizing the computation rate individually at each
relay yields the highest message rate supported by the given
channel realizations, there is no guarantee that the chosen
vectors form an invertible matrix at the destination.

2. Proposed splitting method:In our proposed method, we
split possible coefficient vectors into two disjoint setsV1 and
V2. SetV1 is pre-assigned to one relay, while setV2 is pre-
assigned to the other. Each relay independently chooses the
vector within its set that maximizes the computation rate (9).

Remark 2. Let am = [ am1 am2 ]
T be a solution to(11). Note

that the matrixG is symmetric, that is(11) results in

aTmGam = aTm [ x z
z y ] am = a2m1x+ 2am1am2z + a2m2y.

Thus if [ am1 am2 ]T is a solution to(9), so is [−am1 −am2 ]
T .

In particular, we can fixam1 ≥ 0.
One may thus divide the set of candidate vectors

Z
2\ {(0, 0)} into equivalence classes modulo theZ2-action

of ±1. Solutions to (11) are sought for in the quotient
spaceE = (Z2\ {(0, 0)}) mod Z2. The elements inE are
equivalence classes[a] of vectorsa ∈ Z

2\ {(0, 0)} up to
Z2, i.e. pairs of vectors,[a] = {a,−a}. A unique way of
representing elements inE is by points inZ2\ {(0, 0)} in the
right half plane, including the upper y-axis, but not the lower
part, i.e., with vectors(a1, a2), a1 > 0 or a1 = 0, a2 > 0.

Proposition 1. The rotationU =
[

0 1
−1 0

]

acts in a non-
degenerate fashion onE . Any point [a] ∈ E has a unique
pair [b] 6= [a] ∈ E , so thatU [a] = [b] and U [b] = [a].
ThusE can be divided into disjoint setsE1 and E2 so that
E1 ∪ E2 = E , E1 ∩ E2 = ∅, andUE1 = E2.

Proof: Consider the vectora = (a1, a2) ∈ Z
2\ {(0, 0)}.

Its equivalence class is{(a1, a2), (−a1,−a2)}. The action of
U on a vector commutes with scalar multiplication by±1.
ThusU [a] = {(a2, a1), (−a2, a1)} ≡ [b] ∈ E . Clearly, [a] 6=
[b], asa 6= (0, 0), andU [b] = {(−a1,−a2), (a1, a2)} = [a].
The action ofU thus dividesE into a disjoint set of pairs.
One element of each pair can be taken toE1, the other toE2.

Following Remark 2, we define the following set.

V =
{

(x, y) ∈ Z
2
∣

∣ x ≥ 1, y 6= 0, x2 + y2 ≤ d2,

d ∈ Z\ {0} , gcd(x, y) = 1} .
(13)

Let Ṽ1, Ṽ2 ⊂ V such that|Ṽ1| = |Ṽ2|, Ṽ1 ∪ Ṽ2 = V and
Ṽ1 ∩ Ṽ2 = ∅, and define

V1 = Ṽ1 ∪ {(0, 1)} , V2 = Ṽ2 ∪ {(1, 0)} . (14)

While preventing the relays from selecting arbitrary coeffi-
cient vectors decreases the expected computation rate at the
relays, choosing linearly independent vectors ensures that the
messages can be recovered at the destination – provided that
the relays are able to support the message rate at the transmit-
ters. This claim is justified in the following proposition.

Proposition 2. For any choice of setsV1, V2 as proposed
above, we have almost surely

min {Rr
1,R

r
2} · 1{det(A) 6=0} > 0. (15)

Proof: SinceV1 ∩ V2 = ∅, we have1{det(A) 6=0} ≡ 1.
It hence suffices to show that there exist vectorsa1 ∈ V1,
a2 ∈ V2 such that for every channel realizationh = [ h1 h2 ]

T ,
(

||am||2 −
P |hTam|2

1 + P ||h||2

)−1

> 1,

or equivalently0 < ||am||2 − P |hT
am|2

1+P ||h||2 < 1.

Choosea1 = [ 1 0 ]
T ∈ V1, a2 = [ 0 1 ]

T ∈ V2. Then, for
m = 1, 2 we have||am||2 = 1, and, since

|hTam|2 =

{

h2
1 if m = 2,

h2
2 if m = 1,

for m = 1, 2 we have0 <
Ph2

m

1+P (h2

1
+h2

2
)
< 1, hence

0 < 1−
Ph2

m

1 + P (h2
1 + h2

2)
≤ 1,

as required, where equality holds if and only ifhm = 0.
The following proposition gives a further criterion for

designing the sets of vectorsV1 andV2.

Proposition 3. Let V1 andV2 be two sets of vectors, chosen
as above, and denote byRr

V1
, Rr

V2
the expected computation



rate of the first and second relay using the assigned sets,
respectively. If there exists a rotation matrixU such that

U : V1 → V2; a 7→ Ua (16)

is a bijective isometry, we have

Rr
V1

= Rr
V2
. (17)

Proof: AssumeU is such a matrix. Then, for everya ∈
V2 we find ã ∈ V1 such thata = Uã. Moreover,||a||2 =
||Uã||2.

Let a = Uã, h̃ = UTh. Then, for a fixed powerP , and
sinceUTU = I2,

Rr(h, a) =
1

2
log+

(

(

||a||2 −
P |hTa|2

1 + P ||h||2

)−1
)

=
1

2
log+

(

(

||Uã||2 −
P |hTUã|2

1 + P ||h||2

)−1
)

=
1

2
log+





(

||Uã||2 −
P |(Uh̃)TUã|2

1 + P ||Uh̃||2

)−1




=
1

2
log+





(

||ã||2 −
P |h̃T ã|2

1 + P ||h̃||2

)−1




= Rr(h̃, ã).

It follows Rr(h, a) = Rr(Uh̃,Uã) = Rr(h̃, ã).
To conclude the proof, note that the distribution of the

channelh is rotation invariant. We thus have

Rr
V1

= Eh

[

max
a∈V1

Rr(h, a)

]

= Eh

[

max
Uã∈V1

Rr(h,Uã)

]

= Eh

[

max
ã∈V2

Rr(Uh̃,Uã)

]

= E
h̃

[

max
ã∈V2

Rr(h̃, ã)

]

= Rr
V2
.

3. Multiple Access:For the sake of comparison, we also
consider a simple multiple access method where each relay
decodes the message corresponding to the stronger channel
coefficient while treating the other message as noise. More
concretely, ifhm = [ hm1 hm2 ]

T is the channel observed by
relay m, then the relay decodesx1 iff hm1 ≥ hm2, and
decodesx2 otherwise. In this scenario, fori, j = 1, 2, i 6= j,
if |hmi| ≥ |hmj |, messagexi, can be decoded by relaym if

Rs
i <

1

2
log

(

1 +
P |hmi|

2

1 + P |hmj |2

)

. (18)

We say that a determinant error occurs if both relays decode
and forward the same message.

IV. SIMULATION RESULTS

In this section, we present extensive simulation results for
the end-to-end performance of the methods introduced in
Section III for the 2-by-2 relaying system described earlier.

We start by defining two sets of vectorsV1 and V2 as in
(14) for the proposed strategy. Note that for a given channel

realizationhm, the equation coefficient vectoram maximizing
the computation rate at relaym is the one that best aligns with
hm [1]. It is thus crucial to provide each relay with vectors
that can approximate channel vectors lying in any direction.

Further, to achieve low computation complexity, we con-
struct disjoint sets of small cardinality. For the following
simulations, we fixd = 4 in (13), resulting in sets of
cardinality |V | = 14, |V1| = |V2| = 8.

Proposition 4. Splitting as discussed above exists, whereV2 =
UV1. For such splittings,min {Rr

1,R
r
2} · 1{det(A)} > 0 for

any channel realization, almost surely. Further,Rr
V1

= Rr
V2

.

Proof: ChooseV1 such that∀a ∈ V1, either [a] ∈ E1 or
U [a] ∈ E1, but not both. Then according to Prop. 1,UV1 ∈
E2, and,V1 ∩ V2 = ∅. Note that if [(1, 0)] ∈ E1, we have
U [(1, 0)] = [(0, 1)] ∈ E2. Thus, according to Prop. 2, the first
statement holds and by Prop. 3, the second statement follows.

One example of suchV1 andV2 is depicted in Figure 3.
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Fig. 3. All vectors that maximize the computation rate for10
5 channel

realizations (left) and sets of vectorsV1, V2 for the proposed method (right).

We now compare the three introduced methods. Our two
main performance metrics areminimum end-to-end rateand
end-to-end outageas described in the following.

Minimum end-to-end rate:This metric is defined to be the
expected value of the minimum of the two computation rates
at the relays. If the coefficient matrix is not invertible, this
metric is defined to be zero as the destination cannot recover
both of the original messages. The minimum end-to-end rate
can be expressed as

R0 = E
(

min {Rr
1,R

r
2} · 1{det(A) 6=0}

)

, (19)

where E (·) denotes the expected value, andRr
m is the

computation rate at relaym defined as in (9). We illustrate
this performance metric for varying SNR values in Figure 4.

The proposed splitting method performs relatively close to
the exhaustive search method, and clearly beats the multiple
access strategy (cf. Section III-3). It is to be expected that
the splitting method cannot outperform the exhaustive search
whenever it has positive rate (cf. (19)) in terms of end-to-end
rate, since the exhaustive search has a considerably higher
number of coefficient vectors from which to choose. The
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Fig. 4. Expected minimum end-to-end rate vs. SNR.

drawback of the exhaustive search is, however, its high com-
plexity compared to the constant complexity of our proposed
method. We argue that, in many cases, it is more important
to have a fast, lightweight algorithm that finds relatively high
rates, rather than strictly maximizing the rate at the cost of
computation time and power.

End-to-end outage:The system is said to be in outage if at
least one of the relays cannot support the symmetric message
rate at the transmitters, or if the equation coefficient matrix is
not invertible. The outage probability with symmetric message
ratesRs can be expressed as

ρ = Pr ((min {Rr
1,R

r
2} < Rs) ∪ (det(A) = 0)). (20)

Figure 5 presents simulated end-to-end outage probabilities
for a fixed SNR value as a function of the symmetric message
rates. While for the exhaustive and multiple-access strategies
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Fig. 5. End-to-end outage as a function of the message rate for SNR 10 dB.

the outage probability converges to a non-zero value for
decreasing message rate, for the proposed splitting method
it goes to zero as the message rate goes to zero, as indicated
by Prop. 2.

V. CONCLUSIONS ANDFUTURE WORK

In this article it was shown that pre-assigning sets of
equation coefficient vectors to intermediate relays in the

framework of Compute-and-Forward relaying helps preventing
the overall system of linear equations at the destination from
being singular, while maintaining high computation rates and
thus being able to support high message rates. The advantage
of the proposed method its constant complexity, as opposed
to solving a hard shortest vector problem. Moreover, no
cooperation between the relays is required.

In this article, we restricted ourselves to real-valued chan-
nels, as well as the case of only two transmitters and relays.
It was however observed that the problem of the coefficient
matrix being singular is even more dramatic for larger number
of transmitters and relays. Therefore, as a natural extension,
future work includes generalizing the introduced method for
an arbitrary, not necessarily symmetric number of transmitters
and relays, as well as considering complex-valued channels.

Moreover, while design criteria for the sets of vectors have
been mentioned, it still remains open to describe analytically
a way of finding the best possible disjoint partition of the
equation coefficient vectors.
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