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Abstract—We study the problem of joint load balancing and
interference mitigation in heterogeneous networks (HetNets) in
which massive multiple-input multiple-output (MIMO) macro
cell base station (BS) equipped with a large number of antennas,
overlaid with wireless self-backhauled small cells (SCs) are
assumed. Self-backhauled SC BSs with full-duplex communi-
cation employing regular antenna arrays serve both macro
users and SC users by using the wireless backhaul from macro
BS in the same frequency band. We formulate the joint load
balancing and interference mitigation problem as a network
utility maximization subject to wireless backhaul constraints.
Subsequently, leveraging the framework of stochastic optimiza-
tion, the problem is decoupled into dynamic scheduling of macro
cell users, backhaul provisioning of SCs, and offloading macro
cell users to SCs as a function of interference and backhaul links.
Via numerical results, we show the performance gains of our
proposed framework under the impact of SCs density, number of
BS antennas, and transmit power levels at low and high frequency
bands. It is shown that our proposed approach achieves a 5.6×
gain in terms of cell-edge performance as compared to the closed-
access baseline in ultra-dense networks with 350 SC BSs per km2.

Index Terms—Massive MIMO, ultra dense small cells,
mmWave communications, self-backhaul, full-duplex, imperfect
CSI, random matrix theory, non-convex optimization.

I. INTRODUCTION

To meet the massive data traffic demands in next genera-

tion 5G wireless networks a number of emerging technolo-

gies are currently investigated: 1) higher frequency spectrum
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(mmWave); 2) advanced spectral-efficiency techniques (mas-

sive MIMO); and 3) ultra-dense small cell deployments [2]. In

this paper, we focus on the interplay between massive MIMO

and a dense deployment of SCs in higher frequency bands.

Massive MIMO plays an important role in wireless networks

due to an improvement in energy and spectral efficiency [3].

In massive MIMO, a macro base station (MBS) equipped

with a few hundreds antennas simultaneously serves tens of

user equipments (UEs) and provides wireless backhaul to SCs,

while the remaining degree of freedom of massive MIMO can

be used to mitigate the cross-tier interference. Ultra dense SC

deployment provides an effective solution to increase network

capacity by a factor of 100× or more and offloads the wireless

data from the MBS [4]. In order to reduce the deployment cost

of SC, wireless backhaul has been considered as an attractive

solution. In parallel to that, recent advances in full-duplex (FD)

enables doubling spectral efficiency and lowering latency in

which FD-enabled SCs relay data from the massive MIMO

MBS to the UEs in the same frequency band [5].

MmWave with short wavelength enables Massive MIMO to

pack more antennas into highly directional footprint and to

smartly do beamforming [6], making Massive MIMO prac-

tically feasible in real deployments. Recently, the efficiency

of combining massive MIMO and in-band wireless backhaul-

based SC networks was studied in [5], [7], focusing on min-

imizing power consumption. The problem of user association

for load balancing in heterogeneous networks (HetNets) has

been studied in [8]. Although, users can be associated to

more than one BS in order to reduce the load on the macro

cell, deploying ultra-dense small cell networks makes user

association more challenging. The work in [8] did not consider

other important aspects in 5G such as Massive MIMO, FD-

enabled SCs, and mmWave communications. Recent work

in [9] has addressed the user-cell association for Massive

MIMO HetNets, which did not consider the joint optimization

of load balancing, precoder design, and power allocation. Also

the wireless backhaul faces the problem of limited-backhaul;

hence the backhaul constraint needs to be considered. Thus

far, the key challenge of how to dynamically optimize the

overall network performance taking into account the back-

haul dynamics and constraints, and load balancing utilizing

the combination of Massive MIMO, FD-enabled SCs, and

mmWave communications has not been fully addressed [10].

User association taking into account dynamic backhaul in

5G HetNets faces a new challenge due to self-backhauled SCs,

i.e., guaranteeing wireless backhaul capacity between MBS
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and SCs in order to offload the traffic from MBSs to SCs.

It raises the following important question: Should MBS serve

all macro UEs (MUEs) even though it is highly loaded or

offload some MUEs to SCs subject to the wireless backhaul

capacity? Due to the random deployment of massive number

of devices, UEs around hotspots (i.e. airport lounges, shopping

malls, stations, and other crowded places) may receive poor

services from a-far-MBS with multiple beams focused on the

same location. On the contrary, these UEs will receive better

services from nearby SCs with a reliable wireless backhaul

composed of strong single beam from the MBS or multiple

received antennas at SCs.

A. Main Contributions

The main contributions of this work are to study the problem

of joint load balancing, interference mitigation, and in-band

wireless backhauling taking into account dynamic backhaul

and traffic load, which are listed as follows:

• The problem of joint load balancing (user association and

user scheduling) and interference management (beam-

forming design and power allocation) for 5G HetNets

is modeled in which a DL scheduler is designed at

the MBS to schedule macro UEs and provide back-

haul to in-band FD-enabled SCs, with FD capability

SCs serve both MUEs and small cell UEs in the same

frequency band. Moreover, an interference management

scheme is proposed to mitigate both co-tier and cross-

tier interference from the MBS and FD-enabled SCs by

designing a hierarchical precoding scheme and control-

ling the transmission of SCs. The problem is cast as

a network utility maximization (NUM) problem subject

to dynamic wireless backhaul constraints, traffic load,

and imperfect channel state information (CSI). To make

problem tractable, by invoking results from random ma-

trix theory (RMT), we derive a closed-form expression

of the signal-to-interference-plus-noise-ratio (SINR) and

transmit power when the numbers of MBS antennas and

users grow very large.

• A Lyapunov framework is applied in order to solve the

NUM problem in polynomial time. The NUM problem is

decomposed into dynamic scheduling of MUEs, backhaul

provisioning of FD-enabled SCs, and offloading MUEs to

FD-enabled SCs. The joint load balancing and operation

mode (FD or half-duplex) subproblem, which is a non-

convex program with binary variables, is converted into a

convex program by using the successive convex approx-

imation (SCA) method. The motivations of using SCA

are due to (i) its low complexity and fast convergence,

and (ii) the obtained solution which yields many relaxed

variables is close to zero or one.

• A performance evaluation is carried out to compare the

proposed algorithm with other baselines under the impact

of SCs density, number of BS antennas, and transmit

power levels at low/high frequency bands. The effect of

pilot training and channel aging is also studied to show

the performance of Massive MIMO.

• A comprehensive performance analysis of our proposed

algorithm based on the Lyapunov framework is provided.

There exists an [O(1/ν),O(ν)] utility-queue backlog

tradeoff, which leads to an utility-delay balancing [11],

where ν is the Lyapunov control parameter. Moreover, a

convergence analysis of the approximation method based

on the SCA method is studied.

B. Related Work

The authors in [12] addressed the problem of dynamic

resource control for HetNets with flexible backhaul (wired and

wireless). However, the problem of load balancing when the

number of antennas and users grows large is not considered.

The user association problem has been studied for HetNets

in [8], [9], which does not take into account backhaul con-

straints. As pointed out in [10], [13] the current solutions

for user association problem ignore the backhaul constraints,

which is very crucial since the capacity of open access SCs

with either wired or wireless backhaul always faces the limited

backhaul constraint. Moreover, the load balancing problem

should take into account imperfect CSI due to mobility, which

is ignored in the previous work. Our previous work in [1]

has considered the problem of joint in-band scheduling and

interference mitigation in 5G HetNets without considering the

user association. In this work, we extend [1] by considering

the load balancing problem taking into account the backhaul

constraint and imperfect CSI, and further provides insights into

the performance analysis of our proposed algorithm based on

the Lyapunov framework and convergence of the SCA method.

The rest of this paper is organized as follows.1 Section II

describes the system model and Section III provides the prob-

lem formulation for load balancing and interference mitigation.

Section IV introduces the Lyapunov framework used to solve

our problem. In Section V, we present the numerical results.

We conclude the paper in Section VI.

II. SYSTEM MODEL

A. System Model

The downlink (DL) transmission of a HetNet scenario is

considered as shown in Fig. 1 in which a MBS b0 is underlaid

with a set of uniformly deployed S FD-enabled SCs, S =

{bs |s ∈ {1, . . . , S}}. Let B = {b0} ∪ S denote the set of all

base stations, where |B| = 1 + S. The MBS is equipped with

N number of antennas and serves a set of single-antenna M

MUEs M = {1, . . . ,M}. Let K = M ∪ S denote the set

of users associated with MBS b0, where |K | = K = M + S.

The user indices k = 1, 2, ...,M represent the corresponding

MUEs indices m = 1, 2, ...,M, while the user indices k =

M+1,M+2, ...,M+S represent the corresponding SCs indices

s = 1, 2, ..., S. We assume open access policy at FD-enabled

SCs and each FD-enabled SC is equipped with Ns+1 antennas:

one receiving antenna is used for the wireless backhaul and

1The lowercase letters, boldface lowercase letters, (boldface) uppercase
letters and italic boldface uppercase letters are used to represent scalars,
vectors, matrices, and sets, respectively. X† and rank(X) denote the Hermitian
transpose and the rank of matrix X, respectively. diag(x1, x2, ...xN) denotes
the block diagonal matric whose diagonal blocks are given by x1, x2, ..., xN

and the identity matrix of size N is denoted by IN. The cardinality of a set
S, is denoted by |S |. CN(0, σ2) denotes the Gaussian random distribution
of zero mean and variance of σ2.
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Fig. 1. Integrated access and backhaul architecture for the considered 5G
network scenario.

Ns transmitting antenna to serve its single-antenna small cell

UEs (SUEs) or other MUEs at the same frequency band. Let

C = {c1, c2, . . . , cS} denote the set of SUEs, where |C| = S.

Moreover, SCs are assumed to be FD capable with perfect self-

interference cancelation (SIC) capabilities2. Co-channel time-

division duplexing (TDD) protocol is considered in which the

MBS and FD-enabled SCs share the entire bandwidth, and

the DL transmission occurs at the same time. In this work,

we consider a large number of antennas at both macro and

SC BSs and a dense deployment of MUEs and SCs, such that

M,N,Ns, S ≫ 1.

B. Channel Model

We denote h
(b0)
m =

[

h
(b0,1)
m , h

(b0,2)
m , · · · , h

(b0,N)
m

]T
∈ CN×1 the

propagation channel between the mth MUE and the antennas

of the MBS b0 in which h
(b0,n)
m is the channel between

the mth MUE and the nth MBS antenna. Let H(b0),M =
[

h
(b0)

1
, h

(b0)

2
, · · · , h

(b0)

M

]

∈ CN×M denote the channel matrix

between all MUEs and the MBS antennas. Moreover, we

assume imperfect CSI for MUEs due to mobility and we

denote Ĥ(b0),M
=

[

ĥ
(b0)

1
, ĥ

(b0)

2
, · · · , ĥ

(b0)

M

]

∈ CN×M as the

estimate of H(b0),M in which the imperfect CSI can be modeled

as [14]:

ĥ
(b0)
m =

√

NΘ
(b0)
m ŵ

(b0)
m , (1)

where ŵ
(b0)
m =

√

1 − τm2w
(b0)
m + τmz

(b0)
m is the estimate of the

small-scale fading channel matrix and Θ
(b0)
m is the spatial

channel correlation matrix that accounts for path loss and

shadow fading. Here, w
(b0)
m and z

(b0)
m are the real channel and

the channel noise, respectively, modeled as Gaussian random

matrix with zero mean and variance 1/N . The channel estimate

error of MUE m is denoted by τm, τm ∈ [0, 1]; in case

of perfect CSI, τm = 0. Similarly, let H(b0),S ∈ CN×S and

H(b0),C ∈ CN×S denote the channel matrices from the MBS

antennas to SCs and SUEs, respectively. Let h
(bs )
u ∈ CNs×1

denote the channel propagation from SC bs to any receiver u.

Let cs denote the SUE served by the SC bs.

2The case of imperfect SIC is left for future work.

III. LOAD BALANCING AND INTERFERENCE MITIGATION

In this section, we formulate the joint optimization of user

association, user scheduling, beamforming design, and power

allocation. To that end, we first derive the received signal,

data rate, and power transmit for each receiver (SCs are also

treated as macro BS’s UEs). We then formulate the problem

as a network utility maximization subject to wireless backhaul

constraints. However, the formulated problem does not have

closed-form expressions for the objective and constraints.

Hence, we apply RMT [15] to get these closed-form expres-

sions. We finally utilize the tool of stochastic optimization to

decouple our problem into several solvable sub-problems.

The problem of user scheduling and user association for

load balancing in the DL is addressed in which the MBS

simultaneously provides data transmission to MUEs and wire-

less backhaul to the FD-enabled SCs, while the SCs with FD

capability serve both SUEs and MUEs. For each MUE m ∈ M,

let binary variable l
(bs )
m indicate the transmission association

from BS bs ∈ B to MUE m, i.e., l
(bs )
m = 1 when MUE m is

associated with BS bs, otherwise l
(bs )
m = 0. Similarly, let binary

variables l
(b0)
s+M

and l
(bs )
cs denote the transmission association

indicators from MBS b0 to SC s and from SC bs to SUE cs,

respectively. We assume that each MUE m connects to one BS

(either MBS b0 or SC bs) at time slot t. Each SC is equipped

with Ns transmitting antennas, and we assume that each SC

serves up to Nau
s active users (either SUE or MUE) at each

time slot, such that Nau
s ≤ Ns , where the superscript au stands

for “active users”. Hence, we have the following constraints

for load balancing:

∑S
s=0 l

(bs )
m ≤ 1,

∑M
m=1 l

(bs )
m + l

(bs )
cs ≤ Nau

s ,∀ s,m ∈ K . (2)

We define vector l =
{

l
(bs )

j
|bs ∈ B, j ∈ {M ∪ S ∪ C}

}

con-

taining all transmission indicators between BSs and UEs. Let

Ntx
s =

∑M
m=1 l

(bs )
m + l

(bs )
cs be the total number of transmissions at

SC, where superscript tx stands for “transmissions”, and thus

the latter of (2) becomes Ntx
s ≤ Nau

s ,∀s ∈ S.

A. Downlink Transmission Signal

The MBS serves two types of users: MUEs with imperfect

CSI and FD-enabled SCs with perfect CSI. Let p
(b0)
m , p

(b0)

s+M
,

and P(b0) denote the DL MBS transmit power assigned to

MUE m, the DL MBS transmit power assigned to SC s,

and the maximum transmit power at the MBS, respectively.

We focus on the multiple-input single-output (MISO) channel,

where the MBS with N antennas can serve K UEs. Here, we

take into account user scheduling and association, and our

proposal can apply to any special case when number of UEs

is larger than number of antennas, i.e., K > N. SC exploits FD

capability to double capacity, FD-enabled SC causes unwanted

FD interference: cross-tier interference to adjacent MUEs (or

other SCs), and co-tier interference to other UEs. Hence, in

order to convert the interference channel to the MISO channel,

we design a precoder at the MBS and propose an operation

mode policy to control FD interference in order to treat the

total FD interference as additional noise.

Definition 1: [Operation Mode Policy] We define β as the

operation mode to control the FD-enabled SC transmission to
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reduce FD interference. The operation mode is expressed as

β(t) = {β(bs )(t) | β(bs )(t) ∈ {0, 1},∀s ∈ S}. Here, β(bs )(t) = 1

indicates SC bs operates in FD mode and β(bs )(t) = 0 for

half-duplex (HD) mode.

We assume that the MBS uses a precoding scheme, V =

[v1, v2, . . . , vK] ∈ CN×K. To exploit the degrees of freedom

of massive MIMO, the hierarchical interference mitigation

scheme in [16], [17] is applied to design the precoder, i.e.,

V = UT, where T ∈ CN×Nitf is used to control co-tier

interference and capture the spatial multiplexing gain, and

U ∈ CNitf×K is used to suppress cross-tier interference. Here,

Nitf < N, where the subscript itf stands for “interference”. The

precoder U is chosen such that

U†∑S
s=1 β

(bs )Θ
(b0)
s = 0, (3)

where Θ
(b0)
s ∈ CN×N is the sum of the correlation matrices

between MBS antennas and users belong to SC s. Here, U is

in the null space of
∑S

s=1 β
(bs )Θ

(b0)
s . Note that β(bs ) determines

that the transmission of FD-enabled SC is enabled or not.

The precoder T is designed to adapt to the real time CSI

based on Ĥ†U ∈ CK×Nitf , where Ĥ = [ĥ(b0)]†
k∈K

. In this paper,

we consider the regularized zero-forcing (RZF) precoding3

that is given by T =
(

U†Ĥ†ĤU + NαINitf

)−1
U†Ĥ†, where the

regularization parameter α > 0 is scaled by N to ensure that

the matrix U†Ĥ†ĤU + NαINitf
is well conditioned as N → ∞.

The precoder T is chosen to satisfy the power constraint

Tr
(

PT†T
)

≤ P(b0), where P = diag(p
(b0)

1
, p

(b0)

2
, . . . , p

(b0)

K
). We

also assume that each SC uses ZF precoding to server its

users, F(bs ) = [f
(bs )

1
, f

(bs )

2
, . . . , f

(bs )

Ntx
s

] ∈ CNs×Ntx
s which reads

f
(bs )
u = h

(bs )†
u

(

h
(bs )
u h

(bs )†
u

)−1
such that F(bs ) is chosen to satisfy

the equality power constraint Tr
(

P(bs )F(bs )†F(bs )
)

= P(bs )4.

Here, P(bs ) = diag(p
(bs )

1
, p

(bs )

2
, . . . , p

(bs )

Ntx
s

). The channel propa-

gation from the SC bs to the MUE m (referred to as user u)

is h
(bs )
u = ĥ

(bs )
m =

√

NsΘ
(bs )
m

(√

1 − τm2w
(bs )
m + τmz

(bs )
m

)

, where

Θ
(bs )
m ∈ CNs×Ns is the channel correlation matrix. Here, w

(bs )
m

and z
(bs )
m are the real channel and the channel noise from SC

bs to MUE m, respectively, modeled as a Gaussian random

matrix with zero mean and variance 1/Ns .

By utilizing a massive number of antennas at MBS, a

large spatial degree of freedom is utilized to serve MUEs

and FD-enabled SCs, while the remaining degrees of free-

dom are used to mitigate cross-tier interference. In massive

MIMO system, the total number of antennas is considered

as the degree of freedom [16]. Hence, we have the antenna

constraint for user association and operation mode such that
∑K

k=1 l
(b0)

k
(t) +

∑S
s=1 Ntx

s (t) ≤ N. For notational simplicity, we

remove the time dependency from the symbols throughout the

discussion. The received signal y
(b0)
m at each MUE m ∈ M at

3Other precoders are left for future work.
4We choose the equality constraints for transmit power at SCs to reach the

optimal rate at maximum power rather than using Tr
(

P(bs )F(bs )†F(bs )
)

≤

P(bs ), since the power at SCs is relatively small.

time instant t is given by

y
(b0)
m = l

(b0)
m

√

p
(b0)
m h

(b0)†
m vmx

(b0)
m

+

S∑

s=1

β(bs )
∑Ntx

s

u=1
l
(bs )
u

√

p
(bs )
u h

(bs )†
m f

(bs )
u x

(bs )
u

︸                                                ︷︷                                                ︸

cross-tier interference

+

K∑

k=1,k,m

l
(b0)

k

√

p
(b0)

k
h
(b0)†
m vk x

(b0)

k

︸                                   ︷︷                                   ︸

co-tier interference

+ηm,

(4)

where x
(b0)
m is the signal symbol from the MBS to the MUE m,

vm is the precoding vectors of MUE m, and ηm ∼ CN(0, 1)

is the thermal noise at MUE m. While x
(bs )
u is the transmit

signal symbol from SC bs to its user u.

At time instant t, the received signal y
(b0)

s+M
at each SC

s ∈ K suffers from self-interference, cross-tier and co-tier

interference, which is given by

y
(b0)

s+M
= l

(b0)

s+M

√

p
(b0)

s+M
h
(b0)†

s+M
vs+M x

(b0)

s+M

+

S∑

s′=1,s′,s

β(bs′ )
Ntx
s′∑

u′=1

l
(bs′ )

u′

√

p
(bs′ )

u′
h
(bs′ )†
s f

(bs′ )

u′
x
(bs′ )

u′

︸                                                        ︷︷                                                        ︸

cross-tier interference

+ β(bs )
Ntx
s∑

u=1

l
(bs )
u

√

p
(bs )
u h

(bs )†
s f

(bs )
u x

(bs )
u

︸                                        ︷︷                                        ︸

self-interference

+

K∑

k=1,k,s+M

l
(b0)

k

√

p
(b0)

k
h
(b0)†

s+M
vkx

(b0)

k

︸                                      ︷︷                                      ︸

co-tier interference

+ηs+M,

(5)

where x
(b0)

s+M
is the signal symbol from the MBS to the SC s,

vs+M is the precoding vectors of SC s, and ηs+M ∼ CN(0, 1)

is the thermal noise of the SC s.

The received signal from the SC bs at receiver u, y
(bs )
u = 0,

if the SC bs operates in HD mode, β(bs ) = 0. For FD mode,

β(bs ) = 1, the received signal y
(bs )
u is given by

y
(bs )
u = β(bs )l

(bs )
u

√

p
(bs )
u h

(bs )†
u f

(bs )
u x

(bs )
u

+

S∑

s′=1,s′,s

β(bs′ )
Ntx
s′∑

u′=1,

l
(bs′ )

u′

√

p
(bs′ )

u′
h
(bs′ )†
u f

(b′s )

u′
x
(bs′ )

u′

︸                                                        ︷︷                                                        ︸

co-tier interference

+ β(bs )
Ntx
s∑

j=1, j,u

l
(bs )
j

√

p
(bs )
j

h
(bs )†
u f

(bs )
j

x
(bs )
u

︸                                             ︷︷                                             ︸

co-tier self-interference

+

K∑

k=1,k,u

l
(b0)

k

√

p
(b0)

k
h
(b0)†
u vkx

(b0)

k

︸                                  ︷︷                                  ︸

cross-tier interference

+ηu,

(6)

where x
(bs )
u is the transmit data symbol from the SC bs to

receiver u and ηu ∼ CN(0, 1) is the thermal noise at receiver
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u. We imply that the receiver u can be either a SUE or an

MUE.

The precoder V is designed at the MBS to null the co-tier

interference and to remove completely the cross-tier interfer-

ence to SCs’s users (3) and the self-interference is well treated,

while Tr
(

P(bs )F(bs )†F(bs )
)

= P(bs ). Thus, according to (4)-(6),

the SINRs of an MUE m served by MBS, a SC s served

by MBS, a receiver u served by SC are given in (7)-(9),

respectively.

B. Joint Load Balancing and Interference Mitigation Algo-

rithm

Let us consider a joint optimization of load balancing l,

operation mode β, interference mitigation U, and transmit

power allocation p = (p
(b0)

1
, p

(b0)

2
, . . . , p

(b0)

K
) that satisfies the

transmit power budget of MBS i.e. , Tr
(

PT†T
)

≤ P(b0).

We define ζ
(bs )

k
=

P(bs ) |h
(bs )†

k
|2

|ηk |
2 and ǫo as the FD interfer-

ence to noise ratio (INR) from FD-enabled SC bs to any

scheduled receiver k, and the allowed FD INR threshold,

respectively. The FD interference threshold is defined such

that
∑K

k=1

∑S
s=1 ζ

(bs )

k
≤ ǫo, such that the total FD interference

is considered as noise. Under the operation mode policy, we

schedule the receiver i and enable the transmission of SC bs
as long as

∑K
k=1

∑S
s=1 l

(b0)

k
β(bs )ζ

(bs )

k
≤ ǫo. Let Λo

= {l, β} be

a composite control variable of user association and operation

mode. We define Λ = {Λo,U, p} as a composite control

variable, which adapts to the spatial channel correlation matrix

Θ.

For a given Λ that satisfies (3) and operation mode policy,

the respective Ergodic data rates of SC s and SUE u are

rs+M (Λ|Θ) = E
[

log
(

1+ γ
(b0)

s+M

)]

and r
(bs )
u (Λ|Θ) = E

[

log
(

1+

γ
(bs )
u

) ]

. While from the constraint (2) the Ergodic data rate

of MUE m will depend on which BS the MUE is associated

with, i.e., rm(Λ|Θ) = E
[

log
(

1 + γ
(b0)
m

)]

+

S∑

s=1

min{E
[

log
(

1 +

γ
(bs )
m

) ]

, rs(Λ|Θ) −
∑

u,m
r
(bs )
u (Λ|Θ)}. In other words, the first

term is the data rate from from the MBS to MUE when MUE

is associated with the MBS, while the second term is when the

FD-enabled SCs allow MUE to connect (If MUE is connected

to the FD-enabled SC, then the rate of MUE should be the

minimum between r
(bs )
m (Λ|Θ) and data stream from the MBS

via FD-enabled SC to MUE, excepts other SC’s users).

Definition 2: For any vector x(t) = (x1(t), ..., xK(t)), let

x̄ = (x̄1, · · · , x̄K) denote the time average expectation of

x(t), where x̄ , limt→∞
1
t

∑t−1
τ=0 E[x(τ)]. Similarly, r̄ ,

limt→∞
1
t

∑t−1
τ=0 E[r(τ)] denotes the time average expectation

of the Ergodic data rate.

For a given composite control variable Λ that adapts to the

spatial channel correlation matrix Θ, the average data rate

region is defined as the convex hull of the average data rate

of users, which is expressed as:

R ,

{

r̄(Λ|Θ) ∈ RK
+
| l ∈ {0, 1}K+MS+S, β ∈ {0, 1}S,

∑S
s=0 l

(bs )
m ≤ 1, ∀ m ∈ M,

∑M
m=1 l

(bs )
m + l

(bs )
cs = Ntx

s ,N
tx
s ≤ Nau

s , ∀ bs ∈ S,
∑K

k=1 l
(b0)

k
+

∑S
s=1 Ntx

s ≤ N,
∑K

k=1

∑S
s=1 l

(b0)

k
β(bs )ζ

(bs )

k
≤ ǫo,

Tr
(

PT†T
)

≤ P(b0), U† ∑S
s=1 β

(bs )Θ
(b0)
s = 0

}

,

where r̄(Λ|Θ) = (r̄1(Λ|Θ), . . . , r̄K (Λ|Θ))T . Following the re-

sults from [18], the boundary points of the rate regime with

total power constraint and no self-interference are Pareto-

optimal5. Moreover, according to [19, Proposition 1], if the

INR covariance matrices approach the identity matrix, the

Pareto rate regime of the MIMO interference system is convex.

Hence, our rate regime is a Pareto-optimal, and thus is convex

with above constraints.

Let us assume that each FD-enabled SC acts as a relay

to forward data to its users. If the MBS transmits data

to FD-enabled SC bs, but the transmission of SC bs is

disabled, it cannot serve its SUE. Hence, we define D(t) =

(D1(t),D2(t), . . . , DS(t)) as a data queue at SCs, where at each

time slot t, the wireless backhaul queue at FD-enabled SC bs
is

Ds(t + 1) = max[Ds(t) + rs+M (t) − r
(bs )
cs (t), 0], ∀ s ∈ S.

(10)

The SC offloads some MUEs from the MBS if the wireless

backhaul capacity between the SCs and the MBS is guaran-

teed, and hence, for each SC we have the following wireless

backhaul condition for all t ≥ 0: “If the access link between

the MUE m and the MBS is better than the link between the

MUE m and the SCs, then the MUE connects with the MBS

rather than with other SCs”, i.e.,6

if rs+M (t) ≤ r
(b0)
m (t), then l

(bs )
m = 0, ∀s ∈ S,m ∈ K.

(11)

Definition 3: [Queue stability] For any discrete queue Q(t)

over time slots t ∈ {0, 1, . . .} and Q(t) ∈ R+, Q(t) is stable

if Q̄ , limt→∞
1
t

∑t−1
τ=0 E

[

|Q(τ)|
]

< ∞. A queue network is

stable if each queue is stable.

We define the network utility function f0(·) to be non-

decreasing, concave over the convex region R for a given

Θ. The objective is to maximize the network utility under

wireless backhaul constraints and imperfect CSI. Thus, the

NUM problem is given by,

max
r̄

f0(r̄) (12a)

subject to (11), r̄ ∈ R, D̄ < ∞, (12b)

5The Pareto optimal is the set of user rates at which it is impossible to
improve any of the rates without simultaneously decreasing at least one of
the others.

6The queues of MUEs are handled at the MBS and SCs strictly handle
data for SUEs, hence when SCs open connection for MUEs, they should have
immediate capacity in terms of data rate. We do not include the constraint (11)
for the closed access case in [1].
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γ
(b0)
m =

l
(b0)
m p

(b0)
m |h

(b0)†
m vm |

2

∑

k,m l
(b0)

k
p
(b0)

k
|h

(b0)†
m vk |

2
+

∑

s β
(bs )P(bs ) |h

(bs )†
m |2 + 1

. (7)

γ
(b0)

s+M
=

l
(b0)
s+M

p
(b0)
s+M

|h
(b0)†
s+M

vs+M |2

∑

k,s+M l
(b0)

k
p
(b0)

k
|h

(b0)†

s+M
vk |

2
+

∑

s′,s β
(bs′ )P(bs′ ) |h

(bs′ )†
s |2 + 1

. (8)

γ
(bs )
u =

β(bs )l
(bs )
u p

(bs )
u |h

(bs )†
u f

(bs )
u |2

β(bs )
∑

j=1, j,u l
(bs )

j
p
(bs )

j
|h

(bs )†
u f

(bs )

j
|2 +

∑

s′,s β
(bs′ )P(bs′ ) |h

(bs′ )†
u |2 + 1

. (9)

where f0(r̄) =
∑K

k=1ωk(t) f (r̄k) with ωk (t) ≥ 0 is the weight

of user k, f (·) is assumed to be twice differentiable, concave,

and increasing L-Lipschitz function for all r̄ ≥ 0. Solving (12)

is non-trivial since the average rate region R does not have

a tractable form. To overcome this challenge, we need to

find closed-form expressions of the data rate and the average

transmit power. Inspired by [15], we invoke RMT to get the

closed-form expressions for the user data rate and transmit

power as N ≫ K.

C. Closed-Form Expression via Deterministic Equivalent

We invoke recent results from RMT in order to get the

deterministic equivalent of user rate and transmit power via

Theorem 1.

Theorem 1: Recall that α is the RZF parameter. As N ≫ K;

N,K → ∞, by applying the technique in [15, Theorem 2], the

deterministic equivalent of the asymptotic SINR of MUE m is

γ
(b0)
m

a.s.
−−−→

l
(b0)
m p

(b0)
m (1 − τ2

m)(Ωm)
2

Φ
,

where
a.s.
−−−→ denotes the almost sure convergence and Φ =

Υm

[

α2 −τ2
m

(

α2 −(α+Ωm)
2
)
]

+ (α+Ωm)
2(1+

∑S
s=1 β

(bs )ζ
(bs )
m ).

Here, Ωm =
1
N

Tr(Θ̃mG) forms the unique positive solution

of which is the Stieltjes transform of nonnegative finite mea-

sure [15, Theorem 1], where G =
(

1
N

∑K
k=1

Θ̃k

α+Ω
k

+ INitf

)−1

.

In addition, Υm =
1
N

∑K
k=1,k,m

α2l
(b0 )

k
p
(b0 )

k
ekm

(α+Ω
k
)2

, and Θ̃k =

UU†Θ
(b0)

k
UU†. e = [ek], k ∈ K, and em = [emk], k ∈ K

are given by e = (I − J)−1u, ek = (I − J)−1uk, where

J = [Jij ], i, j ∈ K. u = [uk], k ∈ K, um = [umk], k ∈ K

are given by Jij =

1
N

trΘ̃iGΘ̃jG

N(α + Ω
j
)2

, umk =
1

α2N
trΘ̃kGΘ̃mG,

uk =
1

α2N
trΘ̃kG2. Similarly, the SINR of SC bs is

γ
(b0)
s

a.s.
−−−→

l
(b0)
s p

(b0)
s (Ωs)

2

α2Υs + (α +Ωs)
2(1 +

∑S
s′=1,s′,s β

(bs′ )ζ
(bs′ )
s )

.

The power constraint at the MBS can be calculated as

1
N

∑K
k=1

p
(b0 )

k
α2ek

(α+Ω
k
)2

−P(b0) ≤ 0. Moreover, following the analysis

in the proof of [15, Theorem 3], [16, Lemma 6] for a small

fixed7 α > 0, Υ
k
= O(1) and α2ek = Ωk

+ O(α) yield the

7The deterministic equivalent holds for a small fixed α as studied in [16],
while the problem of finding the optimal value α has been studied in [15],
[17].

deterministic equivalent of the asymptotic SINRs of UEs (7)-

(9) as

γ
(b0)
m (Λ|Θ)

a.s.
−−−→

l
(b0)
m p

(b0 )
m (1−τ2

m)

1+
∑S

s=1 β
(bs )ζ

(bs )
m

, (13)

γ
(b0)
s (Λ|Θ)

a.s.
−−−→

l
(b0)
s p

(b0 )
s

1+
∑S

s′=1,s′,s β
(bs′ )ζ

(bs′ )
s

, (14)

γ
(bs )
u (Λ|Θ)

a.s.
−−−→

β(bs )l
(bs )
u p

(bs )
u

1+
∑S

s′=1,s′,s β
(bs′ )ζ

(bs′ )
u

. (15)

Moreover, we obtain the closed-form expression for the trans-

mit power constraint, i.e.,

1

N

∑K
k=1

p
(b0 )

k

Ω
k

− P(b0) ≤ 0.

Although the closed-form expressions of average data rate and

transmit power are obtained, our problem considers a time-

average optimization with a large number of control variables,

and dynamic traffic load over the convex region for a given

composite control variable Λ and Θ. Our aim is to maximize

the aggregate network utility subject to queue stability in

which the well-known Lyapunov optimization yields an utility

throughput optimality and stability [20]. Hence, we apply

the drift-plus-penalty technique [20] to solve load balancing,

operation mode selection, and power allocation problems.

IV. LYAPUNOV OPTIMIZATION FRAMEWORK

The network operation is modeled as a queueing network

that operates in discrete time t ∈ {0, 1, 2, . . . }. Let ak(t) denote

the bursty data arrival destined for each user k, i.i.d over

time slot t. Let Q(t) denote the vector of transmission queue

blacklogs at MBS at slot t. The queue evolution is given by

Qk (t + 1) = max [Qk(t) − rk(t), 0]+ ak(t), ∀ k ∈ K . (16)

Here, we consider the bound of the traffic arrival of user k

is bounded such that 0 ≤ ak(t) ≤ amax
k

, for some constant

amax
k
< ∞. Futuremore, let rmax

k
(t) be the upper bound of

data rate for user k at time slot t, such that rmax
k

(t) ≤

amax
k

. The set at constraint (12b) is replaced by an another

equivalent set by introducing auxiliary variables ϕ(t) ∈ R,

ϕ(t) =
(

ϕ1(t), . . . , ϕK (t)
)

that satisfies ϕ̄k ≤ r̄k , where ϕ̄k ,

limt→∞
1
t

∑t−1
τ=0 E

[

ϕk (τ)
]

. The evolution of wireless backhaul

queue is rewritten as

Ds(t + 1) = max [Ds(t) + ϕs+M (t) − r
(bs )
cs (t), 0], ∀ s ∈ S.

(17)
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For a given Λ and Θ, the optimization problem (12) subject

to the network stability and dynamic backhaul can be posed

as

min
ϕ̄

− f0(ϕ̄) (18a)

subject to ϕ̄k − r̄k ≤ 0, ∀ k ∈ K, (18b)

(11), D̄ < ∞, Q̄ < ∞. (18c)

In order to ensure the inequality constraint (18b), we introduce

a virtual queue vector Y (t) which evolves as follows

Yk(t + 1) = max [Yk(t) + ϕk(t) − rk(t), 0], ∀ k ∈ K . (19)

We define the queue backlog vector as Σ(t) =
[

Q(t),Y(t),D(t)
]

(whereas the stability of Σ(t) yields all constraints of prob-

lem (18) are hold). The Lyapunov function can be written as

L(Σ(t)) ,
1

2

[ ∑K
k=1 Qk(t)

2
+

∑K
k=1 Yk(t)

2
+

∑S
s=1 Ds(t)

2
]

.

For each time slot t, ∆(Σ(t)) denotes the Lyapunov drift, which

is given by

∆(Σ(t)) , E
[

L(Σ(t + 1)) − L(Σ(t))|Σ(t)
]

.

Noting that max[a, 0]2 ≤ a2 and (a ± b)2 ≤ a2 ± 2ab + b2

for any real positive number a, b, and thus, by neglecting the

index t we have:

(max [Qk − rk, 0] + ak)
2 − Q2

k ≤ 2Qk(ak − rk) + (ak − rk)
2,

max [Yk + ϕk − rk, 0]2 − Y2
k ≤ 2Yk(ϕk − rk) + (ϕk − rk)

2,

max [Ds + ϕs+M − r
(bs )
cs (t), 0]2 − D2

s ≤ 2Ds(ϕs+M

− r
(bs )
cs (t)) + (ϕs+M − r

(bs )
cs (t))2.

We assume that ϕk ∈ R and a feasible l for all t and all

possible Σ(t), we have

∆(Σ(t)) ≤ Ψ +
∑K

k=1 Qk (t)E
[

ak(t) − rk(t)|Σ(t)
]

+

∑S
s=1 Ds(t)E

[

ϕs+M (t) − r
(bs )
cs (t)|Σ(t)

]

+

∑K
k=1 Yk(t)E

[

ϕk(t) − rk(t)|Σ(t)
]

. (20)

Here ∆(Σ(t)) ≤ Π, where Π represents the R.H.S

of (20), and Ψ is a finite constant that satisfies

Ψ ≥ 1
2

∑K
k=1 E

[ (

ak(t) − rk(t)
)2
|Σ(t)

]

+
1
2

∑K
k=1 E

[ (

ϕk(t) −

rk(t)
)2
|Σ(t)

]

+
1
2

∑S
s=1 E

[ (

ϕs+M (t) − r
cs
s (t)

)2
|Σ(t)

]

, for all t

and all possible Σ(t). We apply the Lyapunov drift-plus-

penalty technique [20], where the solution of (18) is obtained

by minimizing the Lyapunov drift and a penalty from the

objective function, i.e.,

min Π − νE[ f0(ϕ(t))].

Here, the parameter ν is chosen as non-negative constant to

control optimal minimization solution [20]. Since Ψ is finite,

the problem is to minimize the below expression subject to the

convex set hull, given by (21). Note that (21) is decoupled

over user association, user scheduling, and operation mode

variables (2⋆), auxiliary variables (3⋆), and precoder and

power allocation variables (1⋆), respectively as in (21). Hence,

the respective variables can be found independently by min-

imizing the individual term at each time. Fig. 2 summarizes

the relationship among various subproblems.

A. Joint Load Balancing and Operation Mode Selection

First, the problem of joint load balancing and FD-enabled

SC operation mode selection in (2⋆) is cast as the minimiza-

tion problem below.

min
l,β

−
∑K

k=1 Ak(t) log
(

1 + l
(b0)

k
(t)

p
(b0 )

k
(1−τ2

k
)

1+
∑S

s=1 β
(bs )ζ

(bs )

k

)

−
∑S

s=1 Ds(t) log
(

1 + β(bs )(t)
l
(bs )
cs

(t)p
(bs )
cs

1+
∑S

s′,s β
(bs′ )ζ

(bs′ )
cs′

)

(22a)

subject to l
(bs )

j
(t) ∈ {0, 1}, ∀ j ∈ K ∪ C, ∀ bs ∈ B, (22b)

β(bs )(t) ∈ {0, 1},Ntx
s (t) ≤ Nau

s ,∀ s ∈ S, (22c)
∑S

s=0 l
(bs )
m (t) ≤ 1,∀ m ∈ M,

∑M
m=1 l

(bs )
m (t) + l

(bs )
cs (t) = Ntx

s (t), (22d)

(11), rk(t) ∈ R,
∑K

k=1 l
(b0)

k
(t) +

∑S
s=1 Ntx

s (t) ≤ N, (22e)
∑K

k=1

∑S
s=1 l

(b0)

k
(t)β(bs )(t)ζ

(bs )

k
(t) ≤ ǫo, (22f)

where Ak(t) = Qk(t) + Yk(t). This problem is a non-convex

program with binary variables. It turns out this problem has

a hidden convexity structure and the non-convex terms can

be iteratively approximated by its convex upper bound via an

iterative SCA method. The motivations of utilizing the SCA

method are due to (i) its low complexity and fast conver-

gence [21, Lemma 3.5] and (ii) the obtained solution which

yields many relaxed variables are close to zero or one [22].

In this regard, we convexify this problem to find a sub optimal

solution. First, we relax the binary constraints (22b) and (22c)

to linear constraints as continuous variables. Secondly, at each

iteration i the non-convex constraint (22f) is approximated by

upper convex approximation, i.e.,

K∑

k=1

S∑

s=1

(λ
(i)

ks
(l
(b0)

k
(t))2

2
+

(β(bs ))2(t)

2λ
(i)

ks

)

ζ
(bs )

k
(t) − ǫo ≤ 0,

for every fixed positive value λ
(i)

ks
. Finally, instead of minimiz-

ing the non-convex objective function (22a) we convert it into

a convex function by the followings. We minimize its upper

bound by replacing the denominators, i.e., 1+
∑S

s=1 β
(bs )ζ

(bs )
m

with largest bound, i.e., 1 + ǫ0. Due to interference con-

straint (22f), we obtain the upper bound as below

−

K∑

k=1

Ak(t) log
(

1 +
l
(b0)

k
(t)p

(b0)

k
(1 − τ2

k
)

1 + ǫ0

)

−

S∑

s=1

Ds(t) log
(

1 + β(bs )(t)
l
(bs )
cs (t)p

(bs )
cs

1 + ǫ0

)

.

Using the similar approach as convexifying the interference

constraint (22f), we convexify the second part of these objec-

tive function which still remains non-convex. We denote the

lower bound of SINR of UE served SC bs as γbs (t), let us set

l̃
(bs )
cs (t) ,

l
(bs )
cs

(t)p
(bs )
u

1+ǫ0
. Then we have:

γbs (t) ≤ β(bs )(t)l̃
(bs )
cs (t), ∀ s ∈ S, (23)
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[
[

Impact of network queue, virtual queue, and Λ
︷                               ︸︸                               ︷

−
∑

k

(

Qk(t) + Yk(t)
)

rk(Λ(t))
]

1⋆

Impact of SC queue and β

︷                          ︸︸                          ︷

−
∑

s Ds(t)r
(bs )
cs (β(bs )(t))

]

2⋆
+

[

Impact of virtual queue, SC queue, and auxiliaries

︷                                      ︸︸                                      ︷
∑

k Yk(t)ϕk(t) +
∑

s Ds(t)ϕs+M(t)

penalty

︷       ︸︸       ︷

−ν f0(ϕ(t))
]

3⋆
.

(21)
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Algorithm 1: Load Balancing

& Operation Mode

Beamforming Design

Power Allocation

Queue Update

A
u

x
il

ia
ry

V
a
ri

a
b

le

S
e
le

c
ti

o
n

pk(t)
(b0) = P (b0)=K

'
(t
)?

T
im

e
In

d
ic

es

A
lg

o
ri

th
m

1

Q
u
e
u
e

U
p
d
a
te

P
o
w

er
A

ll
o
ca

ti
o
n

D
L

T
ra

n
sm

is
si

o
n

MBS

SCs

SUEs

MUEs

CSI report

D
L

T
ra

n
sm

is
si

o
n

Fig. 2. Joint load balancing and interference mitigation algorithm.

by introducing the new slack variable ι2s(t), (23) is equivalent

to:

1

4

(

β(bs )(t) − l̃
(bs )
cs (t)

)2
+ ι2s(t) ≤

1

4

(

β(bs )(t) + l̃
(bs )
cs (t)

)2
, (24)

and γbs (t) ≤ ι2s(t), ∀ s ∈ S. (25)

where the constraint (24) holds a form of the second-order

cone inequalities (SOC), while the RHS of the set of con-

straints in (25) are still non-convex, which can be approxi-

mated by using the iterative SCA method [21]. We rewrite the

constraint (25) as

γbs (t) ≤ ι̂
(i)2
s (t) + 2ι̂

(i)
s (t)(ιs(t) − ι̂

(i)
s (t)), ∀ s ∈ S, (26)

where at iteration i +1, we update ι̂
(i+1)
s (t) such that ι̂

(i+1)
s (t) =

ι
(i)
s (t). Hence, the optimal value of Λo is given by

min
l,β

−
∑K

k=1 Ak(t) log
(

1 + l
(b0)

k
(t)

p
(b0)

k
(1−τ2

k
)

1+ǫ0

)

−
∑S

s=1 Ds(t) log
(

1 + γbs (t)
)

(27a)

subject to l
(bs )

j
(t) ∈ [0, 1],∀ j ∈ K ∪ C,∀ bs ∈ B, (27b)

β(bs )(t) ∈ [0, 1],Ntx
s (t) ≤ Nau

s ,∀ s ∈ S, (27c)

(22d), (22e), (24), (26), (27d)

∑K
k=1

∑S
s=1

( λ
(i)

ks
(l
(b0)

k
(t))2

2

+

(β(bs ))2(t)

2λ
(i)

ks

)

ζ
(bs )

k
(t) − ǫo ≤ 0. (27e)

At each time slot t, the approximated problem (27) is iter-

atively solved as in Algorithm 1. We numerically observe

that the SCA-based Algorithm 1 converges quickly within

few iterations and yields a continuous relaxation solution of

many user association and operation mode variables close or

equal to binary. To ensure that all users will be served, when

performing Algorithm 1 each user is assumed to receive the

same transmit power to find the best scheduled users. More-

over, the scheduling will be performed in a long-term period,

while the power allocation problem is executed in a short-

term period. Since the objective function of the problem (27)

Algorithm 1 Joint load balancing and operation mode algo-

rithm

Initialization i := 0, λ
(i)

ks
, ι̂

(i)
s :=

randomly positive that satisfy all constraints.

repeat

Solve (27) with λ
(i)

ks
, ι̂

(i)
s to get optimal value Λo⋆

=

{l⋆, β⋆}.

Update Λo(i) := Λo⋆ and λ
(i+1)

ks
:=

β(bs )(i)

l
(b0)(i)

k

; ι̂
(i+1)
s := ι

(i)
s ;

i := i + 1.

until Convergence

is a maximum weighted matching problem with respect to

linear or square function, we use a low-complexity binary

search algorithm [23] to obtain the final solutions with lower

dimensions. Let K1 = { j, s|l
(bs )⋆

j
, β(bs )⋆ = 1}, Kuct = { j, s|ξ ≤

l
(bs )⋆

j
, β(bs )⋆ ≤ 1}, and K0 = { j, s|l

(bs )⋆

j
, β(bs )⋆ ≤ ξ} denote set

of selected variables, set of uncertain variables, set of removed

variables, respectively, where ξ is some small threshold. First,

we determine the set K1, Kuct, and K0 based on ξ. Then, we

consider to select among the uncertain variables in Kuct. By

sorting Kuct in a descending order, a loop starts by selecting

one by one variable based on their largest weights according

to the objective function. We set the value uncertain variable

to 1, and add it to K1, if it satisfies the antennas (27d)

and interference (27e) constraints. If it does not satisfy the

constrains, we add it to K0. The loop stops until reaching

the last uncertain variable or the antennas constrain is over.

Finally, K1 is kept, while K0 and Kuct are removed.

B. The Selection of Auxiliary Variable

The optimal auxiliary variable from (3⋆) is computed by

min
ϕ(t)

∑K
k=1 Yk(t)ϕk(t) +

∑S
s=1 Ds(t)ϕs+M (t) (28a)

− ν
∑K

k=1 ωk(t) f (ϕk(t)) (28b)

subject to ϕk(t) ≤ amax
k (t). (28c)

Since the above optimization problem is convex, let ϕ∗
k
(t) be

the optimal solution obtained by the first order derivative of the

objective function of (28). With a logarithmic utility function,

we have:

ϕ∗k (t) =

{
νωk (t)
Yk (t)

if k ≤ M,
νωk (t)

Yk (t)+Dk−M(t)
otherwise.

The optimal auxiliary variable is min{ϕ∗
k
(t), amax

k
(t)}.
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C. Interference Mitigation and Power Allocation

For given scheduled users, the precoder U is found by

solving (3). Finally, problem (18) is decomposed to find the

transmit power p
(b0)

k
(t) from (1⋆) that minimizes:

min
p(t)

−
∑K

k=1 Ak(t)rk(p(t)) (29a)

subject to
1

N

∑K
k=1

p
(b0 )

k
(t)

Ωk (t)
− P(b0) ≤ 0,

p
(b0)

k
(t) ≥ 0,∀ k ∈ K .

The objective function (29) is rewritten as

n(p(t)) = −
∑K

k=1 Ak(t) log
(

1 + p
(b0)

k
(t)nk(t)

)

, where

nk(t) =
l
(b0 )

k
(t)(1−τ2

k
)

1+
∑S

s=1 β
(bs )(t)ζ

(bs )

k
(t)

. The objective function

is strictly convex for p
(b0)

k
(t) ≥ 0,∀k ∈ K, and the

constraints are compact. Hence, the optimal solution

of p⋆(t) exists, the Lagrangian function is written as

L(p(t), µ0) = n(p(t)) + µ0g(p(t)), where µ0 ≥ 0 is the KKT

multiplier. The KKT conditions are

∇n(p(t))T + µ0
1
N

∑K
k=1

1
Ωk (t)

= 0. (30)

µ0

(

1
N

∑K
k=1

p
(b0 )

k
(t)

Ωk (t)
− P(b0)

)

= 0. (31)

1

N

∑K
k=1

p
(b0 )

k
(t)

Ωk (t)
− P(b0) ≤ 0, −p(t) ≤ 0, µ0 ≥ 0. (32)

Here, ∇n(p(t))T = (n′(p
(b0)

1
(t)), . . . , n′(p

(b0)

K
(t))) where

n′(p
(b0)

k
(t)) =

−Ak (t)nk (t)

1+p
(b0 )

k
(t)nk (t)

. For µ0 , 0, from (30), obtaining

p
(b0)

k
(t) = max[

AkNΩk(t)

µ0

−
1

nk(t)
, 0], (33)

from (31) and (33) we derive µ0. Finally, the optimal value of

pk(t)
(b0)⋆ is obtained with (33).

D. Queue Update

Update the virtual queues Yk(t) and Ds(t) according to (19)

and (17), and the actual queue Qk(t) in (16).

Theorem 3 is provided to show the performance analysis of

network utility maximization based on Lyapunov framework

and prove that the queues are stable.

Theorem 2: [Optimality] Assume that all queues are ini-

tially empty. For arbitrary arrival rates, the operation mode and

load balancing is chosen to satisfy (21) and the rate regime.

For a given constant χ ≥ 0, the network utility maximization

with any ν > 0 provides the following utility performance with

χ − approximation

f0 ≥ f ∗0 −
Ψ + χ

ν
,

where f ⋆
0

is the optimal network utility over the rate regime.

While the strong stability of the virtual queues and the network

queues is given by

Qk (t) ≤ νωk(t)πk + 2amax
k
, ∀t ≥ 0, ∀k ∈ K,

Yk(t) ≤ νωk(t)πk + amax
k
, ∀t ≥ 0, ∀k ∈ K,

Ds(t) ≤ νωs+M (t)πs+M + amax
s+M, ∀t ≥ 0, ∀s ∈ K .

Proof: Proof can be found in [20] and is omitted for the sake

of brevity.

E. Relaxation of Utility Function

Note that the previous discussion explains how to transform

the above non-convex program (22) as a generic convex

program. Although it can be solved by using the modern

solvers, generally it requires more computation time. In order

to reduce the computation time and speed up the optimiza-

tion convergence, we relax the log function of the objective

function (27a) by a set of linear functions. Moreover, in order

to model and solve the problem efficiently, we use YALMIP

toolbox [24], which can employ SDPT3 [25] or MOSEK [26]

as internal solver. In general, we rewrite the log function as

1 + γ(lk) ≥ erk ,

where γ(lk) is the SINR as a function of lk . By using the results

of approximation of second order cone programming [27],

[28], (34) can be approximated by a set of following linear

equations

1 + γ(lk) ≥ κ0, 1 + κ1 ≥ ‖[1 − κ1 2 + rk/2
i−1]‖2,

1 + κ2 ≥ ‖[1 − κ2 5/3 + rk/2
i]‖2,

1 + κ3 ≥ ‖[1 − κ3 2κ1]‖2,

κ4 ≥ κ2 + κ3/24 + 19/72,

1 + κj ≥ ‖[1 − κj 2κj−1]‖2, j = {5, · · · , i + 3},

1 + κ0 ≥ ‖[1 − κ0 2κi+3]‖2,

where {κj }j=0,1, · · · ,i+3, are new introduced variables, and the

accuracy of the approximation depends on i. We numerically

observe that the error accuracy is less than 10−5 when i = 10.

V. NUMERICAL RESULTS

In this section Monte Carlo simulations are carried out in

order to evaluate the system performance of our proposed

algorithm. To solve Algorithm 1, we use YALMIP tool-

box [24] to model the optimization problem with SDPT3 [25]

or MOSEK [26] as internal solver. For simulation, we con-

sider the proportional fairness utility function, i.e., f (r̄k) =

log (10−4
+ r̄k) [29]. We denote our proposed user associa-

tion algorithms for HetNet (resp. Homogeneous network) as

HetNet-Hybrid (resp. HomNet [15]). Here, HomNet [15]

refers to when the MBS serves both MUEs and SUEs without

SCs. We compare our proposed algorithm with HomNet [15]

and with the previous work [1] (HetNet-Closed Access [1]).

HetNet-Closed Access [1] case considers only joint in-band

scheduling and interference mitigation algorithm with fixed

user association scheme (SCs are configured in closed sub-

scriber group). The network performance are evaluated under

the impact of the number of SCs per km2, the number of

MBS antennas N, and the MBS transmit power levels P(b0) at

low and high frequency bands. We provide the convergence

behaviour of the proposed method and validation of the

approximation method.

A. Simulation Environments

Consider a HetNet scenario, where a MBS is located at the

center of a square area, MUEs are randomly deployed within

the coverage of the MBS (the minimum MBS-MUE distance
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TABLE I
PARAMETER SETTINGS

Path loss model [30] Values in dB Bandwidth (B)

LOS @ 28 GHz 61.4 + 20 log(d) 1 GHz
LOS @ 10 GHz 55.25 + 18.5 log(d) 100 MHz
LOS @ 2.4 GHz 17 + 37.6 log(d) 20 MHz

Parameter Values

Maximum transmit power of MBS P(b0) 41 dBm
Channel quality τ 0.1
SC antenna gain 5 dBi

Lyapunov parameter ν 2 × 106

is 35 m). The SCs are uniformly distributed and one SUE

per each SC is considered. The number of antennas at SCs

Ns is greater than two, while we assume each SC can serve

up to Nau
s = 2 UEs (including its own SUE). The path loss

is modeled as a distance-based path loss with line-of-sight

(LOS) model for urban environments [30]. We first assume

that the probability of obtaining LOS is very high to make

the performance evaluation, while the effect of other channel

models is studied later. The FD interference threshold ǫo is

set to 5 × 10−3 and the RZF parameter is α = 10−2. The data

arrivals follow the Poisson distribution with the mean rate of

1 Gbps, 100 Mbps, and 20 Mbps for 28 GHz, 10 GHz, and

2.4 GHz, respectively. The parameter settings are summarized

in Table I.

B. Ultra-Dense Small Cells Environment

To show the impact of network density, the average UE

throughput (avgUT) and the cell-edge UE throughput (cell-

edge UT) as a function of the number of SCs are shown in

Fig. 3 and Fig. 4, respectively. The maximum transmit power

of MBS and SCs is set to 41 dBm and 32 dBm, respectively8.

In Fig. 3 and Fig. 4, the simulation is carried out in the

asymptotic regime where the number of BS antennas and

the network size (MUEs and SCs) grow large with a fixed

ratio [7]. In particular, the number of SCs and the number

of SUEs are both increased from 36 to 1000 per km2, while

the number of MUEs is scaled up with the number of SCs,

such that M = 1.5 × S. Moreover, the number of transmit

antennas at MBS and SCs is set to N = 2 × K and Ns = 6,

respectively. We recall that when adding SCs we also add

one SUE per one SC that increases the network load. Here,

the total number of users is increased while the maximum

transmit power is fixed, and thus, the per-user transmit power

is reduced with 1/K , which reduces the per-UE throughput.

Even though the number of MBS antennas is increased with

K , as shown in Fig. 5 and Fig. 6, the performance of massive

MIMO reaches the limit as the number of antennas goes to

infinity. It can be seen that with increasing network load,

our proposed algorithm HetNet-Hybrid outperforms baselines

(with respect to the avgUT and the cell-edge UT) and the

performance gap of the cell-edge UT is largest (5.6×) when

the number of SC per km2 is 350, and is small when the

number of SC per km2 is too small or too large. The reason

8We reduce the maximum transmit power of MBS as compared to our
previous work [1], which used that of 43 dBm. Hence, the average UT in this
scenario is lower than [1].

is that when the number of SCs per km2 is too small, the

probability for an MUE to find a open access nearby-SC to

connect is low. With increasing the number of SCs per km2

MUEs are more likely to connect with open access nearby-

SCs to increase the cell-edge UT. However, when the number

of SCs per km2 is too large, the cell-edge UT performance of

HetNet-Hybrid is close to that of HetNet-Closed Access [1]

due to the increased FD interference. Moreover, Fig. 3 and

Fig. 4 show that the combination of Massive MIMO and FD-

enabled SCs improves the network performance; for instance,

HetNet-Hybrid and HetNet-Closed Access [1] outperform

HomNet [15] in terms of both the avgUT and the cell-edge

UT. Our results provide good insight for network deployment:

for a given target UE throughput, what is the optimal number

of UEs to schedule and what is the optimal/maximum number

of SCs to be deployed?

C. Wireless Backhaul Impact versus Number of MBS

Antennas

For a given number of UEs and SCs, we show the backhaul

impact by varying the number of MBS antennas (MIMO gain).

We also increase the number of SCs antennas, Ns , from 4 to

48. Here, we set the network area to 0.5 by 0.5 km2, and

consider 4 SCs and 8 MUEs. From the antenna theory [31],

the beamforming gain is logarithmically proportional to the

number of antennas, and thus, as the number of antennas

goes to infinity, the beamforming gain diminishes. The avgUT

and the cell-edge UT as a function of the number of MBS

antennas are shown in Fig. 5 and Fig. 6, respectively. For a

not-so-large number of MBS antennas, our proposed algorithm

HetNet-Hybrid yields higher avgUT and cell-edge UT as

compared to both baselines. For large number of antennas

the MUEs choice of associating with the near-by SCs or the

MBS yields similar payoffs, the gain of Massive MIMO by

smart beamforming saturates. Hence, our proposed algorithm

HetNet-Hybrid and HetNet-Closed Access [1] are tending to

be the same as the number of antennas grows large. In Fig. 6,

the performance of cell-edge UE throughput (cell-edge UT)

of all schemes tends to be the same, when the number of

antennas increases. Under the worst channel propagation of

the cell-edge users, the performance of cell-edge users could

not improve further, since all the network resources (transmit

power and antennas) need to be shared among all UEs in order

to maximize the total network utility.

D. Wireless Backhaul Impact versus Transmit Power Levels

at different Frequency Bands

We also report the avgUT and the total network utility

(TNU) along with the average queue length (“dashed line”) as

a function of the MBS maximum transmit power at different

frequency bands (28 GHz, 10 GHz, and 2.4 GHz) in Fig. 7

and Fig. 8, respectively. In particular we consider the number

of SCs is S = 45 per km2, and the number of MUEs M is

twice the number of SCs S. The number of MBS antennas is

set to N = K, while the number of antennas at SCs Ns + 1 is

set to 5. Due to insufficient number of antennas at the MBS

to simultaneously serve all MUEs and SCs and to alleviate
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Fig. 3. Achievable avgUT versus number of small cells per km2,
S, when scaling K = 2.5 × S, N = 2 × K.
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Fig. 4. Achievable cell-edge UT versus number of small cells per
km2, S, when scaling K = 2.5 × S, N = 2 × K.
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Fig. 5. Achievable avgUT versus N, when K = 12.
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Fig. 6. Achievable cell-edge UT versus N, when K = 12.

the interference, offloading from the MBS to SCs helps to

associate more UEs to the BSs. In this case the TNU is low,

since the number of MBS antennas is reduced by half as

compared to the impact of MBS antennas cases. As decreasing

the maximum transmit power at the MBSs, HetNet-Hybrid

outperforms HetNet-Closed Access [1], there is an inflexion

point where the performance of HetNet-Hybrid is close to that

of HetNet-Closed Access [1] when the transmit power level

is 25 dBm, 31 dBm, and 37 dBm at 28 GHz, 10 GHz, and 2.4

GHz, respectively. It can be observed that at higher frequency

bands FD-enabled SCs work better at open access mode than

closed access mode under the same transmit power budget.

When the maximum MBS transmit power is too small, the per-

formance of HetNet-Hybrid and HetNet-Closed Access [1]

is very closed to that of HomNet [15].

Moreover, in Fig. 9 we report the avgUT versus the ratio

of number of MUEs to number of SCs, M/S, under different

sets of SCs. Here, the number of SCs per km2 is set to 45,

100, and 400 representing the network density from sparse to

dense, while the ratio M/S is varying from 0.5 to 5. It can

be observed that under the same total number of UEs, i.e.,

K = 600, deploying denser number of SCs with S = 400 and

M = 200 obtains avgUT of 0.566 Gbps, which is higher than

0.3169 Gbps for a system with less number of SCs S = 100

and M = 500.

We have used the LOS channel model to make the perfor-

mance evaluation such that the probability of obtaining LOS

is very high. We now report the impact of channel models

on massive MIMO system operating at 28 GHz mmWave

frequency band. Beside the LOS and non-LOS (NLOS) chan-

nel states, there exists another channel state called blockage

state, which is modeled as a distance-dependence probability

state where the channel is either LOS or NLOS by using

the stochastic model [32]. In Fig. 10, the performance gap

between LOS and blockage channel models is shown versus

the maximum transmit power.

E. Convergence

In Fig. 11 we show the convergence behaviour of our

approximated algorithm based on the SCA method when de-

ploying our HetNet-Hybrid algorithm. While the convergence

analysis is provided in Appendix A. Unlike other works, we

plot the cumulative distribution of the number of iterations at

which the Algorithm 1 converges for all t. We observe that

the probability that the number of iterations takes on a value

less than or equal to 4 is 90%, which implies that our proposed

algorithm only needs few iterations to converge.

We then validate the accuracy of the closed-form expression

for the data rate by comparing the Ergodic sum rate R, which is

obtained by using the SINR from (7) and (8) from simulations

of i.i.d. Rayleigh block-fading channels, to the approximated

sum rate R̃, which obtained by using SINR from (13) and (14).

The sum rate is defined as the total sum of all user data rates.

We define the absolute error as R̃−R

R̃
, then we plot the absolute

error versus the number of MBS antennas, while the number of

users is fixed to K = 12. As can be seen in Fig. 12, the absolute
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Fig. 7. Achievable avgUT versus P(b0) at 28, 10, and 2.4 GHz,
when S = 45 per km2, K = 3 × S, N = K.
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error decreases as increasing number of MBS antennas. It

means that closed-form expressions is more accurate when

number of MBS antennas is higher than number of users,

i.e., N ≫ K. The impact of the Lyapunov parameter ν on

the achievable average network utility and queue backlog has

been showed in our previous work [1]. It has been observed

that the network utility is increasing with O(1/ν), while the

network backlog linearly increases with O(ν). Hence, choosing

the value of ν will result in an [O(1/ν),O(ν)] utility-queue

backlog tradeoff, which leads to an utility-delay tradeoff [11].

F. Effect of Pilot Training and Channel Aging

In this subsection we study the effect of pilot training

and channel aging in 5G Massive MIMO system as we

consider a large number of antennas and users. We assume

that each coherence interval consists of three phases: uplink

(UL) training, DL payload data transmission, and UL payload

data transmission. During the UL training phase, the users send

pilot sequences to the BSs and each BS estimates the channels.

The estimate channels are used to precode the transmit signals

in the DL. Let Tci and τtd denote the length of the coherence

interval and the UL training duration, where the subscripts ci

and td stand for “coherence interval” and “training duration”,

respectively. Basically, we have the length of pilot sequences

is less than the length of the coherence interval, i.e., τtd < Tci.

If the length of pilot sequences τtd is greater or equal to the

number of user K, τtd ≥ K, to achieve the estimate channel the

pilot assignment is chosen pairwisely orthogonal. However,

if τtd < K, then channel estimate is degraded due to non-

orthogonal pilot signals that leads to the pilot contamination

effect. In this work we consider the imperfect CSI, which is

due to channel estimation errors during the UL training and the

coherence interval Tci, while the channel reciprocity is perfect

for UL and DL. In addition, the channel aging is also a very

important issue needed to be addressed in Massive MIMO

systems, and the Massive MIMO systems are most suitable

for static users with not-too-fast movement. For simplicity,

we consider the problem of channel aging by the impact of

channel estimate error factor τk as shown in (1). We next

show the relation between the channel estimate error and

the length of pilot sequences. Assume that each user will

transmit the orthogonal pilot signal to the MBS during the

UL training in which τtd ≥ K and the MBS receives the pilot

signals simultaneously. Follow the analysis in [15], the channel

estimate error is τ2
k
=

1
1+τtdρ

ul , where ρul is defined as the UL

signal-to-noise ratio of user k, ρul
= pul

k
/σ2

k
, here pul

k
is the

UL transmit power of user k.

Since our work considers only the performance of the DL,

we then simplistically assume that the transmission time for

DL and UL during the coherence time is identical9. Therefore,

the closed-form expression of UT taking into account the

9Due to different traffic model for DL and UL, the ratio configuration for
DL and UL transmission time will be varied.
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impact of pilot training, coherence interval, and channel aging

is

rci
k (Λ|Θ)

a.s.
−−−→ B

(1 − τtd/Tci)

2
log

(

1 +
l
(b0)

k
p
(b0)

k
(1 − 1

1+τtdρ
ul )

1 +
∑S

s=1 β
(bs )ζ

(bs )

k

)

,

where B is the channel bandwidth. To set up the simulation

parameters for this subsection all the transmit powers are

normalized by dividing by the thermal noise power σk . At

28 GHz we set the coherence interval to Tci = 350 with the

coherence bandwidth of 10 MHz and the coherence time of

35 µs.

We show the impact of pilot training on the total network

utility of our proposed HetNet-Hybrid as compared to HomNet

at 28 GHz. To do that, we vary the length of pilot sequences

from 20 to 100, while the number of pilot training sequence

is greater than number of users. As can be seen in Fig. 13,

with increasing the pilot training duration, the total network

utility for the DL is gradually degraded.

VI. CONCLUSION

We have studied the NUM by considering the problem of

joint load balancing and interference mitigation taking into

account the dynamic wireless backhaul, traffic demand, and

imperfect CSI in 5G HetNets. The problem of load balancing

has taken into account the wireless backhaul capacity in order

to reduce the load of the MBS while avoiding the bottleneck

problem at the FD-enabled SCs. By utilizing a very large

number of antennas at MBS we design a hierarchical precoder

in order to mitigate both cross-tier and co-tier interference in

HetNets. We aim to maximize a network utility function of the

total time-average data rates subject to the backhaul dynamic

and network stability in the presence of imperfect CSI. We

have exploited from RMT to obtain a closed-form expression

of the original problem in a large system regime. By applying

the stochastic optimization, the problem is then decoupled

decoupled into dynamic scheduling of MUEs, backhaul pro-

visioning of in-band FD-enabled SCs, and offloading UEs to

in-band FD-enabled SCs as a function of interference, number

of antennas, and backhaul loads. We have provided the per-

formance analysis and validation of our proposed algorithm,

which states that there exists an [O(1/ν),O(ν)] utility-queue

backlog tradeoff. Via numerical results, we have show that our

proposed algorithm outperforms the baselines with respect to

the number of SCs per km2, the number of MBS antennas, and

the MBS transmit power levels at different frequency bands.

Interestingly, we find that even at lower frequency band the

performance of open access small cell is close to that of closed

access at some operating points, the open access full-duplex

small cell still yields higher gain as compared to the closed

access at higher frequency bands. With increasing the small

cell density or the wireless backhaul quality, the open access

full-duplex small cells outperform and achieve 5.6× gain in

terms of cell-edge performance as compared to the closed

access ones in ultra-dense networks with 350 small cell base

stations per km2.

APPENDIX A

CONVERGENCE ANALYSIS FOR ALGORITHM 1

Next, we establish a convergence result for Algorithm 1

based on the SCA method, since the original problem (22)

has a non-convex objective function (22a) subject to non-

convex constraint (22f). By using the SCA method, we replace

the original nonconvex problem (22) by a strongly convex

problem (27). We will briefly describe the convergence here
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for the sake of completeness since it was studied in [21],

[22]. We assume that the Algorithm 1 obtains the solution

of problem (27) at iteration i + 1 th. The updating rule in

Algorithm 1 ensures that the optimal values Λo(i), λ
(i)

ks
, and

ι̂
(i)
s at iteration i satisfy all constraints in (27) and are feasible

to the optimization problem at iteration i + 1. Hence, the

objective obtained in the i + 1st iteration is less than or equal

to that in the in the ith iteration, since we minimize the convex

function. In other words, Algorithm 1 yields a non-increasing

sequence. Due to antenna and interference constraints, the

objective is bounded, and thus Algorithm 1 converges to

some local optimal solution of (27). Moreover, Algorithm 1

produces a sequence of points that are feasible for the original

problem (22) and this solution is satisfied the KKT condition

of the original problem (22) as discussed in [21], [22].

APPENDIX B

PERFORMANCE ANALYSIS

Theorem 3 is provided to show the performance analysis of

network utility maximization based on Lyapunov framework

and prove that the queues are stable.

Theorem 3: [Optimality] Assume that all queues are ini-

tially empty. For arbitrary arrival rates, the operation mode and

load balancing is chosen to satisfy (21) and the rate regime.

For a given constant χ ≥ 0, the network utility maximization

with any ν > 0 provides the following utility performance with

χ − approximation

f0 ≥ f ∗0 −
Ψ + χ

ν
,

where f ⋆
0

is the optimal network utility over the rate regime.

Proof: To prove the Theorem 3, we first prove the queues are

bounded. Let πk denote the largest right derivative of f (r̄k),

the Lyapunov framework can guarantee the following strong

stability of the virtual queues and the network queues.

Qk (t) ≤ νωk(t)πk + 2amax
k , (34)

Yk(t) ≤ νωk(t)πk + amax
k , (35)

Ds(t) ≤ νωs(t)πs + amax
s+M . (36)

Here we first prove the bound of the virtual queues, and then

the bound of the network queues are proved similarly. Suppose

that all queues are initially empty, this clearly holds for t = 0.

Suppose these inequalities hold for some t > 0, we need to

show that it also holds for t + 1.

From (17) and (19), if Yk(t) ≤ νωk(t)πk and Ds(t) ≤

νωs(t)πs then Yk(t + 1) ≤ νωk(t)πk + amax
k

and Ds(t + 1) ≤

νωs(t)πs + amax
s+M

and the bound holds for t + 1 due to

the arrival rate constraint rk(t) ≤ amax
k

and rs(t) ≤ amax
s .

Else, if Yk(t) ≥ νωk(t)πk and Ds(t) ≥ νωs(t)πs; since

the value of auxiliary variables is determined by maximized
∑K

k=1 Yk(t)ϕk(t) +
∑S

s=1 Ds(t)ϕs+M (t) − ν f0(ϕ(t)), ϕ(t) is then

forced to be zero. From (19) and (17), Yk(t + 1) and Ds(t + 1)

are bounded by Yk(t) and Ds(t), respectively. Since the virtual

queues are bounded for t, we have the following inequalities

Yk(t + 1) ≤ Yk(t) ≤ νωk(t)πk + amax
k , (37)

Ds(t + 1) ≤ Ds(t) ≤ νωs(t)πs + amax
s+M . (38)

Hence, the bounds of the virtual queues hold for all t.

Similarly, we show that the network queue (34) holds for all

t. It clearly holds for t = 0. We assume that (34) holds for

t > 0, we now prove it holds for t + 1. Note that from (16)

and (19) we have Qk (t + 1) ≤ Hk(t + 1) + ak(t). Moreover,

we just proved that Hk(t + 1) ≤ νωk(t)πk + amax
k

then we have

Qk(t + 1) ≤ νωk(t)πk + 2amax
k

and the network bound holds

for t + 1.

We have established the network bounds, we are going

to show the utility bound. Since our solution of (18) is to

minimize the Lyapunov drift and the objective function every

time slot t, we have the following inequality

∆(Σ(t)) − νE[ f0(ϕ(t))] ≤

Ψ − νE[ f0(ϕ
∗(t))] +

∑K
k=1 Qk (t)E

[

ak(t) − r∗
k
(t)|Σ(t)

]

+

∑K
k=1 Yk(t)E

[

ϕ∗
k
(t) − r∗

k
(t)|Σ(t)

]

+

∑S
s=1 Ds(t)E

[

ϕ∗
s+M

(t) − β(bs )∗(t)r
cs∗
s (t)|Σ(t)

]

,

where ϕ∗(t), β(bs )∗(t), and r∗
k
(t) are the optimal values of the

problem (21). Since the queues are bounded, for given χ ≥ 0,

obtaining

∆(Σ(t)) − νE[ f0(ϕ(t))] ≤ Ψ − νE[ f0(ϕ
∗(t))] + χ.

By taking expectations of both sides of the above inequality

and choosing r∗(t) = ϕ∗(t), it yields for all t ≥ 0,

E
[

L(Σ(t + 1))−L(Σ(t))|Σ(t)
]

− νE[ f0(ϕ(t))] ≤

Ψ + χ − νE[ f0(r
∗(t))].

By taking the sum over τ = 0, . . . , t − 1 and dividing by t,

(using the fact that f0(r
∗(t)) = f ∗

0
), yielding

E
[

L(Σ(t + 1)) − L(Σ(0))|Σ(t)
]

t
−
ν

t

t−1∑

τ=0

E[ f0(ϕ(t))] ≤

Ψ + χ − ν f ∗0 .

(39)

By using the fact that L(Σ(t + 1)) ≥ 0 and L(Σ(0)) = 0,

and applying Jensen’s inequality in the concave function and

rearranging term yields

f0(ϕ(t)) ≥ f ∗0 −
Ψ + χ

ν
.

Since the network utility function is a non-decreasing concave

function, the auxiliary variable is chosen to satisfy rk(t) ≥

ϕk(t). Hence f0(r(t)) ≥ f0(ϕ(t)) ≥ f ∗
0
−
Ψ+χ

ν
, which means

that the solution is closed to the optimal as increasing ν. Which

completes the proof of the Theorem 3. Hence, there exists an

[O(ν),O(1/ν)] utility-queue length tradeoff, which leads to an

utility-delay balancing.

We now prove that all queues are stable by using the

Definition 3, the bound (39) can be rewritten as

∆(Σ(t)) ≤ C,

where C is any constant that satisfies for all t and Σ(t): C ≥

Ψ + χ − ν( f ∗
0
− E[ f0(ϕ(t))]). By using the definition of the

Lyapunov drift and taking an expectation, obtaining

E
[

L(Σ(t))
]

≤ Ct.
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As the definition of the Lyapunov function L(Σ(t)) we have

E[Qk(t)]
2, E[Hk(t)]

2,E[Ds(t)]
2 ≤ 2Ct.

Dividing both sides by t2, and taking the square roots shows

for all t > 0:

E[Qk(t)]

t
,
E[Hk(t)]

t
,
E[Dk(t)]

t
≤

√

2C

t
.

As t → ∞, taking the limit, we prove the queues are stable.
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