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Abstract— This paper presents a novel corner-based force
estimation method to monitor tire capacities required for the
traction and stability control systems. This is entailed for more
advanced vehicle stability systems in harsh maneuvers. A novel
estimation structure is proposed in this paper for the longitu-
dinal, lateral, and vertical tire forces robust to the road friction
condition. A nonlinear and a Kalman observer is utilized for
estimation of the longitudinal and lateral friction forces. The
stability and performance of the time-varying estimators are
explored and it is shown that the developed integrated structure
is robust to model uncertainties and does not require knowledge
of the road friction. The proposed method is experimentally
tested in several maneuvers on different road surface conditions
and the results illustrate the accuracy and robustness of the
state estimators.

I. INTRODUCTION

Advanced vehicle stability control and active safety sys-
tems require dependable vehicle states, which may not be
readily accessible by measurements, thus needing to be
estimated. One major practical issue that has dominated
the vehicle state estimation field is a robust tire friction
force estimation. Several studies first have focused on road
friction estimation and identification of tire parameters, in
order to estimate longitudinal and lateral tire forces. Alvarez
et al. [1] used a parameter adaptation law, a Lyapunov-
based state estimator, and the dynamic LuGre model [2] to
estimate the road friction and longitudinal forces during an
emergency brake condition. Employing the equivalent output
error injection approach, Patel et al. proposed a second-order
and third-order sliding mode observers in [3] to estimate
the friction coefficient and consequently tire forces during
brake conditions on the pseudostatic LuGre [4], dynamic
LuGre, and parameter-based friction [5] models. Ghandour
et al. [6] developed a force and road friction estimation
structure based on an iterative quadratic minimization of
the error between the developed lateral force estimator and
the tire/road interaction Dugoff model. Rajamani et al. [7]
suggest a recursive least square for road identification and a
nonlinear observer for longitudinal force estimation having
wheel torques and accurate slip-ratio data from GPS. These
methods rely on simultaneous road condition identification,
which may impose undesirable estimation error produced by
the time-varying model parameters.
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Estimation of longitudinal and lateral forces independent
from the road condition may be classified on the basis
of wheel dynamics and planar kinetics into the nonlinear,
sliding mode, Kalman-based, and unknown input observers.
A force estimation method based on the steering torque
measurement is introduced in [8], which requires additional
measurements. Hsu et al. provide a nonlinear observer to
estimate tire slip angles as well as the road friction condition
in [9] with steering torque measurement. Baffet et al. [10]
proposed a cascaded structure for estimation of the tire forces
and vehicle side-slip angle with a sliding mode observer and
extended Kalman Filter (EKF). Doumiati et al. [11] estimate
tire forces with EKF and UKF. In their approach, longitudinal
and lateral force evolution is modelled with a random walk
model. They assume that longitudinal and lateral tire forces
and force sums on each track are associated according to
the dispersion of vertical forces. Cho et al. [12] estimate
lateral tire forces using the planar kinetics and a random-
walk Kalman filter. A Kalman-based unknown input observer
(UIO) is developed by Wang et al. [13], [14] for longitudinal
and lateral force estimation with the wheel dynamics, planar
kinetics, measured wheel speeds, wheel torques, and the yaw
rate. Using UKF and the wheel dynamics, Hashemi et al.
[15] developed a longitudinal force estimator robust to the
road friction changes and uncertainties in the model such
as i.e. effective rolling radius, measured wheel speed and
torques. Similarly, employing UKF for an antilock braking
control system, Sun et al. [16] propose a nonlinear observer
robust to the road friction for the longitudinal force and slip
ratio estimation during brake. Their approach is tested during
brake maneuvers on different road conditions.

In the following, a corner-based methodology for estima-
tion of the longitudinal forces based on a nonlinear observer
is first discussed, then an adaptive Kalman-based lateral
force estimation is proposed in Section III. Vertical force
estimation is also provided in Section III. Section IV presents
experimental and simulation results used to corroborate the
approach on different road conditions and in various ma-
neuvers with high and low longitudinal/lateral excitations.
Finally, conclusions are provided in Section V.

II. PROBLEM STATEMENT

Tire forces exhibit the vehicles capacity to perform re-
quested maneuvers and provide information about the stabil-
ity of the vehicle. Since tire force calculation requires road
friction information, even accurate slip ratio/angle informa-
tion from high precision GPS and high fidelity tire model will
not lead to tire forces at each wheel. Therefore, estimation
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of the longitudinal, lateral, and vertical tire forces using
measurements available on current production vehicles, yet
robust to different road conditions has been the main focus of
related literature in recent years, and the topic of this study.

Longitudinal force estimation significantly contributes to
model-based velocity estimators [17] and traction control
systems. Neglecting the bearing’s viscous damping, one can
write the wheel dynamic equation as follows with i ∈ {f, r}
(front and rear axles) and j ∈ {L,R} (left and right tires):

FxiJ =
1

Re
(TtiJ − Iwω̇iJ) + Ωx, (1)

where Re is the wheel effective rolling radius, Tt represents
the total effective torque on the wheel, Fx is the longitudinal
tire force, ω̇ is the wheel acceleration, Iw is the wheel’s
moment of inertia and Ωx represents uncertainties in the
model including the effective radius, torque, etc.

Model-based stability control systems and lateral velocity
estimators use lateral forces at each corner. The sum of
longitudinal/lateral forces at each axle i.e. Fxi =

∑
J

FxiJ

and Fyi =
∑
J

FyiJ are utilized for the longitudinal and

lateral dynamics:

mǎx = Fxf cos δ − Fyf sin δ + Fxr + Ωfx

mǎy = Fyf cos δ + Fxf sin δ + Fyr + Ωfy (2)

in which δ is the steering angle (with parallel steering in
front wheels) and Ωfx ,Ωfy represent longitudinal and lateral
uncertainties due to the acceleration measurement, geometry,
and forces. The measured longitudinal and lateral acceler-
ations include the kinematics of the vehicle’s CG Vx, Vy ,
vehicle’s body pitch/roll angles θv, φv , and road grade/bank
angles θr, φr. Therefore, acceleration measurements ax, ay
are corrected with the road and body’s roll/pitch angles as
ǎx = ax−g sin θt and ǎy = ay−g sinφt where θt = θv+θr
and φt = φv + φr.

The derivative of the yaw rate r is also related to the sum
of forces at each axles as:

Iz ṙ = (Fyf cos δ + Fxf sin δ)df

+ (F̄xf cos δ − F̄yf sin δ)
Trf
2
− Fyrdr + F̄xr

Trr
2

+ Ωr,

(3)

in which Trf , Trr are the length of front and rear tracks
respectively, the distances from the front and rear axles’ to
CG are denoted by df , dr, and F̄xi = FxiR − FxiL , F̄yi =
FyiR − FyiL . Uncertainties due to the CG location, yaw
rate measurement, and forces are represented by Ωr. The
effects of the vehicle body’s vertical motion and the roll/pitch
angles are not commonly considered in the existing vertical
force estimation methods [11], [12]. To tackle this issue,
the vertical force estimator module is developed in this
paper using lateral and longitudinal vehicle dynamics and
incorporation of the vehicle angles φv, θv from [18]. Normal
forces at each axle/tire and the longitudinal, lateral, and

vertical components of the accelerations in the vehicle chas-
sis coordinates, i.e., ãθx, ãθz and ãφy, ãφz are schematically
illustrated in Fig. 1.
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Fig. 1: (a) pitch model (b) roll model

In the following section an estimation structure robust to
the road condition changes is introduced and experimentally
tested for tire forces. This estimation structure can be utilized
in any vehicle’s active safety system or model-based velocity
estimator.

III. INTEGRATED FORCE ESTIMATION MODEL

The developed longitudinal and lateral force observers use
accelerations, wheel speed, and wheel torques to estimate
the tire forces at all four corners without any road friction
data or any limiting assumption. Vertical forces are also
estimated using vehicle body dynamics, the load transfer,
and the measured accelerations.

A. Longitudinal force estimation

The corner-based estimation approach proposed in this
section for the longitudinal force estimation, uses a PID
state observer [19]–[21] that has also been used in other
applications. The longitudinal force estimate is expressed as:

F̂xiJ =
TtiJ − Iwω̇iJ

Re
− k1ω̃iJ + k3

∫
F̃xiJdt (4)

where k1, k3 are design parameters. The estimated wheel
speed ω̂ at each corner iJ is described as:

˙̂ωiJ =
1

Iw
(TtiJ −ReF̂xiJ + k2

∫
ω̃iJdt+Rek3

∫
F̃xiJdt)

(5)

in which k2 is a design parameter, ω̃iJ = ωiJ − ω̂iJ , and
F̃xiJ = FxiJ−F̂xiJ is the longitudinal force estimation error.

Theorem 1: The error dynamics for the longitudinal esti-
mator (4) on the wheel dynamics with time-varying param-
eter ωiJ is exponentially stable.

Proof: : Subtracting the longitudinal force (1) from the
estimated longitudinal force (4) leads to the estimation error
F̃xiJ . This force estimation error can be described as F̃xiJ =
−k3

∫
F̃xiJdt+k1ω̃iJ +Ωx. The time derivative of the error

dynamic yields ˙̃FxiJ = Af F̃xiJ + Bf ˙̃ωiJ + Ω̇x with Af =



−k3 and Bf = k1. The discretized form of the longitudinal
force error dynamics is:

˙̃FxiJk+1
= Afd F̃xiJk +Bfd ˙̃ωiJk + Ω̇xk (6)

where Afd , Bfd are the discretized state and input matrices.
Remark 1: In general, discretization of the continuous-

time system ẋ = Acx + Bcu with the output y = Ccx +
Dcu is done by the Step-Invariance method [22], because
of its precision and response characteristics. Input to the
continuous-time system is the hold signal uk = u(tk)
for a period between tk ≤ t < tk+1 with the sample
time Ts. Then, the discrete-time system xk+1 = Adxk +
Bduk, yk = Cdxk + Dduk has the output matrices Cd =
Cc, Dd = Dc and state/input matrices Ad = eAc(t)Ts , Bd =∫ Ts

0
eAc(t)τBc(t)dτ .

Substituting F̂xiJ from (4) in (5), one can rewrite:

˙̂ωiJ = ω̇iJ +
1

Iw
(Rek1ω̃iJ + k2

∫
ω̃iJdt). (7)

The deviation of the estimated wheel speed from the mea-
sured one is denoted by ω̃ and incorporated for the force
estimation as in (4). Subtracting the estimated wheel speed
(5) from the wheel speed by the wheel dynamics (1) results
in Iw ˙̃ωiJ = −ReF̃xiJ +ReΩx − k2

∫
ω̃iJ −Rek3

∫
F̃xiJdt.

Taking time derivative and replacing the error dynamics
˙̃FxiJ = −k3F̃xiJ +k1

˙̃ωiJ + Ω̇x leads to Iw ¨̃ωiJ +Rek1
˙̃ωiJ +

k2ω̃iJ = 0 which is in the discretized state space form:

xwk+1
= Awdxwk , (8)

with states xw = [ω̃ ˙̃ω]T . The discretized state matrix is
Awd = eAwTs where:

Aw =

[
0 1
−k2
Iw

−Rek1
Iw

]
. (9)

The matrix Aw is Hurwitz and (9) is exponentially stable
given k1, k2 > 0, therefore, xw → 0 (i.e. ω̃iJ → 0 and
˙̃ωiJ → 0). This means that the estimation error dynamics
(6) changes to F̃xiJk+1

= Afd F̃xiJk + Ω̇xk that is an
exponentially stable dynamic for ∀k3 > 0 and has attenuation
for uncertainties with the gain 1

k3
.

B. Lateral force estimation

Longitudinal forces at each corner i.e. FxiJ are assumed
to be available from (4) in the previous subsection. Set
of equations (3) together with the longitudinal and lateral
dynamics can be solved for the lateral forces FyiJ at each
corner with the assumption of lateral force distribution based
on the normal forces, but this may not address maneuvers in
which road friction under each tire is different. To resolve
this, a method for the lateral force estimation is proposed in
this section that uses longitudinal forces and accelerations
ax, ay and the yaw rate r measurements from a 3-axis IMU.

The set of equations (3) can be rewritten in the following
lateral force estimator with states x = [Fyf Fyr F̄yf ]T

and output (measurement) y = [ǎx ǎy r]T :

ẋ = Ayx + Ωy,

y = C(δ)x + uy + Γy (10)

where Ay = 03×3 and uncertainties in the process and
measurements are denoted by Ωy and Γy . The output matrix
C(δ) and uy are defined as:

C(δ) =

−
1
m sin δ 0 0

1
m cos δ 1

m 0
1
Iz

cos δdf − 1
Iz
dr

1
2Iz

sin δTrf

 ,

uy =


1
m (Fxf cos δ + Fxr)

1
mFxf sin δ

1
Iz

(Fxf sin δdf + F̄xf cos δ
Trf

2 + F̄xr
Trr
2 )

 , (11)

The matrix C(δ) is time-varying and physically bounded
(because of the steering angle and its derivative).

Stability of the estimator: Observability is a sufficient
condition for implementation of an optimal variance filter
(such as a Kalman estimator). Therefore, a Kalman-based
observer can be employed on system (10) with the discretized
form of:

xk+1 = Aykxk + Ωyk

y = Ckx + uyk + Γyk, (12)

which have the noise covariances Qyk =
E[Ωyk,Ωyk

T ], Ryk = E[Γyk,Γyk
T ] for the model

and measurements, respectively. Process and measurement
noises are assumed to be uncorrelated E[Ωyk,Γyk

T ] = 0
and have zero mean E[Ωyk] = E[Γyk] = 0;∀k ∈ N.

The discrete-time Kalman observer suggests the following
prediction with correction to estimate the states defined by
x̂k+1|j , E[xk|yj ] using a sequence of measurements yj :

x̂k+1|k = Aykx̂k|k−1 +Kk(yk − Ckx̂k|k−1), (13)

where the optimal Kalman gain is Kk =
AykPk|k−1C

T
k (CkPk|k−1C

T
k +Ryk)−1 and error covariance

Pk+1|k , cov(xk+1− x̂k+1|k) forms a discrete time-varying
Riccati equation (14) for both zero and non-zero state
initialization x̂0|−1 = E[x0]:

Pk+1|k = AykPk|k−1A
T
yk +Qyk −KkCkPk|k−1A

T
yk, (14)

where the state covariance is initialized as P0|−1 ,
cov(x0) = E

[
(x0 − x̂0|−1)(x0 − x̂0|−1)T

]
. The estimation

error is defined by ek+1|j , xk+1 − x̂k+1|j , which yields:

ek+1|k = (Ayk −KkCk)ek|k−1 −KkΩyk + Γyk. (15)

The observability matrix for the system (10) can be written
as [23]:

On = [τ1 τ2... τn]T

τ1 = C, τi+1 = τiAy(t) + τ̇i, (16)

Observability of the system (10) is confirmed by holding the
full rank condition rank(O3) = 3 for the operating regions
of the steering angle and its time derivatives. Therefore, the



presented model-based estimation is stable, and errors of the
state mean have bounded variance for zero and non-zero
initial covariances.

C. Vertical force estimation

Estimation of the vertical forces at each corner is ad-
dressed in this subsection using lateral and longitudinal vehi-
cle dynamics and the sprung mass angles. The sprung mass
roll and pitch angles φv, θv are not achievable by integration
over the roll and pitch rate signals φ̇m, θ̇m because of sensor
drift. Rehm provided a linear observer with low-pass filtering
in [18] to estimate the vehicle body’s roll/pitch angles as
˙̂
φv = φ̇m + Lφeφ,

˙̂
θv = θ̇m + Lθeθ by compensation over

the error between the filtered estimates and the stationary
roll/pitch values i.e. eφ, eθ and the observer gains Lφ, Lθ.

The longitudinal and vertical acceleration components of
the longitudinal dynamics are defined as ãθx = ax cos θv +
az sin θv and ãθz = az cos θv − ax sin θv where ax, az are
the measured longitudinal and vertical accelerations by an
IMU attached to the sprung mass, which are affected by the
kinematics of the vehicle’s CG, vehicle pitch angle θv , and
the road grade angle θr. Normal forces at front and rear
axles, thus can be calculated by:

Fzf = − m

(df + dr)
(hCGãθx − drãθz)

Fzr =
m

(df + dr)
(hCGãθx + df ãθz), (17)

where the height of the vehicle’s center of gravity is hCG,
and dwb = df + dr is the wheel base. Similarly, the lateral
and vertical acceleration components of the lateral dynamics
are defined by ãφy = ay cosφv + az sinφv and ãφz =
az cosφv − ay sinφv in which ay is the measured lateral
acceleration by IMU, which contains the kinematics of the
vehicle’s CG, vehicle roll φv angle, and the road bank angle
φr. Therefore, using (17) and defining equivalent masses at
each axle mi =

Fzi
g , i ∈ {f, r} (front and rear axles), normal

forces at each corner become:

FziL =
mi

Tri

[
ãφz(

Tri
2
− hRC sinφv)− ãφyhCG

]
FziR =

mi

Tri

[
ãφz(

Tri
2

+ hRC sinφv) + ãφyhCG

]
, (18)

in which, the left and the right sides are denoted by L,R and
hrc is the height of the roll center. The proposed approach
is experimentally validated on various road conditions using
a full size test vehicle.

IV. EXPERIMENTS AND SIMULATIONS

Experimental and simulation results are presented in this
section to validate the proposed approach for the tire force
estimation robust to the road friction changes. Road tests
are conducted on an instrumented vehicle with four inde-
pendent wheel drive. The vehicle specification are: mass
m = 2275[kg], moment of inertia around yaw axis Iz =
4650[kg.m2], wheel moment of inertia Iw = 1.7[kg.m2],
front/rear axles to CG df = 1.42, dr = 1.43[m], front/rear

track widths Trf = 1.62, Trr = 1.56[m], CG and roll axis
heights hCG = 0.647, hRC = 0.54[m], and tires effective
rolling radius Re = 0.346[m].

The estimation modules require longitudinal and lateral
accelerations, yaw rate, wheel speed as well as the wheel
torques, which are measured using an IMU, regular ABS
wheel speed sensors, and electric actuators respectively.
Measured signals are communicated using a CAN-bus. The
sampling time for the experiment is set to be Ts = 0.005[s].
Real-time acquisition and processing of sensory information
and the developed algorithm is done using the dSPACE R©
MicroAutobox.

Identified as hard driving conditions for evaluating state
estimators or controllers, acceleration-in-turn (AiT) has been
conducted on dry and slippery road conditions in the CarSim.
The developed force estimators are tested in the CarSim
model and the outcomes (Estimation) are compared in Fig. 2
with the measured tire forces by the CarSim (Measurement,
CarSim) on dry and slippery roads. Accelerator is applied to
100% at t = 2[s] and continued to t = 4[s]. It is released
between 4 and 6[s] and pushed up to 100% again as a step
signal till t = 11[s], then it is linearly reduced to zero at
t = 15[s]. A steering angle δsw = 1[rad] is imposed between
t = 2− 12[s] as well and the steering ratio is rδ = 16.5.
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Fig. 2: Estimation results, AiT on dry and slippery roads

The fluctuations observed in the force profile curves ex-
isting in the CarSim results are attributed to the requested
acceleration with high magnitude.

A harsh lane change (LC) maneuver is performed on a
wet surface with µ ≈ 0.45 to evaluate the proposed force
estimation approach in combined-slip conditions on the test
platform vehicle. The experimental results of the rear left
wheel are demonstrated in Fig. 3. The Effective torque Ttrj
and the wheel speed ωrj of the rear wheels are also depicted
in Fig. 3.

The selected gains for these road experiments are k1 =
3.41, k2 = 16.22 and k3 = 67.84. The suggested longitudi-
nal observer (4) also exhibits consistent results for other road
experiments such as double-lane-change (DLC) and AiT on
various road frictions as can be seen in Table I.

Performance of the lateral and vertical force estimator
on dry and slippery surfaces is examined in several road
experiments with the process and measurement noise covari-
ance matrices Qy = 0.112I3×3, Ry = 0.0182I3×3 which
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Fig. 3: AWD, lane change on wet (a) estimated F̂x at rL (b)
wheel torques (c) wheel speeds (d) steering wheel angle

change appropriately upon detection of a high-slip case.
The high-slip detection algorithm utilizes the wheel angular
acceleration at each corner to remove the outliers and detect
the large slip scenarios. The rates of the wheel speed are
then checked locally with a threshold ω̇th and the covariance
matrices change at each corner for the lateral force estimation
when the criteria |ω̇ij | ≥ |ω̇th| is met. Simulation and
experimental results confirm the validity of the approach on
dry and slippery roads.

Results of the proposed force estimator in lane change
on the dry road are presented in Fig. 4 and compared with
the measurement for the all-wheel drive (AWD) traction
configuration. The measured accelerations and yaw rate r are
also provided to show the characteristics of the maneuver.4WD, LC on dry_20140807_test012, FL wheel
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Fig. 4: Lateral and vertical force estimates, LC on a dry

A harsh steering on an icy road is done and the results of
the front left corner are illustrated for the AWD case in Fig. 5.
The maneuver ended up on a surface with packed snow
which is highly slippery itself with µ ≈ 0.3. The fluctuations
observed in the measured force profile are attributed to the
low-stick characteristics of the packed snow.
4WD, harsh steering on ice (ߤ ൎ 0.2) then packed snow_20140820_test041, FL Wheel
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Fig. 5: Force estimates, steering on ice then packed snow

The process and measurement covariance matrices
changes to Qy = 0.0362I3×3, Ry = 0.42I3×3 for very high
longitudinal slip conditions (based on ω̇ij).

Accuracy of the force and velocity estimators are evaluated
in different maneuvers with the normalized root mean square

(NRMS) of the error defined by ρe =

√∑Ns
i=1(τ̂i−τi)2/Nτ

τ̄ ,
where the estimated and measured signals are denoted by
τ̂ and τ , respectively, Nτ is the number of collected signal
samples during a driving scenario (DLC, BiT, LC etc.), and
τ̄ = max

i=1...Nτ
|τi| shows the maximum value of the measured

signal. Table I provides the NRMS and maximum values
of the vertical, longitudinal, and lateral forces in different
driving scenarios and on various road frictions.

As can be seen from Table I, the NRMS of the estimated
vertical, longitudinal, and lateral forces are less than 4.8%,
6.4%, and 7.2%, respectively, for the performed maneuvers
on dry and snowy roads. These normalized RMS of the errors
corroborate the effectiveness of the algorithm for corner-
based force estimation on dry and slippery roads.

V. CONCLUSION

The force estimators exhibit accurate performance for
the maneuver with the pure-slip characteristics (i.e. launch,
normal driving, acceleration/deceleration) as well as the
combined-slip ones (i.e. acceleration-in-turn and brake-in-
turn) on dry and slippery roads.



TABLE I: NRMS of the errors for the force estimators

Estimated
forces

BiT/Accel., snow DLC on dry
ρe[%] τ̄ [N ] ρe[%] τ̄ [N ]

FzfL 4.69 8634 2.82 1.28e+ 4
FzfR 3.17 6415 4.75 1.23e+ 4
FzrL 3.66 7093 3.31 1.03e+ 4
FzrR 2.52 6261 2.18 1.07e+ 4
FxfL 5.11 2048 4.45 4746
FxfR 5.04 2044 4.12 4039
FxrL 6.17 731 4.68 3982
FxrR 6.38 728 4.22 3979
FyfL 4.97 3171 3.10 1.01e+ 4
FyfR 6.75 1187 3.04 9977
FyrL 6.53 2746 4.08 9194
FyrR 7.16 1425 2.92 8528

The important feature of the proposed force estimator is
that it does not implement any tire model and is independent
from changes in the road friction or tire parameters due
to wear, inflation pressure, temperature, etc. In addition,
the suggested force estimators can address the cases in
which tires are on surfaces with various road frictions since
the adaptive Kalman-based lateral force estimator in (10)
is developed without any assumption on the lateral force
distribution. The proposed Kalman filter with adaptive co-
variance matrices based on the wheel rotational acceleration
can handle dry and slippery roads with ρe < 7.2% for the
lateral forces. Moreover, the longitudinal force estimator deal
with the model uncertainties using the gains k1, k2, k3 for an
appropriate pole placement and robust observer design which
leads to ρe < 6.4%.

Observed errors between the measured and estimated
forces may have several sources such as camber angle,
inaccurate inertial parameters, and uncertainties in the CG
location, which will be addressed in future.
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