
Lower Bounds and Upper Bounds for MaxSAT ⋆

Federico Heras, Antonio Morgado, and Joao Marques-Silva

CASL, University College Dublin, Ireland

Abstract. This paper presents several ways to computelowerandupper bounds
for MaxSAT based on calling a complete SAT solver. Preliminary results indicate
that (i) the bounds are of high quality, (ii) the bounds can boost the search of
MaxSAT solvers on some benchmarks, and (iii) the upper bounds computed by a
Stochastic Local Searchprocedure (SLS) can be substantially improved when its
search is initialized with an assignment provided by a complete SAT solver.

1 Introduction

Weighted Partial MaxSAT(WPMS) [3] is a well-known optimization variant of Boolean
Satisfiability (SAT) that finds a wide range of practical applications [3]. WPMS divides
the formula in two sets of clauses: Thehard clauses that must be satisfied and thesoft
clauses that can be unsatisfied with a penalty of their associatedweight.

Early complete algorithms for MaxSAT solving were based on branch-and-bound
search [3]. These algorithms perform very well oncraftedandrandominstances, but
are in general inefficient for industrial instances. An alternative approach is based on
iteratively calling a SAT solver. The most widely used approach consists on relaxing
the soft clauses and then iteratively refining upper bounds on the optimum solution
(e.g. [2]). Recent work proposed to guide the search withunsatisfiable subformulas
[3] (or cores) and is most often based on refining lower bounds (e.g. [4, 11,1]). Other
approaches refine both an upper bound and a lower bound [12]. Finally, a more recent
approach based on combiningbinary searchandcore-guided search[7] computes the
middle value between both bounds. Observe that all the aboveapproaches could benefit
from higher quality initial lower bounds and upper bounds toboost the search.

An alternative way to solve MaxSAT isstochastic local search(SLS). Such methods
are incomplete but they can find approximate solutions for problem instances. However,
SLS algorithms have a number of drawbacks. First, they are known to provide low
quality solutions (ie. upper bounds) for industrial instances. Second, they are unable to
take advantage ofpartial MaxSATinstances with hard and soft clauses.

This paper studies existing lower bounds and upper bounds based on calling a SAT
solver, presents some improvements and relate them with recent work in the field. The
empirical study shows that (i) SLS can improve its performance when initializing its
search with an assignment computed by a complete SAT solver,(ii) the new bounds
are tighter than the previous ones and finally that (iii)core-guided MaxSAT algorithms
boost their performance when enhanced with the new bounds insome benchmarks.

⋆ This work was partially supported by SFI PI grant BEACON (09/IN.1/I2618).

2 Computing Lower and Upper Bounds

In this section lower bounds (LB) and upper bounds (UB) for MaxSAT are introduced.
In what follows, standard SAT and MaxSAT definitions are introduced (e.g. [3]).

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. Aliteral is either a vari-
ablexi or its negation̄xi. A clauseC is a disjunction of literals. Anassignmentis a
set of literalsA = {l1, l2, . . . , lk}. If variablexi is assigned totrue (false) , literal
xi (x̄i) is satisfiedand literalx̄i (xi) is falsified. An assignmentsatisfiesa literal iff it
belongs to the assignment, it satisfies a clause iff it satisfies one or more of its literals
and it falsifiesa clause iff it contains the negation of all its literals. Amodelis a com-
plete assignment that satisfies all the clauses in a CNF formula ϕ. SAT is the problem
of deciding whether there exists a model for a given propositional formula. Given an
unsatisfiable SAT formulaϕ, a subset of clausesϕC whose conjunction is still unsat-
isfiable is called anunsatisfiable core(or core) of the original formula. Modern SAT
solvers can be instructed to generate an unsatisfiable core [17].

A weightedclause is a pair(C,w), whereC is a clause and theweightw is the
cost of its falsification. Weighted clauses that must be satisfied are calledmandatory
(or hard) and are associated with a special weight⊤. Non-mandatory clauses are called
soft clauses and have a weightw < ⊤. A weightedformula in conjunctive normal
form (WCNF)ϕ is a set of weighted clauses. Amodelis a complete assignmentA that
satisfies all hard clauses. Given a WCNF formula, theWeighted PartialMaxSAT is the
problem of finding a model of minimum cost.

The remainder of this section introduces the notation used to describe bound com-
putation algorithms.ϕW is the current working formula. Soft clauses may be extended
with additional variables calledrelaxation variables. The bounds may use these func-
tions:Soft(ϕ) returns the set of allsoftclauses inϕ andSAT (ϕ) makes a call to the
SAT solver which returns whetherϕ (ignoring weights) is satisfiable (SAT or UNSAT).
Without loss of generality, this paper assumes that the input formula has a model.

2.1 Lower Bounds

Consider Algorithm 1. Letλ be the lower bound, initiallyλ = 0. A SAT solver is
iteratively called while the formula is unsatisfiable. For each coreϕC , the minimum
weightmin(ϕC) among the soft clauses is computed, the lower bound is updated as
λ = λ +min(ϕC) and the weight of the soft clauses inϕC is decreased bymin(ϕC).
Besides, each soft clause that reaches a weight of 0 is removed from the working for-
mula. This lower bound will be referred to as sat-lb-s. The lower bound in [7] is similar
to the described one but all the soft clauses inϕC are removed from the formula which
provides a weaker lower bound (for weighted MaxSAT but equivalent for unweighted
MaxSAT) and will be referred to as sat-lb. In [10], cores are detected by unit propaga-
tion (UP), whereas the LB in [11, 7] additionally detects cores that cannot be identified
by UP. Given that a SAT solver always detects first all the cores by solely applying
UP and then the remaining ones, it is straightforward that the LB sat-lb is stronger that
the one in [10], but sat-lb makes calls to a SAT solver which can require exponential
time. sat-lb-s is an extension of [10] for weighted MaxSAT that provides a stronger LB
because it is not restricted to UP.

Algorithm 1: Lower Bound
Input: ϕ

1 (ϕW , λ, ϕR)← (ϕ, 0, ∅)

2 while true do
3 (st, ϕC ,A)← SAT(ϕW)
4 if st = SAT then return (λ, ϕR)
5 (λ, ϕR)← (λ + min(ϕC), ϕR∪ Soft(ϕC))
6 foreach (C,w) ∈ Soft(ϕC) do
7 w ← w −min(ϕC)
8 if w = 0 then ϕW ← ϕW \ {(C,w)}

9 end
10 end

Algorithm 2: Upper Bound
Input: ϕ

1 (µ, lastA)← (
∑

m

i=1
wi + 1, ∅)

2 (R,ϕW)← Relax(∅, ϕ, Soft(ϕ))
3 (st, ϕC ,A)← SAT(ϕW)
4 if st = true then (lastA, µ)← (A,

∑
m

i=1
wi × (1−A〈Ci \ {ri}〉))

5 return SLS(lastA, ϕ)

2.2 Upper Bounds

Consider Algorithm 2. Letµ be an UB. Initially, each soft clause is extended with a
relaxation variable in functionRelax. Then, the SAT solver is called and it returns a
satisfying assignmentA. Then, the sum of weights of the soft clauses for which the
relaxation variable has been assigned to true provides an UBin A [7]. Note that, for
non-optimal assignmentsA, a relaxation variable assigned to true does not mean neces-
sarily that the soft clause associated to such variable mustbe unsatisfied. As a result, a
slight improvement is to sum the weights of unsatisfied soft clauses byA disregarding
the relaxation variables in the soft clauses. Such UB will bereferred to as sat-ub and is
inspired in [5]. Additionally, a stochastic local search (SLS) solver is called providing
the previous computed assignment restricted to original variables. Recall that such as-
signment satisfies all hard clauses. The SLS solver may return an improved solution (or
the given one, in the worse case). This UB will be referred to as sat-ub+s.

Usingnon-randominitial assignments to improve the performance of a local search
procedure was first studied in [13] for partial MaxSAT. The work in [9] executes in
parallel a SAT solver and an SLS procedure. The variables to be flippedby the SLS
depend on the currentpartial assignmentof the SAT solver. However, such approach
is (i) unable to take advantage of hard and soft clauses and (ii) cannot improve the
SLS solver in the instances from MaxSAT Evaluations, essentially because the SAT
solver proves the unsatisfiability very quickly and cannot guide the SLS procedure.
Differently, sat-ub+s provides an assignment that satisfies (i) all hard clauses and (ii) its
performance only depends on the ability of the SAT solver to find such an assignment.
As a result, it can be applied on the benchmarks of MaxSAT Evaluations and still obtain
significant improvements as shown in the empirical section.

Benchmark #Inst. sls sat-ub sat-ub+s sat-lb sat-lb-s
circ 9 94892 99 35 4 4
sean 112 69595 265 171 16 16
fir 59 4570 36 27 22 22

simp 138 31 41 28 25 25
msp 148 20787 375 350 227 227
mtg 215 515 18 16 6 6

haplo 6 3690 1151 1068 352 352
frb 25 447 449 446 233 233

mo3sat 80 46 55 37 26 26
mostr 60 39244 246 239 139 139
plan 56 294881 2171 2169 760 1371
spot 21 146940 159734 146739 63408 68743
rnet 78 156099 296800 156230 113019 143922

upgrade 100 - 10849700000 - 251240000416861000
time 32 19354800 742 704 13 18
pedi 100 216139000 110344 91520 13792 15391

Aborted - 0 27 27 30 33
AverageTime - 34.61 3.65 5.73 17.16 21.11

Table 1. Quality of the upper bounds and lower bounds.

3 Experimental Evaluation

Experiments were conducted on a HPC cluster (3GHz) with linux. For each run, the
time limit was set to 1200 seconds and a memory limit of 4GB. The bounds were im-
plemented in the MSUNCORE [14] system. All benchmarks from 2009-2011 MaxSAT
Evaluations (2067 instances) were considered.

3.1 Analysis of the bounds

Table 1 summarizes the quality of the computed bounds only for some benchmark sets,
but similar improvements are observed in the remaining ones. The first column shows
the name of the set of benchmarks, the second column shows thenumber of instances
in the set. The three following columns show three differentupper bounds. The two
final columns show two different lower bounds. All five columns present the average
value of the bound for all instances in the benchmark set. Columnsls refers to an upper
bound computed by the SLS procedureADAPTNOVELTY+ [8] included in theUBC-
SAT (with default parameters) [16] solver but any other SLS algorithm could be used.
sat-ub+s usesADAPTNOVELTY+ as the SLS algorithm. Regarding the upper bounds,
the solutions provided by the SLS algorithm are of very low quality. Differently, sat-ub
provides a solution orders of magnitude better than the previous one. Finally, sat-ub+s
is more accurate than the previous one. One of the reasons whysat-ub and sat-ub+s are
better than sls is because calling a SAT solver with the additional relaxation variables
provides a good initial assignment thatsatisfies all hard clauses. Note that the bench-
mark setupgradecontains very large weights and the sls algorithm cannot handle such
weights. For this reason they are omitted from the average for 2 upper bounds.

Recall that the approach [9] is unable to improve the upper bound provided by a SLS
procedure in the MaxSAT Evaluation instances. Regarding the lower bounds, both sat-
lb and sat-lb-s provide the same value for unweighted MaxSATas expected given that

in such case they are equivalent. Differently, for weightedMaxSAT sat-lb-s provides
substantially higher lower bounds.

Note the last two rows in the Table 1 that show summarized results over the 2067
instances. One shows the number ofabortedinstances within the time limit while com-
puting the bounds. The other one shows the average time in seconds to compute the
bounds. The upper bounds based on calling a SAT solver can be aborted for some very
hard instances, but they usually require much less time thanSLS.

3.2 Improving core-guided MaxSAT algorithms with the bounds

In what follows, the performance of severalcore-guidedMaxSAT algorithms [7] is stud-
ied. Each sub-table in Table 2 shows the results for msu3 [11](left), msu4 [12] (mid),
and core-guided binary search [7] (right), respectively. All three algorithms use exactly
one relaxation variable per soft clause. Once the LBs are computed, the algorithms will
add one relaxation variable to each soft clause returned inϕR (See Algorithm 1). For
each sub-table in Table 2, the first and second columns show the benchmark set and its
number of instances, respectively. The remaining three columns show the performance
of an algorithm with different bounds in terms of solved instances within the time limit.
Note that the necessary time to compute the boundsis includedin the time limit for
each execution. For each algorithm some sets of instances are shown where significant
differences in the performance are reported.

msu3 [11] iteratively refines a LB. Table 2 (left) shows the performance of msu3
without LB (3rd column), with sat-lb (4th col.) and with sat-lb-s (5th col.). Clearly,
the use of lower bounds improve the performance of msu3. For unweighted problem
sets (msp and frb), both lower bounds provide the same improvement as expected. For
weighted problem sets (planning, upgrade and pedigree), sat-lb-s is noticeable better
than sat-lb.

msu4 [12] refines both a LB and a UB but empirical observation shows that in most
of its iterations, msu4 refines an UB. Hence, msu4 may benefit from both bounds but
specially from a good initial UB. Table 2 (mid) shows the performance of msu4 where
the LB is fixed to sat-lb-s, while the UBs considered are none (3rd col.), sat-ub (4th
col.) and sat-ub+s (5th col.). Clearly, the use of UBs improve the performance of msu4,
being sat-ub+s the one that provide the best results.

Core-guided binary search [7] refines both a lower bound and upper bound, and
at each iteration it asks for the middle value between them. Table 2 (right) shows the
performance of core-guided binary search without bounds (3rd col.), with both sat-
lb and sat-ub as in [7] (4th col.) and with the two new bounds sat-lb-s and sat-ub+s
(5th col.). The additional sixth column shows the results for sat-lb and sat-ub+s. The
performance of core-guided binary search is quite good without the bounds and their
use improves the performance in 4 of 5 sets. Note that the efficiency for theupgrade
set of problems is slightly worsened. While the use of bounds can save calls to the SAT
solver in binary search, they may move the search toharder calls of the SAT solver
[15].

Set #I. None sat-lb sat-lb-s
msp 148 89 92 92
frb 25 0 14 14

plan. 56 38 40 44
upgr. 100 0 0 10
pedi. 100 24 40 44
total 370 151 186 204

Set #I. None sat-ubsat-ub+s
sean 112 51 77 78
fir 59 46 53 53

mostr 60 44 44 59
msp 148 75 86 108
plan. 56 21 35 50
total 435 237 295 348

Set #I. None sat-lb sat-lb-s sat-lb
sat-ubsat-ub+ssat-ub+s

sean 112 72 77 78 78
frb 25 0 15 15 15
msp 148 98 107 107 107
upgr. 100 63 59 52 59
pedi. 100 32 34 34 33
total 485 265 292 286 292

Table 2. Bounds on msu3 (left), msu4 (mid) and core-guided binary search (right)

4 Conclusions and Future Work

This paper introduces new LB and UB based on calling a SAT solver and studies their
effect on the performance core-guided MaxSAT solvers. The bounds presented in this
paper can be integrated inbranch and boundMaxSAT solvers and MaxSAT solvers
based on computing unsatisfiable cores that exploitdisjoint cores[1, 7], and which add
more than one relaxation variable per soft clause [4]. Additionally, the bounds can be
extended to other boolean optimization frameworks [6].

References

1. C. Anśotegui, M. L. Bonet, and J. Levy. A new algorithm for weighted partial MaxSAT. In
AAAI, 2010.

2. D. Le Berre and A. Parrain. The Sat4j library, release 2.2.JSAT, 7:59–64, 2010.
3. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.Handbook of Satisfiability, 2009.
4. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. InSAT, pages 252–265,

August 2006.
5. E. Giunchiglia and M. Maratea. Solving optimization problems with DLL. InECAI, pages

377–381, August 2006.
6. F. Heras, V. M. Manquinho, and J. Marques-Silva. On applying unitpropagation-based lower

bounds in pseudo-boolean optimization. InFLAIRS Conference, pages 71–76, 2008.
7. F. Heras, A. Morgado, and J. Marques-Silva. Core-guided binary search algorithms for

maximum satisfiability. InAAAI, 2011.
8. H. H. Hoos. An adaptive noise mechanism for WalkSAT. InAAAI, pages 655–660, 2002.
9. L. Kroc, A. Sabharwal, C. P. Gomes, and B. Selman. Integrating systematic and local search

paradigms: A new strategy for MaxSAT. InIJCAI, pages 544–551, 2009.
10. C. M. Li, F. Manỳa, and J. Planes. Exploiting unit propagation to compute lower bounds in

branch and bound Max-SAT solvers. InCP, pages 403–414, 2005.
11. J. Marques-Silva and J. Planes. On using unsatisfiability for solving maximum satisfiability.

Computing Research Repository, abs/0712.0097, December 2007.
12. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatisfiable

cores. InDATE, pages 408–413, 2008.
13. M. E. Menai and M. Batouche. An effective heuristic algorithm for the maximum satisfia-

bility problem. Appl. Intell., 24(3):227–239, 2006.
14. A. Morgado, F. Heras, and J. Marques-Silva. The MSUnCore MaxSAT solver. InPOS, 2011.
15. M. Sellmann and S. Kadioglu. Dichotomic search protocols for constrained optimization. In

CP, pages 251–265, 2008.
16. D. A. D. Tompkins and H. H. Hoos. UBCSAT: An implementation and experimentation

environment for SLS algorithms for SAT & MAX-SAT. InSAT, 2004.
17. L. Zhang and S. Malik. Validating sat solvers using an independent resolution-based checker:

Practical implementations and other applications. InDATE, pages 10880–10885, 2003.

