

Edinburgh Research Explorer

Efficient Encrypted Keyword Search for Multi-user Data Sharing
Citation for published version:
Kiayias, A, Oksuz, O, Russell, A, Tang, Q & Wang, B 2016, Efficient Encrypted Keyword Search for Multi-
user Data Sharing. in I Askoxylakis, S Ioannidis, S Katsikas & C Meadows (eds), Computer Security --
ESORICS 2016: 21st European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I. Lecture Notes in Computer Science (LNCS), vol. 9878,
Springer International Publishing, Cham, pp. 173-195, 21st European Symposium on Research in Computer
Security, Crete, Greece, 26/09/16. DOI: 10.1007/978-3-319-45744-4_9

Digital Object Identifier (DOI):
10.1007/978-3-319-45744-4_9

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Security -- ESORICS 2016

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Jul. 2018

https://doi.org/10.1007/978-3-319-45744-4_9
https://www.research.ed.ac.uk/portal/en/publications/efficient-encrypted-keyword-search-for-multiuser-data-sharing(009c1f4e-b312-4d79-b014-956d4bfd4445).html

E�cient Encrypted Keyword Search for

Multi-User Data Sharing

Aggelos Kiayias1, Ozgur Oksuz2, Alexander Russell2, Qiang Tang3, and Bing
Wang2

1 University of Edinburgh, UK
2 University of Connecticut, USA

3 Cornell University/NJIT
{aggelos,acr}@cse.uconn.edu

{ozgur.oksuz,bing}@engr.uconn.edu
qt44@cornell.edu

Abstract. In this paper, we provide a secure and e�cient encrypted
keyword search scheme for multi-user data sharing. Specifically, a data
owner outsources a set of encrypted files to an untrusted server, shares
it with a set of users, and a user is allowed to search keywords in a
subset of files that he is authorized to access. In the proposed scheme,
(a) each user has a constant size secret key, (b) each user generates a
constant size trapdoor for a keyword without getting any help from any
party (e.g., data owner), independent of the number of files that he is
authorized to search, and (c) for the keyword ciphertexts of a file, the
network bandwidth usage (from the data owner to the server) and storage
overhead at the server do not depend on the number of users that are
authorized to access the file. We show that our scheme has data privacy
and trapdoor privacy. While several recent studies are on secure keyword
search for data sharing, we show that they either su↵er from scalability
issues or lack user privacy.

Key words: data sharing, keyword search, broadcast encryption

1 Introduction

Cloud computing has become a prevalent and economic platform for users to
outsource and share data. For instance, through a file or picture sharing ser-
vice (e.g., Dropbox, Flickr), users can conveniently upload files or pictures to
the cloud to share them with their friends, family or colleagues. In a health
information sharing system, a number of research institutes and hospitals may
share medical data to facilitate collaboration and accelerate scientific discovery.
In such data sharing applications, the sensitive nature of the data means that
it is necessary for data owners to encrypt the data before outsourcing it to the
cloud. On the other hand, useful functions, e.g., searching over the outsourced
encrypted data, should still be supported to preserve the utility of the data.

Another complication in such data sharing applications is that data owners of-
ten selectively share data with others. For instance, Alice may want to share
family pictures with her family members, while share work related files with her
colleagues. As such, a user can only have access to a subset of the files that are
permitted by the corresponding data owners. Since di↵erent users have access
to di↵erent files, a natural way for encryption is that a data owner encrypts
di↵erent files using di↵erent keys. After that, a data owner gives each user the
encryption/decryption keys of all the files that the user is authorized to search.
This trivial solution is clearly ine�cient. First, the number of keys that the data
owner needs to send to a user depends on the number of files. Secondly, the
number of trapdoors (or tokens) that a user needs to submit when searching for
a keyword also depends on the number of files.

In a recent study [25], Popa and Zeldovich solve the above problem by propos-
ing a multi-key searchable encryption scheme that allows a user to provide a
single search token to the server, while allowing the server to search for the
(encrypted) keyword in documents encrypted with di↵erent keys. Their solution
requires each data owner to send the server some public information (delta val-
ues) for each user that is allowed to search a file. In general, suppose a data
owner has m files, each file is shared with up to n users, and each file contains
up to k keywords, the data owner needs to outsource O(m(n + k)) amount of
data to the server to support keyword search, where O(mn) and O(mk) corre-
spond to delta values and keyword ciphertexts, respectively. As a result, both
the network bandwidth overhead (from the data owner to the server) and stor-
age overhead (at the server) are O(m(n + k)). While the overhead associated
with outsourcing keyword ciphertexts is unavoidable, it is desirable to reduce
the overhead for outsourcing the delta values, which can dominate the overhead
when k ⌧ n (e.g., for a picture with a small number of keywords but shared
with many users).

Our contributions. Our contributions are as follows:

– We give an e�cient encrypted keyword search scheme for multi-user data
sharing that overcome the drawbacks in [25]. Specifically, in our scheme,
when a data owner has m files, each file has up to k keywords, to support
encrypted keyword search by up to n users, the data owner only needs to out-
source O(mk) amount of information to the cloud. Given that outsourcing
keyword ciphertexts is unavoidable (which is O(mk)), our scheme is asymp-
totically optimal in network bandwidth usage and cloud storage. In addition,
each user has constant size secret keys and generates constant size trapdoor
for a keyword search in all the files that he is authorized to search by a data
owner.

– Our scheme requires very di↵erent techniques to compress ciphertexts and
succinctly represent the search/access policies that dictate which files a user
can access. We model and analyze the security of our construction and pro-
vide detailed proofs for keyword, file and trapdoor privacy, respectively.

– We give an extension that allows a system with multiple trusted parties
(e.g., managers, data owners) to generate distributively the public key for

the system and secret keys for the users, thus eliminating the need of having
a single trusted party.

Related Work. To the best of our knowledge, no existing study achieves the
e�ciency as ours in the setting that we study. Our work is related to search-
able encryption in general. Single-user searchable encryption considers a single
data owner and only the data owner is allowed to submit search queries. It has
been studied extensively, with focus on symmetric-key settings [13, 16, 19, 27],
asymmetric-key settings [5, 8], supporting complicated (conjunctive, subset, or
boolean) queries [10, 12], or dynamic settings [21]. Our work is in multi-user
setting where a group of users can submit search queries.

Multi-user searchable encryption. While multi-user searchable encryption has
been investigated in a number of studies, these studies di↵er from our study in
important aspects. In [16], a user is allowed to search all the files owned by a
data owner while in our study each user is allowed to search a di↵erent subset
of the files. The study in [4] relies on a fully trusted user manager, which not
only sets system public parameters but also generates secret keys of all parties.
In addition, when a data owner outsources his data, he needs to interact with
the semi-trusted server, and the keyword ciphertext size depends on the number
of users. Similar to [4], the study in [17] also uses a fully trusted third party.
In addition, their scheme does not provide an access control mechanism that
specifies which users can access which files. A recent study [20] proposes multi-
user searchable encryption that supports boolean queries. It does not provide
an access control mechanism either. In addition, an authorized user needs to
interact with the data owner to get a token. Then, he can generate a trapdoor
based on the token for the query. The same limitations hold for [18], which
extends [20] to support range, substring, wildcard and phrase queries.

In the above studies, the documents are encrypted with a single key. In
other studies, the documents are encrypted with di↵erent keys. We have men-
tioned [25], which has motivated our study. Tang [28] improves the study of [25]
by presenting a new security model for multiparty searchable encryption and
proposing a scheme that authorizes users to share their files. Liu et al. [24] pro-
pose a data sharing scheme, which however has two major drawbacks. First, a
user needs to interact with a honest-but-curious server to download some infor-
mation in advance to generate a trapdoor. Secondly, the trapdoor size is linear
in the number of files. Cui et al. [15] adapt the idea in [14] and propose a key-
aggregate searchable encryption scheme. In their scheme, a data owner provides
a single aggregated key that contains information about all files that a user is
authorized to search. Each user is given a secret key (i.e., the aggregated key)
and then a user generates constant size trapdoor to search a keyword from all
files. Their scheme is, however, vulnerable to cross pairing attack, and hence has
neither data privacy nor trapdoor privacy. Basically, an untrusted server can
figure out the encrypted keyword from the ciphertext and recover the aggregate
key of any user (see more details in Appendix A.1). Rompay et al. [29] propose
a scheme that uses a proxy based architecture to achieve a stronger security
model. Their scheme su↵ers from the same ine�ciency problem as that in [25].

Other related primitives for encrypted keyword search. The study [8] introduces
a scheme that transforms a given identity based encryption (IBE) to public key
encryption with keyword search (PEKS). A later study [1] examines the relation-
ships between these two primitives and points out that if one has an anonymous
IBE scheme, then he achieves secure PEKS. Attrapadung et al. [2, 3] introduce
a new cryptographic primitive called coupling. It is a broadcast encryption that
further has hierarchical identity based dimension. It combines user index with
identity. They provide restricted anonymous identity based encryption. Their
scheme does not have a concrete proof of security. Moreover, it cannot be ap-
plied to our setting since the transformation does not provide trapdoor privacy.
Last, existing studies [23, 30] investigate attribute based keyword search, which
di↵er significantly from our study. In [30], the access control policy is based on
keywords instead of files, while [23] does not allow a secret key holder to generate
search token (trapdoor) individually. In [23], the trapdoor is generated by the
collaboration between a secret key holder and the fully trusted PKG (private key
generator). In addition, in both schemes, the keyword cliphertext, and trapdoor
and secret key sizes depend on the total number of attributes that are involved
in a data owner’s access control policy.

2 Preliminaries

Bilinear Map: (1) G1, G2 and G0 are three multiplicative cyclic groups of
prime order p; (2) g1 is a generator of G1, g2 is a generator of G2. A bilinear
map e : G1 ⇥G2 ! G0 has the following properties: (1) for all u 2 G1, v 2 G2

and a, b 2 Zp, we have e
�
ua, vb

�
= e (u, v)ab; (2) the map is not degenerate, i.e.,

e (g1, g2) 6= 1. It is a symmetric bilinear map when G1 = G2 = G.

2.1 Popa-Zeldovich Scheme [25]

We briefly summarize the construction in [25]. For simplicity, we only present
the scenario where a single data owner has m files (each file is encrypted with a
di↵erent key) and can search all the files with a single trapdoor (token).

Let H : {0, 1}⇤ ! G1, H2 : G0 ⇥G0 ! {0, 1}⇤ be hash functions that are
modeled as random oracles. Let e : G1 ⇥ G2 ! G0 be a bilinear map. The
multi-key searchable encryption (MKSE) scheme proposed in [25] is as follows.

– MK.Setup(�): return params (p,G1,G2,G, e, g1, g2, g0).
– MK.KeyGen(params): returns uk, k1, ..., km, where uk is the user secret

key, kj is the encryption key of file j.

– MK.Delta(uk, k1, ..., km): returns �j = g
kj/uk
2 2 G2.

– MK.Token(uk,w): returns tkw = H(w)uk 2 G1.
– MK.Enc(kj , w):Draw r 2 G0, outputs cj,w = (r, h), where h = H2(r, e(H(w), g2)kj).

– MK.Adjust(tkw,�j): returns stkj,w = e(tkw,�j) = e(H(w)uk, g
kj/uk
2).

– MK.Match(stkj,w, cj,w): parse cj,w as (r, h) and check if H2(r, stkj,w)
?
= h.

if so, outputs b = 1, otherwise b = 0.

In the above construction, to search T di↵erent keywords, a user only needs
to provide O(T + m) pieces of information to the server (T trapdoors and m
delta values), much more e�cient than that when using standard searchable
encryption (which needs O(Tm) pieces of information).

The authors show that the MKSE scheme has data hiding and token hiding
properties. Data hiding (privacy) requires that the semi-honest adversary is not
able to distinguish between ciphertexts of two values not matched by some token.
Token hiding (privacy) requires that the adversary cannot learn the keyword that
one searches for.

The MKSE scheme is ine�cient since the data owner needs to provide a
delta value for each user that is authorized to search a file. Hence the number of
delta values for a file is linear in the number of users. This results a significant
communication overhead between a data owner and the server when the data
owner outsources the delta values, and significant storage overhead for the server
to store these ciphertexts.

2.2 Complexity Assumptions

Decision Linear Assumption. LetG be a bilinear group of prime order p. The
Decision Linear problem [7] in G is stated as follows: given a vector (g, Z1 =
gz1 , Z2 = gz2 , Z13 = gz1z3 , Z24 = gz2z4 , Z) 2 G6 as input, determine whether
Z = gz3+z4 or a random value R 2 G. The advantage of an algorithm B in
deciding the decision linear problem in G is
��Pr

⇥
B
�
g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4

�
= 0

⇤
� Pr [B (g, gz1 , gz2 , gz1z3 , gz2z4 , R) = 0]

�� ✏ .

`-Bilinear Di�e-Hellman Exponentiation Assumption (`-BDHE) [6].
Let G be a bilinear group of prime order p. The `-BDHE problem in G is defined

as follows: given a vector of 2`+1 elements
⇣
h, g, g↵, g↵

2

, ..., g↵
`

, g↵
`+2

, ..., g↵
2`
⌘

as input, output e (g, h)↵
`+1

. Once g and ↵ are specified, we denote gi = g↵
i

as
shorthand. An algorithm A has advantage ✏ in solving `-BDHE in G if

Pr
h
A
⇣
h, g, g↵, ..., g↵

`

, g↵
`+2

, ..., g↵
2`
⌘
= e

⇣
g↵

`+1

, h
⌘i
� ✏,

where the probability is over the random choice of generators g, h 2 G, the ran-
dom choice of ↵ 2 Zp and random bits used by B. The decisional version of the `-

BDHE problem inG is defined analogously. Let ȳg,↵,` =
⇣
g↵, . . . , g↵

`

, g↵
`+2

, . . . , g↵
2`
⌘
.

An algorithm B that outputs b 2 {0, 1} has advantage ✏ in solving decision `-
BDHE in G if

��Pr
⇥
B
�
g, h, ȳg,↵,`, e (g`+1, h)

�
= 0

⇤
� Pr

⇥
B
�
g, h, ȳg,↵,`, R

�
= 0

⇤�� � ✏,

where the probability is over the random choice of generators g, h in G, the
random choice of ↵ 2 Zp, the random choice of R 2 G0, and the random bits
consumed by B.

n-Decisional Di�e-Hellman Inverse Assumption (n-DDHI). Let G be
a bilinear group of prime order p. The n-DDHI assumption in G is stated as
follows: given a vector g, ȳg,↵,n = (g1, . . . , gn, gn+2, . . . , g2n), g� , h = gz, Z 2
G2n+3 as input, determine whether Z = h

�

↵n+1 or a random value R in G. The
advantage of an algorithm B in deciding the n-DDHI in G is

���Pr
h
B
⇣
g, ȳg,↵,n, g

� , gz, g
z�

↵n+1

⌘
= 0

i
� Pr

⇥
B
�
g, ȳg,↵,n, g

� , gz, R
�
= 0

⇤��� ✏.

We provide security evidence of our hardness assumption (n-DDHI) by pre-
senting bounds on the success probabilities of an adversary A. We follow the
theoretical generic group model (GGM) as presented in [26] and show the justi-
fication of it.

Theorem 1. Let A be an algorithm that solves the n-DDHI problem in the
generic group model, making a total of at most q queries to the oracles computing
the group action in G,G0 and the oracle computing the bilinear pairing e. If
↵, �, r, z 2 Z⇤

p and ⇠, ⇠0 are chosen at random, then

Pr

2

4
A(p, ⇠(1), ⇠(z), ⇠(↵), . . . , ⇠(↵n),

⇠(↵n+2), .., ⇠(↵2n), ⇠(�), ⇠(t0), ⇠(t1)) = d :
↵, �, z Z⇤

p , d {0, 1}, td z�
↵n+1 , t1�d r

3

5 1

2
+

16n(q + n+ 1)2

p

We provide security evidence for the hardness of the n-DDHI in Appendix A.2.

3 Secure and E�cient Multi-user Encrypted Keyword

Search (SEMEKS)

In this section, we define the notion of secure and e�cient multi-user encrypted
keyword search (SEMEKS) for data sharing. The constructions are deferred to
Section 4.

Definition 1. In SEMEKS, there are n users, m documents (files) and a server.
Let U denote the set of users and D = {M1, . . . ,Mm} denote the set of docu-
ments. Each document has a set of unique keywords. Let Fj denote the set of
unique keywords in Mj. Let Sj ✓ U denote the set of users that can access file
j. If user i 2 Sj, then he is able to search any keyword in Fj and retrieve Mj.

The server S stores all ciphertexts for keywords and documents. The server is
honest-but-curious, i.e., he does not change any data, and he gives the query
results honestly, but he is curious in that he is trying to learn more information
from the data and queries (for extracting keywords from ciphertexts and trap-
doors). Our model does not allow the adversary (the server) to collude with any
of the users. Otherwise, it leaks keywords.

Definition 2. A SEMEKS scheme consists of the following five algorithms.

– Setup(n,�): a randomized algorithm that takes the number of users n, and
the security parameter �, as input. It outputs (pk, {sk1, . . . , skn}), where pk
is the set of system public key and ski is the secret key of user i.

– Enc(pk, Fk, Sk,Mk): a randomized algorithm that takes file Mk, the set of
unique keywords Fk, public key pk, and user set Sk as input. It outputs
keyword ciphertext Ck and file ciphertext C 00

k .
– Trap(ski, w): a randomized algorithm that takes secret key ski and keyword

w as input. It outputs trapdoor ti,w for user i to query w.
– Test(pk, Sk, ti,w, Ck): a deterministic algorithm that takes keyword cipher-

text Ck, trapdoor ti,w, user set Sk, and public key pk as input. It outputs
b 2 {0, 1}, where b = 1 if i 2 Sk and Ck includes the ciphertext of w;
otherwise, b = 0.

– Dec(pk, ski, C 00
k , Sk): a deterministic algorithm. If b = 1, then the algorithm

takes public key pk, secret key ski, file ciphertext C 00
k and user set Sk as

input, and outputs the plaintext file Mk. Otherwise, it outputs ?.

We consider keyword privacy, file privacy, and trapdoor privacy. In addition,
we refer to keyword and file privacy together as data privacy. The security defi-
nitions of keyword and trapdoor privacy are similar as those defined in [25] with
some di↵erences (our encryption scheme uses asymmetric key, and hence the
adversary is able to encrypt keywords himself in our setting, which di↵ers from
that in [25]). File privacy is defined in our study while not in [25] since it does
not consider file decryption functionality.

We define a semantically secure keyword privacy game. In the game, A is
static that he outputs a keyword and a set pair that he wants to be challenged
on. He observes encryption of keywords and trapdoors. However, he is not able to
distinguish whether the challenge ciphertext is encoded by the challenge keyword
or a random keyword.

Definition 3 (Keyword Privacy). We define static semantic security for key-
word privacy in SEMKS by the following game between an adversary A and a
challenger C. Both C and A are given (n,�) as input.

– Init: A takes security parameter � and outputs a set S0, a keyword w⇤ that
he wants to be challenged on.

– Setup: C runs Setup(n,�) algorithm to obtain system public key pk and a
set of private keys, sk1, ..., skn. It then gives the public key pk to A.

– Query: A adaptively issues queries q1, ..., q�, where query qk is a trapdoor
query (i, w). For such a query, C responds by running algorithm Trap(ski, w)
to derive ti,w, and sends it to A.

– Guess: C picks a random number b 2 {0, 1}, computes (C0, S0) Enc(pk, wb, S0),
where w0 = w⇤, and w1 is a random keyword (of the same length as w0),
returns the value (C0, S0) to A. A outputs its guess b0 2 {0, 1} for b and
wins the game if b = b0.

Restriction: The adversary asks trapdoor queries only when i /2 S0 and w 6= w⇤.

A SEMKS scheme is keyword private if, for all PPT adversaries A, for all su�-
ciently large �, Pr[winA(�, n)] < 1/2 + negl(�, n), where winA(�, n) is a random
variable indicating whether the adversary wins the game for security parameter
�.

We define a file privacy game that is similar to a semantically secure broad-
cast encryption definition since a file is encrypted for a set of users. If a user
is a member of the corresponding set, he can download the file ciphertext and
retrieves the file using his decryption key. In file privacy game, A outputs two
messages M0,M1 and a user set S0 he wants to be challenged upon. He gets
public parameters and user secret keys that are not in the target user set (S0).
However, he is not able to distinguish whether the given ciphertext is the cipher-
text of M0 or M1.

Definition 4 (File Privacy). We define static semantic security for file pri-
vacy in SEMEKS by the following game between a challenger C and an adversary
A.

– Init: A takes parameters (n,�) and outputs a set S0 and two messages
M0,M1 that he wants to be challenged on.

– Setup: C runs Setup(n,�) algorithm to obtain system public key pk. It then
gives the public key pk to A.

– Query: A adaptively issues private key queries of user j /2 S0. C gives the
secret keys, skj to A, where j /2 S0.

– Challenge: C chooses a random b 2 {0, 1} and runs Enc(S0, pk,Mb) to
obtain the ciphertext C 00⇤, and gives it to A.

– Guess: A guesses b0 2 {0, 1} for b and wins the game if b = b0.

File privacy game is secure against CPA if for all attacks
��Pr[b = b0]� 1

2

��
negl(�, n).

We define a static trapdoor privacy game that A outputs challenge user index
and keyword pair at the beginning of the game to be challenged on. In the game,
A can observe encryptions of keywords and the challenge trapdoor, but he is not
able to distinguish the challenge keyword from a random keyword.

Definition 5 (Trapdoor Privacy). The trapdoor privacy game is between a
challenger C and an adversary A as follows:

– Init: A takes parameters (n,�) and outputs a user and keyword tuple (i⇤, w⇤)
that he wants to be challenged on.

– Setup: C runs Setup(n,�) to obtain system public key pk and private keys
sk1, ..., skn. It gives pk to A.

– Query: A adaptively issues queries q1, ..., q�, where query qk is a trapdoor
query (i, w). C responds by running algorithm Trap(ski, w) to derive ti,w,
and sends it to A.

– Guess: C runs Trapdoor algorithm on input (i⇤, w⇤
b) for a random bit b to

obtain ti⇤,w⇤
b
, where w⇤

b = w⇤ if b = 0, otherwise, it is a random keyword,
and sends it to A. A outputs its guess b0 2 {0, 1} for b and wins the game if
b = b0.

A SEMEKS scheme is trapdoor private if, for all PPT adversaries A, for all
su�ciently large �, Pr[winA(�, n)] < 1/2 + negl(�).

4 Constructions

In this section, we give two constructions. For simplicity, we present the con-
structions assuming there is a single data owner; the scenario where there are
multiple data owner can be solved similarly. For ease of exposition, we start with
assuming that a centralized trusted third party initializes the system public keys;
in Section 5.2, we describe how to eliminate the need of this trusted party. The
data owner generates the secret key for each user, and then distributes the secret
key to the user.

We adapt the coupling primitive in [2,3] carefully to the setting of multi-user
keyword search where the data owner encrypts each file with a di↵erent key;
di↵erent users are allowed to search di↵erent subset of (encrypted) files. Specif-
ically, we couple the broadcast dimension (user index; each user is assigned an
index) and the keyword dimension (keyword searchability). When user i wants
to retrieve the documents that contain keyword w, user i generates trapdoor
ti,w that has two dimensions: index i and keyword w. It binds both dimensions
(index, keyword) to let the server search w in all the files that user i is allowed
to access, and then retrieve the corresponding files. Both constructions use two
useful cryptographic primitives: broadcast encryption from [9] and anonymous
identity-based encryption from [11]. The broadcast encryption primitive provides
constant size keyword ciphertexts and user secret keys. Specifically, it uses an
aggregation method for ciphertexts that results in constant size ciphertexts (i.e.,
ciphertext size does not depend on the number of users). The anonymous en-
cryption primitive provides anonymity of the keyword that is being encrypted.
It uses anonymous encryption that does not reveal keyword from the cipher-
text. Specifically, it uses linear splitting method on the random exponent values,
which does not allow the adversary to do guessing attack (cross pairing attack).

The first construction uses a single server. We show that it satisfies data
privacy but does not satisfy trapdoor privacy. The second construction (i.e.,
the main construction) is developed to address the problem. It uses two servers
that do not collude. We show that it satisfies both data privacy and trapdoor
privacy. At the end, we describe how to eliminate the need of having a single
trusted party in our constructions.

4.1 First Construction

Setup(n,�): Let G be a bilinear group of prime order p. The algorithm first
picks a random generator g 2 G and a random value ↵ 2 Zp. It computes

gi = g↵
i 2 G for i = 1, 2, ..., n, n + 2, ..., 2n (these values are generated by the

centralized trusted third party). Next, it picks at random �,� 2 Zp and sets
v = g� , v0 = g� 2 G. It then picks random elements h0,1, h0,2, h1,1, h1,2 2 G and
a1, b1, a2, b2 2 Zp (these values are picked by the data owner (DO)). The public

key is: pk = (g, g1, ..., gn, gn+2, ..., g2n, v, v0, h
a1
`,1, h

b1
`,1, h

a2
`,2, h

b2
`,2), where ` = {0, 1}.

The secret key of the DO is skDO = (�,�, a1, b1, a2, b2). The algorithm outputs
pk and skDO. For users’ secret keys, the DO chooses random ⇢i1, ⇢i2, ⇢0i1, ⇢

0
i2 for

user i and computes secret key for user i as follows:
di,1 = g�i , di,2 = ga1⇢i1 , di,3 = ga1⇢

0
i1 , di,4 = ga2⇢i2 ,

di,5 = ga2⇢
0
i2 , di,6 = gb1⇢i1 , di,7 = gb1⇢

0
i1 , di,8 = gb2⇢i2 ,

di,9 = gb2⇢
0
i2 , di,10 = ha1b1⇢i1

0,1 ha2b2⇢i2
0,2 ,

di,11 = h
a1b1⇢

0
i1

0,1 h
a2b2⇢

0
i2

0,2 , di,12 = ha1b1⇢i1
1,1 ha2b2⇢i2

1,2 ,

di,13 = h
a1b1⇢

0
i1

1,1 h
a2b2⇢

0
i2

1,2 , di,14 = g�i .
These values are given to user i via a secure channel. Specifically, ski = (di,1, . . . , di,14).
Enc(pk, w, Sk,Mk): The DO picks random values t, t0, t1, t2 2 Zp for keyword w
from Fk, and computes the followings:

K = e(gn+1, g)t, K 0 = e(gn+1, g)t
0
, hdrk,1 = (ha1

0,1(h
a1
1,1)

w)t1 ,

hdrk,2 = (hb1
0,1(h

b1
1,1)

w)t�t1 , hdrk,3 = (ha2
0,2(h

a2
1,2)

w)t2 ,

hdrk,4 = (hb2
0,2(h

b2
1,2)

w)t�t2 , hdrk,5 = gt, hdrk,6 = (v
Q

j2Sk
gn+1�j)t,

hdrk,7 = K, hdrk,8 = gt
0
, hdrk,9 = (v0

Q
j2Sk

gn+1�j)t
0
, hdrk,10 = K 0Mk.

Let the first part of the ciphertext Ck = (hdrk,1, . . . , hdrk,7). Let the second part
of the ciphertext C 00

k = (hdrk,8, hdrk,9, hdrk,10)

Trap(di,1||....||di,13, w): User i picks r, r0 2 Zp and computes ti,w as

tr1 = di,1d
r
i,10d

r0

i,11

⇣
dri,12d

r0

i,13

⌘w
,

tr2 = dri,2d
r0

i,3,

tr3 = dri,4d
r0

i,5,

tr4 = dri,6d
r0

i,7,

tr5 = dri,8d
r0

i,9 .

Test(pk, Sk, ti,w, Ck): The server checks if

hdrk,7
?
=

e(gi, hdrk,6)e(hdrk,1, tr4)T

e(tr1
Q

j2Sk,i 6=j gn+1�j+i, hdrk,5)
,

where T = e(hdrk,3, tr5)e(hdrk,2, tr2)e(hdrk,4, tr3). If the equality holds, then
the test result b = 1. Otherwise, b = 0.

Dec(pk, di,14, C 00
k , Sk): Once the server outputs b = 1 from the Test algorithm,

he sends Sk, C 00
k to user i (we call this process as download). Then, user i does

the decryption in the same way as that in [9] to recover first K 0 then extracts

Mk by computing Mk = K0Mk
K0 .

It is easy to see that the keyword ciphertext does not reveal w by using cross
pairing. The data privacy is achieved by using linear splitting method that is
introduced in [11] for ciphertexts. The idea in [11] is to use di↵erent random
blind values in ciphertexts. The trapdoor privacy is achieved by blinding the
secret key of a user. This scheme is correct as follows:

(pk, skDO, ski = (di,1|| . . . ||di,14)i=1,..n)) Setup(n,�),
(Ck, C 00

k) = (hdrk,j)j=[1,10] Enc(pk, w, Sk,Mk),
ti,w = (trl)l=[1,5] Trap(ski = (di,1|| . . . ||di,13), w),
If i 2 Sk, b Test(pk, ti,w, Ck, Sk),
Otherwise, ? Test(pk, ti,w, Ck, Sk),
If b = 1, Mk Dec(pk, di,14, Sk, C 00

k).
The first construction does not have trapdoor privacy. The first reason is

that the adversary (i.e., the server) can extract the keyword from the generated
trapdoor. The problem happens because user i does not blind his first part of
the secret key di,1 when he generates the first part of the trapdoor tr1. The
attack basically occurs when given a trapdoor for a keyword w from user i,
ti,w = (tr1, tr2, tr3, tr4, tr5), the server picks a keyword w⇤ and checks if

e(tr1, g)

e(hb1
0,1, tr2)e(h

b2
0,2, tr3)e(gi, g

�)
= e(ha1

1,1, tr4)
w⇤

e(ha2
1,2, tr5)

w⇤
.

If the above equality holds, the server concludes that w = w⇤. The second reason
is going to be explained in Section 5.1.

To counter the above attack, we need to blind the first part of the secret key
of a user, which however breaks the BGW decryption process since it needs the
first part of the secret key not to be blinded. We solve the above issue in the
following construction by using two servers Smain and Said. In our new model,
Said is trusted while Smain is the semi-honest adversary. In trapdoor phase,
a user chooses three random values r, r0, r00 and generates the trapdoor using
r, r0, r00. The user uses r00 to blind the first part of secret key d1 and uses r, r0

to blinds other parts of the secret keys (dj , where j = 2, .., 13). Then, the user
sends a random value r2 with trapdoor to Smain and another random value r1
to Said. Here, r00 can be thought as a function of r1, r2: f(r1, r2) = r00. In our
construction, the function f simply takes r1, r2 and outputs r00 = r1 + r2. Said

stores the values C 0
k = hdrk,5, hdrk,6, hdrk,7, Sk while Smain stores (Ck, C 00

k) =
(hdrk,1, hdrk,2, hdrk,3, hdrk,4, hdrk,5, hdrk,6, hdrk,7, hdrk,8, hdrk,9, hdrk,10, Sk) for
file Fk. Once the user sends trapdoor and random values to the servers, Said first
computes f1(r1, C 0

k) and sends it to Smain. Then Smain internally checks if the
keyword appears in the ciphertext by using ti,w, f2(r2, Ck), f1(r1, C 0

k), Ck, Sk. If
so, Smain sends C 00

k and Sk to the user. The user decrypts it and recovers the
plaintext file k where the keyword appears. We illustrate the query process in
Fig. 1.

Remark 1. The first construction can be improved in the size of system public
key, the size of user secret key, the size of trapdoor and the size of keyword
ciphertext but the improved version of the first construction does not allow the
adversary to make trapdoor queries. In the interest of space, we do not give
further information about the improved version.

4.2 Main Construction

This construction has two servers. It is as follows (illustrated in Fig. 1).

Fig. 1. Illustration of the secure and e�cient construction.

Setup(n,�): This algorithm is the same as that in the first construction in
Section 4.1. It outputs system public key pk and user secret key ski for user
i = 1, . . . , n.
Enc(pk, w, Sk,Mk): This algorithm is the same as that in the first construction
in Section 4.1 and outputs hdrk,1 . . . hdrk,10. Let the first part of the cipher-
text Ck = (hdrk,1, . . . , hdrk,7). Let the second part of the ciphertext C 00

k =
(hdrk,8, hdrk,9, hdrk,10). In addition, let C 0

k = (hdrk,5, hdrk,6, hdrk,7). The main
server Smain stores Ck, C 00

k and Sk. The aid server Said stores C 0
k and Sk.

Trap(di,1||....||di,13, w): User i picks r, r0, r00 2 Zp and computes ti,w as

tr1 = dr
00

i,1d
r
i,10d

r0

i,11

⇣
dri,12d

r0

i,13

⌘w
,

tr2 = dri,2d
r0

i,3,

tr3 = dri,4d
r0

i,5,

tr4 = dri,6d
r0

i,7,

tr5 = dri,8d
r0

i,9,

tr6 = gr
00

n+1+i .

He sends ti,w = (tr1, . . . , tr6) and r2 to Smain, and sends r1 to Said.

Test(pk, Sk, f2(r2, Ck), f1(r1, C 0
k), ti,w, Ck): Both servers compute

Ak = e(gi,hdrk,6)

hdrk,7e
⇣Q

j2Sk,i 6=j gn+1�j+i,hdrk,5

⌘ for file k. The aid server sends f1(r1, C 0
k) =

Ar1
k to Smain. Smain then computes f2(r2, Ck)f1(r1, C 0

k) = Ar2
k Ar1

k = Ar
k and

checks if e(tr1,hdrk,5)
e(hdrk,1,tr4)T

= Ar
k, where T = e(hdrk,3, tr5)e(hdrk,2, tr2)e(hdrk,4, tr3).

If the equality holds, then the test result b = 1. Otherwise, b = 0.

Dec(pk, di,14, C 00
k , Sk): Once the server outputs b = 1 from the Test algorithm,

he sends Sk, C 00
k to user i (we call this process as download). Then, user i does

the decryption in the same way as that in [9] to recover first K 0 then extracts

Mk by computing Mk = K0Mk
K0 .

Remark 2. The encryption algorithm takes fresh random values in Zp to encrypt
each keyword and message file.

5 Security

Proving Security: We prove security using a hybrid experiment as that in
[11]. Let [hdr0,1, hdr0,2, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7] denote the challenge
ciphertext for keyword w⇤ and user set S0 that are given to the adversary during
a real attack. Additionally, let R,R0 be two random elements of G. We define
the following hybrid games which di↵er on what challenge ciphertext is given by
a simulator SIM to the adversary:
�0: The challenge ciphertext is C0 = [hdr0,1, hdr0,2, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7].
�1: The challenge ciphertext is C1 = [hdr0,1, R, hdr0,3, hdr0,4, hdr0,5, hdr0,6, hdr0,7].
�2: The challenge ciphertext is C2 = [hdr0,1, R, hdr0,3, R0, hdr0,5, hdr0,6, hdr0,7].

We remark that the challenge ciphertext in �2 leaks no information about
the keyword since it is composed of seven random group elements, whereas in
�0 the challenge is well formed. We show that the transitions from �0 to �1 and
�1 to �2 are all computationally indistinguishable.

Since we use two servers, we slightly change the definition of keyword privacy
game in Section 3. During the game, the adversary makes encryption queries
since Said is trusted and controlled by the simulator. The adversary is not able
to upload any ciphertext that he wants. We restrict the adversary.

Theorem 2 (Keyword Privacy). The main construction of the SEMEKS
scheme has keyword privacy under Decision Linear Assumption.

Proof. Suppose the existence of an adversary A that distinguishes between the
two games (�0 and �1) with a non-negligible advantage ✏. Then we construct
SIM that wins the Decision Linear game as follows. SIM takes in a decision
linear instance g, gz1 , gz2 , gz1z3 , gz2z4 , Z, where Z is either gz3+z4 or random in G
with equal probability. For convenience, we rewrite this as g, gz1 , gz2 , gz1z3 , Y, gt

for t such that gt = Z, and consider the task of deciding whether Y = gz2(t�z3).
SIM plays the game in the following stages.

– Init: A gives SIM the challenge keyword w⇤ and the challenge set S0.
– Setup: The simulator first chooses random exponents ↵, �, ⇣, a2, b2. It uses

the same g as in the decision linear instance, and sets g1, . . . , gn, gn+2, . . . , g2n, v,

where gi = g↵
i

, v = g� , h0,1 = g�w⇤⇣+⇣ , h1,1 = g⇣ ,h0,2 = gz2(�w⇤⇣)g⇣ ,
h1,2 = gz2⇣ . Next the simulator sets ha1

0,1 (gz1)�w⇤⇣+⇣ , ha1
1,1 (gz1)⇣ ,

hb1
0,1 (gz2)�w⇤⇣+⇣ , hb1

1,1 (gz2)⇣ ,ha2
0,2 ga2z2(�w⇤⇣)ga2⇣ , ha2

1,2 ga2z2⇣ ,

hb2
0,2 gb2z2(�w⇤⇣)gb2⇣ , hb2

1,2 gb2z2⇣ .

The system public key is pk = g, g1, . . . , gn, gn+2, . . . , g2n, v, h
a1
0,1, h

a1
1,1, h

b1
0,1,h

b1
1,1,

ha2
0,2, h

a2
1,2, h

b2
0,2,h

b2
1,2 and SIM gives the public key to A and Said.

– Query(S`, w`): To answer encryption query for (S`, w`) where w` 6= w⇤, the
simulator picks `, `1, `2, and computes hdrk,1, . . . , hdrk,7 as
K = e(gn+1, g)`, hdrk,1 = (ha1

0,1(h
a1
1,1)

w`)`1 ,

hdrk,2 = (hb1
0,1(h

b1
1,1)

w`)`�`1 , hdrk,3 = (ha2
0,2(h

a2
1,2)

w`)`2 ,

hdrk,4 = (hb2
0,2(h

b2
1,2)

w`)`�`2 , hdrk,5 = g`, hdrk,6 = (v
Q

j2S`
gn+1�j)`,

hdrk,7 = K and gives them to A (Smain) and gives hdrk,5, hdrk,6, hdrk,7, S`

to Said.
– Query(i, w): To answer trapdoor queries for (i, w) where i /2 S0 and w 6= w⇤,

the simulator picks ⇢i1, ⇢0i1, ⇢i2, ⇢
0
i2, r, r

0, r00, and computes
ti,w = (tr1, tr2, tr3, tr4, tr5, tr6) as

tr1 = gr
00�

i (h0,2hw
1,2)

a2b2Y (g
�z1X⇣
w�w⇤)(g�z1X⇣), tr2 = gz1X , tr3 = gz2X , tr4 =

ga2Y g
�z1X

b2 g
�z1X

b2(w�w⇤) , tr5 = gb2Y g
�z1X

a2 g
�z1X

a2(w�w⇤) , tr6 = gr
00

n+1+i, where X =
⇢i1r+ ⇢0i1r

0, Y = ⇢i2r+ ⇢0i2r
0. Then, he gives tr1, tr2, tr3, tr4, tr5, tr6, r2 to A

and r1 to Said.
– Guess: The simulator responds with a challenge ciphertext for the keyword

w⇤ and the set S0. Assume t1 = z3. The simulator picks random t2 2 Zp. To
proceed, the simulator outputs the ciphertext as hdr0,1 = (g⇣)(t1z1), hdr0,2 =
Y ⇣ , hdr0,3 = (g⇣)(t2a2), hdr0,4 = Z⇣b2g�⇣b2t2 , hdr0,5 = Z = gt, hdr0,6 =⇣
v
Q

j2S0
gn+1�j

⌘t
,hdr0,7 = K = e(gn+1, g)t.

If Y = gz2(t�z3) so Z = gt, then all parts of the challenge are well formed and
the simulator simulates game �0. If instead Y is independent of z1, z2, t, t1, t2,
which happens when Z is random, then the simulator emulates the game �1.

– Output: A outputs a bit b to guess which hybrid game the simulator has
been playing. To conclude, the simulator forwards b as its own answer in the
Decision Linear game.

Restriction: Said does not use the public key gi that is asked in trapdoor query
to compute function f(r1, C 0). The function should be independent of gi since
the index i does not appear in the set S0.
Analysis: Since the challenge ciphertext is independent of w⇤, the adversary’s
best success probability is 1/2 when the adversary A gets �1 as challenge ci-
phertext. The success probability is Pr[winA(�, n)] < 1/2 + ✏ when A gets �0

as challenge ciphertext. So, SIM breaks the Decision Linear assumption with
probability |Pr(A(�0) = 1) � Pr(A(�1) = 1|=1/2 + ✏ � 1/2 = ✏, which is
non-negligible.

Remark 3. The indistinguishability of the hybrid games �1 and �2 can be shown
similarly by adjusting the parameters as a2 = z1, b2 = z2.

Theorem 3 (File Privacy). The first construction of SEMEKS has file pri-
vacy under n-DBDHE assumption.

Proof. The other parts of the (file) ciphertexts, (gt
0
, (v0(

Q
j2S0

gn+1�j))t
0
,K 0M0)

are just for downloading process (independent of the first part of the keyword
ciphertext and other public key values that are formed by a1, a2, b1, b2, � and
h0,1, h1,1, h0,2, h1,2) when the searched keyword matches the first part of the
keyword ciphertexts. These parts, C 00

0 , can be simulated in the same way as
in [9]. In the interests of space, we do not give concrete proof.

As a proof sketch, once SIM gets n-DBDHE parameters, he will set pk,
hdr0,8, hdr0,9, v0 and user secret keys dj,14, where j /2 S0, in the same way as
in [9]. Then, he follows the same game steps (Challenge and Guess) as those
in [9].

5.1 Trapdoor Privacy

Formalizing a security model for trapdoor privacy is challenging since an adver-
sary can use the public resource and/or provided secret information (trapdoor)
to verify if the given trapdoor is generated under a specific keyword. This is a
serious problem if a scheme is built in a public key setting. It is because the
adversary can encrypt any keyword, then he can verify if the encrypted keyword
and the given trapdoor are generated under the same keyword. The solution for
this is to restrict the adversary to avoid generating any ciphertext for a set of
users to verify if the given trapdoor and the generated ciphertext match under
the same keyword.
Our Solution: Since we use a two-server solution for trapdoor privacy, we
change the definition of trapdoor privacy in Section 3. In the new model, we are
going to have some query restrictions.
Restriction: For a challenge trapdoor (i⇤, w⇤) in the trapdoor privacy game,
the restriction on A for encryption query Enc(pk, w, Sj): if i⇤ 2 Sj or w = w⇤,
the simulator outputs ?. It means that the adversary is not able to ask the
challenger an encryption query where the challenge user index is in the given
set Sj or the challange keyword. One can think that the adversary can encrypt
whatever he wants to encrypt since he has the system public key pk. However, in
our model Said is trusted and is controlled by the simulator. So, the adversary is
not able to upload any keyword ciphertext to Said. But he can encrypt keywords
on his will o✏ine. It means that he can encrypt keywords and see the ciphertext
but he is not able to use them in test algorithm since he needs Said to send
partial trapdoor information. Another restriction is that Said does not use the
public key of the challenge user (gi) to compute function f(r1, C 0). The function
should be independent of gi.

Theorem 4 (Trapdoor Privacy). The construction of SEMEKS is trapdoor
private under n-DDHI assumption.

In the interest of space, we leave the proof to Appendix A.3.

5.2 Eliminating Single Trusted Party

The two constructions above use a single trusted party to generate the public
key pk. The single trusted party can be a manager or a DO. In either case, a DO

generates secret keys for the users that are eligible to do keyword search on the
DO’s files and distributes the secret keys to the users. A user’s secret key is hence
known by the DO, which is not desirable since a user might want her secret key
to be only known by herself. Furthermore, when there are multiple DOs and a
user wants to search multiple DOs’ data files, each DO needs to generate and
send a secret key to the user, and the user needs to generate a trapdoor that is
linear in the number of DOs. This results in a scalability problem. In addition,
if there are multiple DOs, each setting her own public key which is of size O(n),
the system total public key size is going to be O(n2) for n DOs. This results in
another scalability problem.

To address the above issues, we can use the recently proposed distributed
parameter generation protocol [22]. In [22], n parties can jointly generate system
public key and user secret keys that eliminates the need of having a single trusted
authority. These n parties can be all DOs that share their data files with each
other (group data sharing), or a single DO that share his files with n� 1 users.
Since most parts of the system public key are in the from of n-BDHE parameters,
they can be generated straightforwardly from [22]. The remaining part of the
values ha1

0,1, h
a1
1,1, h

b1
0,1, h

b1
1,1, h

a2
0,2, h

a2
1,2, h

b2
0,2, h

b2
1,2 can be distributively generated by

applying DKG and REC a couple of times. The secret keys of the users can
be distributively generated by applying DKG,REC and RECSQ sub-protocols.
Since these are straightforward, we do not provide the constructions explicitly.

6 Conclusion

We have proposed a secure and e�cient encrypted keyword search (SEMEKS)
scheme for multi-user data sharing. In the scheme, an authorized user uses a
single trapdoor to search all files that he is authorized to search. In addition,
for keyword ciphertexts of a file, the network bandwidth usage and the storage
required at the server does not depend on the number of authorized users that
can search that file. We have also performed rigorous security analysis to show
that SEMEKS has trapdoor privacy and data privacy.

As future work, we will investigate how to use a single server to achieve secure
and e�cient keyword search for data sharing. In addition, we want to support
boolean and not conjunctive keyword queries and update users set e�ciently
(adding or removing users from pre-defined authorized set). It is also interest-
ing to evaluate the overall performance of our scheme such as communication
and computation complexities related to trapdoor generation, keyword search,
encryption and decryption.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. In CRYPTO, 2005.

2. N. Attrapadung. Unified Frameworks for Practical Broadcast Encryption and Pub-
lic Key Encryption with High Functionalities. PhD thesis, University of Tokyo,
2007.

3. N. Attrapadung, J. Furukawa, and H. Imai. Forward-secure and searchable broad-
cast encryption with short ciphertexts and private keys. In ASIACRYPT, 2006.

4. F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on encrypted data in
multi-user settings. In ISPEC, 2008.

5. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and e�ciently searchable
encryption. In CRYPTO, 2007.

6. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT, 2005.

7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, 2004.
8. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In EUROCRYPT, 2004.
9. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption

with short ciphertexts and private keys. In CRYPTO, 2005.
10. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted

data. In TCC, 2007.
11. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (with-

out random oracles). In CRYPTO, 2006.
12. D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Highly-

scalable searchable symmetric encryption with support for boolean queries. In
CRYPTO, 2013.

13. Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, 2005.

14. C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng. Key-aggregate
cryptosystem for scalable data sharing in cloud storage. IEEE Transanctions on
Parallel and Distributed Systems, 2014.

15. B. Cui, Z. Liu, and L. Wang. Key-aggregate searchable encryption (KASE) for
group data sharing via cloud storage. IEEE Transactions on Computers,, 2015.

16. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and e�cient constructions. In CCS, 2006.

17. C. Dong, G. Russello, and N. Dulay. Shared and searchable encrypted data for
untrusted servers. In Proceeedings of the 22Nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, 2008.

18. S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich
queries on encrypted data: Beyond exact matches. In ESORICS, 2015.

19. E.-J. Goh. Secure indexes. Cryptology eprint archive, report 2003/216, 2003.
20. S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced sym-

metric private information retrieval. In CCS, 2013.
21. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric

encryption. In CCS, 2012.
22. A. Kiayias, O. Oksuz, and Q. Tang. Distributed parameter generation for bilinear

Di�e-Hellman exponentiation and applications. In ISC, 2015.
23. K. Liang and W. Susilo. Searchable attribute-based mechanism with e�cient data

sharing for secure cloud storage. IEEE Transactions on Information Forensics and
Security, 2015.

24. Z. Liu, J. Li, X. Chen, J. Yang, and C. Jia. TMDS: Thin-model data sharing
scheme supporting keyword search in cloud storage. In ACISP, 2014.

25. R. A. Popa and N. Zeldovich. Multi Key Searchable Encryption.
https://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf, 2013.

26. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, 1997.

27. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In IEEE Symposium on Security and Privacy, 2000.

28. Q. Tang. Nothing is for free: Security in searching shared and encrypted data.
Transaction on Information Forensics and Security, 2014.

29. C. Van Rompay, R. Molva, and M. Onen. Multi-user searchable encryption in the
cloud. In ISC, 2015.

30. Q. Zheng, S. Xu, and G. Ateniese. VABKS: verifiable attribute-based keyword
search over outsourced encrypted data. In INFOCOM, 2014.

A Appendix

A.1 Vulnerability of the Scheme in [15]

Cui et al. [15] proposed a scheme that provides an aggregation method on files
for a user. Basically, each user’s secret key is mapped to an aggregated number of
files. With this aggregation function, in their scheme, a file size does not depend
on the number users. In addition, in their scheme, keyword ciphertext size is con-
stant. We argue that their scheme is vulnerable to cross pairing attacks. Specifi-
cally, (1) the adversary (server) is able to extract keywords from the ciphertext,
and (2) the adversary captures the secret key of any user so the adversary is
able to build trapdoors to search any keyword as an authorized user. The first
attack (cross-pairing or dictionary or guessing) is to the ciphertexts as follows.
Since each file j is encrypted with a single encryption key tj , the ciphertexts

of the keywords are the form of, Cw1 = e(H(w1),g)
tj

e(gn,g1)
tj

, Cw2 = e(H(w2),g)
tj

e(gn,g1)
tj

. Given

Cw1 , Cw2 , C1 = gtj , C2 = (vgj)tj , the server (adversary) picks two keywords

w⇤
1 , w

⇤
2 and checks if e(H(w⇤

1),g)
tj

Cw1
= e(gn, g1)tj = e(H(w⇤

1),g)
tj

Cw2
. If so, the server

concludes that w⇤
1 = w1, w⇤

2 = w2. Moreover, the adversary recovers e(gn, g1)tj

for file j.
Another weakness of the scheme in [15] happens in producing a trapdoor. Ba-

sically, the DO computes a secret key for a user by computing kagg =
Q

j2S g�n+1�j ,
where � 2 Zp is the secret key of the DO, and any subset S ✓ {1, .., n} which
contains the indices of documents that the user is authorized to search. Once
the user gets the secret key, he makes a query for keyword w1 by computing
Tr1 = kaggH(w1). The user sends (Tr1, S) to the could server. If the same
user makes another query for keyword w2, he sends (Tr2 = kaggH(w2), S) to the
server. The problem is that the server can choose two keywords w⇤, w⇤⇤ and
computes H(w⇤), H(w⇤⇤). Then, the server checks if Tr1H(w⇤) = Tr2H(w⇤⇤)
or Tr1H(w⇤⇤) = Tr2H(w⇤). If the first equality holds, the server concludes
H(w1) = H(w⇤⇤) and H(w2) = H(w⇤) while the second equality holds, the
server concludes H(w1) = H(w⇤) and H(w2) = H(w⇤⇤). Either case, the server
obtains secret key of the user kagg. This is the very crucial information because
the server makes query as if an authorized user.

A.2 Generic Security of n-DDHI Assumption

In the generic group model, elements of G and G0 appear to be encoded as
unique random strings, so that no property other than equality can be directly
tested by the adversary A. Three oracles are assumed to perform operations
between group elements, such as computing the group action in each of the two
groups G,G0 and the bilinear pairing e : G ⇥G ! G0 . The opaque encoding
of the elements of G is modeled as injective functions ⇠, ⇠0 that are chosen at
random.

Let ⇠ : Zp ! ⌅, where ⌅ ⇢ {0, 1}⇤, which maps all a 2 Zp to the string
representation ⇠(ga) of ga 2 G. We similarly define ⇠0 : Zp ! ⌅ 0 for G0. The
attacker A communicates with the oracles using the ⇠-representations of the
group elements only.

Let ↵, �, z 2 Z⇤
p , T0 g

z�

↵n+1 , where h = gz, T1 gr, and d {0, 1}.
We show that no generic algorithm A that is given the encodings of g, h =
gz, g1, .., gn, gn+2, .., g2n, g0, where gi = g↵

i

, g0 = g� and makes up to q oracle

queries can guess the value of d with probability great than 1
2 +O(q

2n3

p).
Proof of Theorem 1. Consider an algorithm B that plays the following game
with A. B maintains two lists of pairs, L1 = {(F1,i, ⇠1,i) : i = 0, ..., ⌧1� 1}, LT =
{(FT,i, ⇠0T,i) : i = 0, ..., ⌧2 � 1}, under the invariant that, at step ⌧ in the game,
⌧1 + ⌧T = ⌧ + 2n + 2. Here, the F⇤,⇤ 2 Zp[A,�, Z, T0, T1] are polynomials in
the indeterminates A,�, Z, T0, T1 with coe�cients in Zp. The ⇠0⇤,⇤ 2 {0, 1}⇤ are
arbitrary distinct strings.

The lists are initialized at step ⌧ = 0 by initializing ⌧1 2n + 2, ⌧T 0,
and setting F1,0 = 1, F1,1 = A, F1,2 = A2,..., F1,n = An, F1,(n+2) = An+2,...,
F1,2n = A2n, F1,2n+1 = � , F1,2n+2 = z, F1,2n+3 = T0, F1,2n+4 = T1. The
corresponding strings are set to arbitrary distinct strings in {0, 1}⇤ (Here, F1,n+1

is skipped).
We may assume that A only makes oracle queries on strings previously ob-

tained from B, since B can make them arbitrarily hard to guess. We note that B
can determine the index i of any given string ⇠1,i in L1 (resp. ⇠0T,i 2 LT), where
ties between multiple matches are broken arbitrarily.

B starts the game by providing A with the encodings ⇠1,0, ⇠1,1, ⇠1,2, . . . , ⇠1,n,
⇠1,(n+2), . . . , ⇠1,2n, ⇠1,(2n+1), ⇠1,2n+2, ⇠1,2n+3, ⇠1,2n+4. The simulator B responds to
algorithm A’s queries as follows.
Group action. Given a multiply/divide selection bit and two operands ⇠1,i and
⇠1,j with 0 i, j < ⌧1, compute F1,⌧1 F1,i ⌥ F1,j depending on whether
a multiplication or a division is requested. If F1,⌧1 = F1,l for some l < ⌧1, set
⇠1,⌧1 ⇠1,l; otherwise, set ⇠1,⌧1 to a string in {0, 1}⇤ distinct from ⇠1,0, ..., ⇠1,⌧1�1.
Add (F1,⌧1 , ⇠1,⌧1) to the list L1 and give ⇠1,⌧1 to A, then increment ⌧1 by one.
Group action queries in G0 are treated similarly.
Pairing. Given two operands ⇠1,i and ⇠1,j with 0 i, j < ⌧1, compute the
product FT,⌧T FT,iFT,j . If FT,⌧T = FT,l for some l < ⌧T , set ⇠0T,⌧T

 ⇠0T,l;
otherwise, set ⇠0T,⌧T

to a string in {0, 1}⇤ \ {⇠0T,0, ..., ⇠
0
T,⌧T�1}. Add (FT,⌧T , ⇠

0
T,⌧T

)
to the list LT , and give ⇠0T,⌧T

to A, then increment ⌧T by one.

Observe that at any time in the game, the total degree of any polynomial
in each of the two lists is bounded as follows: deg(F1,i) 2n, deg(FT,i) = 4n.
After at most q queries, A terminates and returns a guess d0 2 {0, 1}. At this
point B chooses random ↵, �, z Zp. Consider td z�

↵n+1 and t1�d r for
both choices of d 2 {0, 1}. The simulation provided by B is perfect and reveals
nothing to A about d unless the chosen random values for the indeterminates
give rise to a nontrivial equality relation (identical polynomial in any of the lists
L1, LT) between the simulated group elements that was not revealed to A, i.e.,
when we assign A ↵,� �, and either T0 z�

↵n+1 , T1 r or the converse
T0 r, T1 z�

↵n+1 . This happens only if for some i, j one of the following holds:

– F1,i(↵, ..,↵n,↵n+2, . . . ,↵2n, �, z, �
↵n+1 , r)�F1,j(↵, ..,↵n,↵n+2, . . . ,↵2n, �, z, �

↵n+1 , r) =
0, yet F1,i 6= F1,j ,

– FT,i(↵, ..,↵n,↵n+2, . . . ,↵2n, �, z, �
↵n+1 , r)�FT,j(↵, ..,↵n,↵n+2, . . . ,↵2n, �, z, �

↵n+1 , r) =
0, yet FT,i 6= FT,j ,

– any relation similar to the above in which �
↵n+1 and r have been exchanged.

We now determine the probability of a random occurrence of a non-trivial
numeric cancellation. Since F1,i�F1,j for fixed i and j is a polynomial of degree
at most 2n, it vanishes for random assignment of the indeterminates in Zp with
probability at most 2n

p . Similarly, for fixed i and j, the second case occurs with

probability 4n
p . The same probabilities are found in the analogous cases where

�
↵n+1 and r have been exchanged.

Now, absent of any of the above events, the distribution of the bit d in A’s
view is independent, and A’s probability of making a correct guess is exactly 1

2 .
Thus, by summing over all valid pairs i, j in each case, we find that A makes a
correct guess with advantage 2(

�⌧1
2

�
2n
p +

�⌧T
2

�
4n
p). Since ⌧1 + ⌧T q + 2n+ 2,

we have ✏ 16n(q+n+1)2

p , as required.

A.3 Proof of Theorem 4

We will show trapdoor privacy that is the challenge keyword is indistinguishable
from the same length random keyword. To show this we will present two games
G1,G2. In G1 (ideal game), SIM chooses uniformly random r1, r2 values while in
G2 (real game), SIM follows the protocol r00 = r1 + r2 and we show that these
two games are indistinguishable.

Proof. We first consider G1. Suppose there exists an adversary A that distin-
guishes between challenge keyword w⇤ from random keyword with advantage ✏.
Then we construct a simulator SIM that wins the n-DDHI game as follows.
Once SIM gets a n-DDHI instance g, g1, . . . , gn,gn+2, . . . , g2n,g� , h, Z = h

�

↵n+1 ,
the game between SIM and A is as follows:

– Init: A gives SIM the challenge keyword w⇤, user index i⇤ that he wants
to be challenged on.

– Setup: SIM lets g, g1, . . . , gn, gn+2, . . . , g2n in the simulation be as in the
instance and picks a1, b1, a2, b2, ⇣, ⇣ 0, ✓, ✓0 values from Zp. He also sets h0,1

 g�w⇤⇣+⇣0
, h1,1 g⇣ , h0,2 g�w⇤✓+✓0

, h1,2 g✓, He computes public

key parameters as ha1
0,1 = (ga1)�w⇤⇣+⇣0

, ha1
1,1 = (ga1)⇣ , hb1

0,1 = (gb1)�w⇤⇣+⇣0
,

hb1
1,1 = (gb1)⇣ , ha2

0,2 = (ga2)�w⇤✓+✓0
, ha2

1,2 = (ga2)✓, hb2
0,2 = (gb2)�w⇤✓+✓0

, hb2
1,2 =

(gb2)✓, v = g� and gives them to both A and Said. SIM generates user secret
keys ski by running Setup algorithm. As a note that, the simulator does not
know the values ↵, �. Then, SIM gives public parameters to A and Said.

– Query: A makes the following queries to SIM adaptively. For encryption
query (S`, w`),
If w` 6= w⇤ ^ i⇤ /2 S`, the simulator picks k, k1, k2 encryption keys for file `
and gives the computed values,
hdr`,1 = ga1(w`�w⇤)⇣k1ga1⇣

0k1 , hdr`,2 = g(w`�w⇤)b1⇣(k�k1)gb1⇣
0(k�k1), hdr`,3 =

ga2(w`�w⇤)✓k2ga2✓
0k2 , hdr`,4 = g(w`�w⇤)b2✓(k�k2)gb2✓

0(k�k1), hdr`,5 = gk, hdr`,6 =⇣
g�

Q
j2S`

gn+1�j

⌘k
, hdr`,7 = e(gn+1, g)k, S` and gives them to A and gives

hdr`,5, hdr`,6, hdr`,7, S` to Said.
if i⇤ 2 S` _ w⇤ = wl : The simulator outputs ?.

– Guess: SIM assigns h is the form of h = gr
00

n+1+i (r
00 is unknown to SIM).

He picks random ⇢i1, ⇢0i1, ⇢i2, ⇢
0
i2, r, r

0 then computes the trapdoor as
tr1 = Zga1b1⇣

0Xga2b2✓
0Y , tr2 = ga1X , tr3 = ga2Y , tr4 = gb1X , tr5 = gb2Y , tr6 =

h = gr
00

n+1+i, where X = ⇢i1r + ⇢0i1r
0, Y = ⇢i2r + ⇢0i2r

0. Then, he gives
tr1, tr2, tr3, tr4, tr5, tr6, r2 to A and r1 to Said.

– Output: A outputs a bit b. To conclude, the simulator forwards b as its own
answer in the n-DDHI game. If the n-DDHI instances are well formed, the
adversary outputs b = 0 which is a random keyword, otherwise it outputs
b = 1 which keyword is w⇤.

Analysis: Under the restriction in the encryption phase, Said does not store
keyword ciphertext that is formed by the challenge index (the public key of the
challenge user gi⇤). Therefore, the challenge trapdoor and any keyword cipher-
texts are not going to be compatible when Said computes function of r1, C 0. It
means that the challenge trapdoor is independent of w⇤, the adversary’s best
success probability is 1/2 when A outputs b = 0 if the game is totally random.
The success probability is Pr[winA(�)] < 1/2 + ✏ when A outputs b = 1 if the
n-DDHI instances are well formed. So, SIM breaks n-DDHI assumption with
probability |Pr(A(b = 1) = 1)� Pr(A(b = 0) = 1|=1/2 + ✏� 1/2 = ✏, which is
non-negligible. So ��Pr

⇥
GA
1

⇤�� ✏

In G2, SIM follows real game, chooses r1 and r2 such that r00 = r1 + r2
and gives r1 to Said and r2 to A. In the real game, A can not ask encryption
queries that user index i⇤ 2 S` or w⇤ = wl. This results A is not able to test
if the keyword is w⇤ or a random keyword. We argue that since A gets the
function of r1 and C 0 and he is not able to learn any non-trivial information
about r1 under the restriction of the game. The function of r1 and C 0 is totally

random to A for every r1 since for each encryption of a keyword w the challenger
chooses fresh (random) elements (k, k1, k2) from Zp. Basically, the information
(randomized ciphertext) given to A is semantically secure. Let " is the advantage
of A winning the semantic security encryption then we can say SIM breaks n-
DDHI assumption with probability |Pr(A(b = 1) = 1)� Pr(A(b = 0) = 1|=1/2
+ ✏� (1/2 + ") = ✏� ". Then,

��Pr
⇥
GA
2

⇤�� ✏� "

As a result, ��Pr
⇥
GA
1

⇤���
��Pr

⇥
GA
2

⇤�� "

This completes the proof.

