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Abstract

Facial expression recognition has been predominantly utilized to analyze the emo-
tional status of human beings. In practice nearly frontal-view facial images may not be
available. Therefore, a desirable property of facial expression recognition would allow
the user to have any head pose. Some methods on non-frontal-view facial images were
recently proposed to recognize the facial expressions by building discriminative subspace
in specific views. We argue that this kind of approach ignores (1) the discrimination of
inter-class samples with the same view label and (2) the closeness of intra-class samples
with all view labels. This paper proposes a new method to recognize arbitrary-view facial
expressions by using discriminative neighborhood preserving embedding and multi-view
concepts. It first captures the discriminative property of inter-class samples. In addition,
it explores the closeness of intra-class samples with arbitrary view in a low-dimensional
subspace. Experimental results on BU-3DFE and Multi-PIE databases show that our
approach achieves promising results for recognizing facial expressions with arbitrary
views.

1 Introduction
A goal of automatic facial expression analysis is to determine the emotional state, e.g. hap-
piness, sadness and so on, of human beings based on facial images [20]. Despite the highly
developed ability of humans to obtain information from visual observation of faces, facial
expression recognition remains a very challenging task for computer vision. This challenge
is specially noticeable when frontal-view facial images are not available. With some multi-
view databases available [4, 19], the view-invariant approaches have been under investigation
by the research community in facial expression recognition. These approaches can be cat-
egorized into two groups: (1) one considers facial expressions separated from view labels,
while (2) the other couples facial expression labels with view labels in order to reduce the
influence of pose variance.

The view-dependent approach is a general framework to recognize facial expressions on
arbitrary views [7, 8, 13, 15, 16]. It consists of 2D pose estimation and emotion classifica-
tion. In [7, 8] Hu et al. proposed view-dependent emotion classifiers to investigate facial
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expression recognition problem with five yaw views. In addition, they used this system to
evaluate various feature descriptors and dimensionality reduction methods. In [13], Moore
and Bowden further used this framework to evaluate local binary patterns and its variations
for recognizing facial expressions. Recently, in [15] Rudovic et al. presented to recognize
facial expressions using 2-D geometric features and a regression-based scheme, while it re-
quires that the pose and location of facial landmarks for each image is prior known. In [16],
they furthermore proposed to use a Gaussian process regression model for mapping the 2D
locations of landmark points of facial expressions in non-frontal views to the corresponding
locations in frontal view.

From these works [7, 8, 13], pose estimation may be viewed as a critical element, al-
though multi-view 2D tracking methods [2, 24] could be used to register facial images, yet
still few studies use 2D tracking techniques for multi-view facial expression recognition.
Whatever these works [7, 8, 13] based on pose estimation and emotion recognition achieved
good performance, they still had to build separate subspaces or regression models from facial
images with specific view labels. This is inevitable to in advance estimate the head pose of
any probe, while pose estimation is still a challenging problem in computer vision.

For resisting limitations of the view-dependent method, some researchers take facial ex-
pression labels and view labels together into consideration. In [22], Zheng et al. proposed
the unified Bayes theoretical framework to classify facial expressions, where the recognition
problem can be formulated as an optimization problem of minimizing an upper bound of
Bayes error. They consider the facial images from the same view and facial expression label
as an independent subclass. But among their method, they used SIFT features extracted at
83 landmark points from the original 3D face model to represent facial images. This may
severely limit their practical application while no 3D face model is available. Instead of 2-D
geometric landmarks, in [23] Zheng et al. presented to use the regional covariance matrix
representation for appearance features. Additionally, they proposed the Bayes discriminant
analysis via GMM (BDA/GMM) to reduce the dimensionality of feature vectors while pre-
serving the most discriminative information.

Comparing with the view-dependent facial expression recognition methods that require
to estimate the view angle accurately, the approaches [22, 23] explored the correlation of
different samples by coupling facial expressions with views. Their works showed that the
samples with the same expression label may be similar even in different view angles. Moti-
vated partly by their work, our paper will address the following questions:

(1) Whether there exists discriminative features for facial expressions or not? Recent re-
search [7, 13, 23] shows appearance-based features achieve a good performance, while they
may carry irrelevant information of face identity. This irrelevant information can confuse
the classifier for recognizing facial expressions. Therefore, it is necessary to enhance the
discriminative power of the features.

(2) How can we utilize the correlation between facial expressions and views? The tradi-
tional framework [7, 8] regards the view and facial expression as two separate information.
It usually requires the great achievement of pose estimation. It therefore leads a challenge to
this framework. To address this, the exploration of their correlation may be a good way to
make this system simple and avoid from the cumulative error caused by pose estimation.

Contribution. This paper introduces a novel view-independent framework to recognize
facial expression on arbitrary views. In this framework, we propose discriminative neighbor
preserving embedding using neighbor graph and maximizing margin criterion. Additionally,
we propose to use multi-view framework [1] and multiset canonical correlation analysis
(MCCA) [14] for coupling facial expressions with views.
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To explain the concepts in our approach, the paper has been organized as follows. In
Section 2, we explain our proposed approach for exploring the discriminative information of
facial expressions independent to the views. The results of applying the proposed method for
recognizing facial expressions are provided in Section 3. Finally we summarize our findings
in Section 4.

2 Proposed methodology

In this section, we present a new multi-view discriminative framework using MCCA [14]
and multi-view model theorem [1] for recognizing facial expressions with arbitrary views.
The algorithm has the following characteristics: (1) it respects the intrinsic and discriminant
structure of samples, (2) it effectively preserves the local manifold structure within each class
and meanwhile enlarges the margins between different classes, and (3) it regards emotion
recognition from facial images with arbitrary views as a multi-view optimization problem.

2.1 Discriminative Neighbor Preserving Embedding (DNPE)

Dimensionality reduction methods, especially manifold learning methods, have been widely
used to obtain discriminative information for facial expression recognition, e.g. locality pre-
serving projection (LPP) [5, 17] and neighbor preserving embedding (NPE) [6]. Linearized
manifold learning methods aim to preserve the local manifold structure of samples, in which
the k-nearest neighbor searching method is often used to realize the local manifold structure.
However, the unsupervised nature leads to the loss of the discriminative capability. Instead,
the supervised intra-class structure explores their discriminative capability using class infor-
mation [11], but it is not sufficient to represent the boundary of inter-class samples. In [12],
the marginal neighboring graph was recently proposed to describe the pairwise inter-class
boundaries.

Given n training images with C classes, they are denoted as X = [⃗x1, . . . , x⃗n] ∈ RD×n,
where D is the dimensionality of the feature vector. With the class label and Euclidean
distance, we construct the within-class set Ω wi

p (‘wi’ means within-class) of the sample x⃗p,
where p = 1, . . . ,n. This set contains kwi nearest neighbors x⃗q (q = 1, . . . ,kwi) of x⃗p with
the same label of x⃗p. Motivated by within-class concept in linear discriminant analysis
(LDA) [3], we first design an intrinsic graph Gwi = {X,Vwi} that preserves the intrinsic
structure of intra-class samples, where Vwi is the similarity matrix of Gwi.

In the intrinsic graph Gwi, we aim to preserve the similarity between intra-class vertex
pairs. It is noted that any sample x⃗p can be linearly reconstructed by its intra-class samples
x⃗q. Therefore there exists the reconstruction weight matrix Vwi for X that can be obtained
by minimizing the following formulation,

εwi(X) = ∑
p
∥ x⃗p − ∑

x⃗q∈Ω wi
p

vwi
p,q⃗xq ∥2, (1)

with the constraint ∑q vwi
p,q = 1, where vwi

p,q in Vwi is the weight of the edge from x⃗p to x⃗q.
Given the lower dimensional feature space U ∈ RD×d, where d (d ≪ D) is the dimension-

ality of this space, the sample x⃗p is transformed to this space via y⃗p = UT x⃗p. Therefore, the
sample y⃗p can be represented as a linear combination of its neighbors with the corresponding
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coefficients vwi
pq. The corresponding cost function is defined as follows,

εwi(Y) = ∑
p
∥ y⃗p − ∑

y⃗q∈Ω wi
p

vwi
p,q⃗yq ∥2

= (y−Vwiy)(y−Vwiy)T

= UT SwiU, (2)

where Swi = X(I−Vwi)(I−Vwi)T XT represents the local geometric structure of intra-class
samples. Here, we fix the weight matrix while optimizing U for minimizing Eqn.2.

Following the aforementioned procedure, we also build the between-class set Ω bw
p (‘bw’

means between-class). It contains kbw samples x⃗r (r = 1, . . . ,kbw) nearest neighboring to x⃗p
that have different class labels to x⃗p. We further design a penalty graph Gbw = {X,Vbw}
that describes the margin across inter-class boundaries in the same way to building an intrin-
sic graph. Among the penalty graph Gbw, the penalty similarity matrix Vbw describes the
similarity among x⃗p and inter-class ones x⃗r. It can be obtained by minimizing the following
formulation,

εbw(X) = ∑
p
∥ x⃗p − ∑

x⃗r∈Ω bw
p

vbw
p,r⃗xr ∥2, (3)

with the constraint ∑r vbw
p,r = 1, where vbw

p,r in Vbw represents the weight of the edge from x⃗p
to x⃗r with different class labels.

In the lower dimensional feature space, we hopefully maximize the boundary of samples
with different class labels. Therefore, U makes the following objective function maximizing
while Vbw is fixed,

εbw(Y) = ∑
p
∥ y⃗p − ∑

y⃗r∈Ω bw
p

vbw
p,r⃗yr ∥2

= (y−Vbwy)(y−Vbwy)T

= UT SbwU, (4)

where Sbw = X(I−Vbw)(I−Vbw)T XT represents the local geometric structure of inter-class
samples.

Maximum margin criterion (MMC) was proposed in [10] to maximize the margin be-
tween classes. It was shown that MMC can represent class separability better than principal
component analysis (PCA) [18]. Additionally, MMC does not suffer from the small sample
size problem. Therefore, our objective function is defined as,

U = argmax{UT SbwU−ηUT SwiU}, (5)

where η is the balancing factor which adjusts the second term to ensure a positive objective
function. We empirically observe that η has not much impact on the performance. For avoid-
ing the degeneration, the objective function (5) is restricted by the constraint UT XXT U = 1.
It is known that Eqn.5 is a constrained quadratic programming problem.

2.2 Multi-view discriminative framework
Based on DNPE, we can obtain discriminative information from facial expression images.
However, multi-view facial expression recognition aims to recognize facial expressions with
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any views. In this section, we will introduce the multi-view discriminative framework which
explores the correlation of facial expressions and views.

In practice, there can be an arbitrary view angle for facial expression recognition. Here
we simply suppose that there exist N views for each sample. Given the samples with the
ith view (i ∈ {1, . . . ,N}), they are denoted as Xi. From Eqn.5, we can obtain the formula
Ai = (Sbw

i −ηiSwi
i ) of the ith view with respect to Xi. Concerning all views, the optimization

problem (i.e. Eqn.5) can be revised as follows,

[U1, . . . ,UN] = argmax
N

∑
i=1

µiUT
i AiUi, (6)

with constraints UT
i XiXT

i Ui = 1,∀i, where the positive term µi is included to bring the
balance between multiple objectives. Because of non-linear constraints, it leads to no closed
form solution in the current form. Instead, the relaxed version of the problem can be obtained
by coupling all constraints as ∑i UT

i XiXT
i Ui = 1.

The aforementioned optimization problem embeds the respective objective function of
each view into one common function of all views, yet still loses the correlation of samples
with distinct views. MCCA [14] was proposed to search the correlation vector for mul-
tiple sets. In MCCA, it maximizes all correlations among new variables simultaneously.
Therefore, it motivates us to use this method to make the samples with the same expression
label yet in various views accumulating very close. According to MCCA theorem and the
closeness formulation in [1], we define the objective function that maximizes the correlation
between samples with the same expression label yet on all views and meanwhile minimizes
the covariance of samples with the same view label, as follows,

[U1, . . . ,UN] = argmax
N

∑
i=1

N

∑
j=1, j ̸=i

UT
i MiMT

j U j, (7)

with the constraint ∑N
i=1 UT

i XiXT
i Ui = 1, where Mi is the class mean matrix of samples on

the ith view.
Based on two objective functions (6) and (7), we can finally obtain the completed formu-

lation as follows,

[U1, . . . ,UN] = argmax
N

∑
i=1

{µiUT
i AiUi +

N

∑
j=1, j ̸=i

αi, jUT
i MiMT

j U j}, (8)

with the constraint ∑N
i=1 βiUT

i XiXT
i Ui = 1, where µi, αi, j and βi are balancing parameters

which adjust the importance of terms in the objective function and constraint item.
It is observed that Eqn.8 is a standard generalized eigenvalue problem that can be solved

using any eigen-solver. Through this formula, we can obtain discriminative feature space of
facial expression Ui in each view.

2.3 Emotion Classification

Our aim is to match two face images with the same or different facial expression label in
different views. Partly motivated by cross-view classification [9], we use the cross-view cor-
relation maximization method for matching the test sample x⃗, because the lower dimensional
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Figure 1: An example of face images from five yaw views (0◦, +30◦, +45◦, +60◦, +90◦)
with disgust (top row) and fear (bottom row) expressions from BU-3DFE database [19].

feature space of one specific view has close correlation to other views. Here we design the
mean-correlation maximization classifier to classify this sample as follows,

h(⃗x) = max
c

(mean
c

(max
i
{corr(UT

i Xi,c,UT
i x⃗)}N

i=1)), (9)

where Xi,c represents training samples of the cth facial expression label with the ith view,
corr represents Pearson’s linear correlation coefficient operator, N is the number of views,
mean and max are the mean and maximum value operator, respectively.

3 Experimental analysis
In order to evaluate the performance and effectiveness of our method, the BU-3DFE [19] and
Multi-PIE [4] databases are used to compare our method with the state of the art.

3.1 BU-3DFE dataset experiments
In the BU-3DFE database, there are 100 subjects with 3D models and face images. By
projecting 3D facial expression models in various directions, we can generate a set of 2D
facial images with various facial views. In our experiment, we choose 3D models with the
highest level of intensity to generate five yaw views (0◦, +30◦, +45◦, +60◦, +90◦) with
six facial expressions: anger (An), disgust (Di), fear (Fe), happiness (Ha), sadness (Sa),
and surprise (Su). Consequently, we have 3000 face images totally for our experiment.
Fig. 1 shows an example of two facial expressions in five yaw views. In experiments, we
randomly divided 100 subjects into 10 groups, each one having 10 subjects. In each trial of
the experiment, we choose one group as the test set and the other ones as the training set. We
conduct ten trials of the experiment in total such that each subject is used as test data once.

We compare our approach with four dimensionality reduction methods (PCA, LDA, LPP
and NPE) based on view-dependent framework [7, 8]. Here the local Gabor binary pattern
feature operators [21] are used as features in our experiments. In our approach, we feed all
training samples of all views to the input of the method. Before feeding it, we use PCA to
reduce the data dimension in each view, because the implemented approach could lead to
large eigenvalue problems. We keep the top 250 principal components that retained around
90% of the variance. For related parameters in our method, we fix kwi = kbw = 20, αi, j =

1000 for all i and j, µ = 1, and βi =
tr(X1XT

1 )

tr(XiXT
i )

, where Xi corresponds to training samples at
the ith view. More specially, X1 represents training samples in the frontal view, when i = 1.
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Table 1: Performance of various methods on BU-3DFE and Multi-PIE databases (%)

Method Recognition
BU-3DFE Multi-PIE

PCA 67.70(85) 69.12(80)
LDA 65.87(5) 76.09(4)
LPP 69.33(79) 74.57(20)
NPE 69.63(61) 74.12(15)

DNPE 69.72 (82) 74.35 (30)
Zheng et al. [22] 68.35 (25) -
BDA/GMM [23] 68.28 (30) -

Ours 72.47 (35) 76.83 (15)

The first column in Table 1 shows the best results obtained in the optimal feature s-
pace and the corresponding dimensionality for each method, where the performance of [22]
and [23] is taken directly from their papers. Numbers inside brackets in Table 1 represent the
corresponding dimensionalities of the best result. As shown in Table 1, NPE outperforms
PCA, LDA, and LPP. DNPE is slightly better than NPE. Our approach outperforms NPE and
has best performance among all compared methods. In [22, 23], the same facial expressions
from all views were considered as Gaussian mixture, but our method explores the correlation
of the same facial expression in different views. So our discriminative space can be obtained
more easily by using DNPE and MCCA without Gaussian mixture assumption. Compared
to [22, 23], our approach based on DNPE and MCCA provides 4.12% and 4.19% better
recognition rate, respectively.

Table 2 shows overall recognition rates as well as the recognition rates of facial expres-
sions of the proposed method across various views. The increasing view angles can affect
much on the performance of facial expression recognition. The optimal results for average,
anger, disgust, fear, happiness, sadness are achieved when face images are in the frontal
view. From Table 2, it can been seen that surprise expression be recognized more easily at
angles of 30◦, 45◦ and 60◦. These are most likely because the lip movement provides respec-
tive evidence to surprise expression in the non-frontal view. It is surprising to see that the
performance of sadness at 60◦ is better than the one at 45◦. This is mostly likely due to that
the lip movement has more evidence at 60◦. We can also see a similar situation for anger at
45◦ and 60◦ because of the eye movement.

Table 3 shows more details for six facial expressions with our method. The facial expres-
sions with recognition performance from best to worst are: surprise, happy, anger, disgust,
sadness, and fear. Among these expressions, surprise is easiest to be recognized with the
recognition rate of 88.80%, while fear is the most difficult to be recognized. This may be
caused by that rising eyebrows and dropped jaw are obvious to surprise. However, the tips
to fear (e.g. lip slightly stretched, raised upper eyelids and tensor lower eyelids) may be
difficult to be captured from face images.

3.2 Multi-PIE dataset experiment

Facial images in the aforementioned experiment are generated from the 3D face model in
BU-3DFE. This section is going to build on the previous section by applying our method-
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Table 2: Facial expression rate of each view on BU-3DFE database (%)

View 0 30 45 60 90
An 73 72 71 72 67
Di 77 72 68 60 60
Fe 65 58 57 50 49
Ha 91 89 89 86 88
Sa 69 65 60 65 57
Su 89 90 91 90 84

Avg 77.33 74.33 72.67 70.50 67.50

Table 3: Confusion matrix of facial expressions on BU-3DFE database (%).

An Di Fe Ha Sa Su
An 71.00 10.80 3.60 1.80 12.80 0.00
Di 13.00 67.40 5.60 3.00 6.60 4.00
Fe 6.80 8.60 55.80 14.20 11.00 3.60
Ha 0.20 3.20 6.00 88.60 0.40 1.60
Sa 20.00 6.00 8.80 1.20 63.20 0.80
Su 0.60 4.00 3.80 1.60 1.00 88.80

ology on real data. To do this we use the Multi-PIE database to evaluate the performance
of the approach presented in this paper. Multi-PIE database has face images from 337 sub-
jects taken across 15 different poses, 20 illuminations, 6 facial expressions (neutral, smile,
surprise, squint, disgust and scream) and 4 different sessions. In each session, subjects were
instructed to display various facial expressions. In this experiment, we have chosen 100
subjects with 5 facial expressions with the exception of neutral, normal illumination and 13
poses ranging from the left profile (-90◦) to the right profile (+90◦) at an interval of 15◦.
In order to evaluate our method, all images are cropped and aligned using 4 hand annotated
landmark points (eyes, nose tip and mouth), and then normalized to 240 by 240 pixels. Fig. 2
shows examples of post-processed face images from Multi-PIE dataset. In a real application,
it can be obtained by face detection [13, 24]. The parameters αi, j,βi, and µ are equal to the
experiment in BU-3DFE, and kwi = kbw = 50.

The recognition rates of comparative methods in this database are shown in Table 1.
From the second column of Table 1, it can be seen that our approach on this database out-

Table 4: Confusion matrix of facial expressions on Multi-PIE dataset (%)

Disgust Scream Smile Squint Surprise
Disgust 65.77 1.46 4.00 27.77 1.00
Scream 2.15 83.54 0.69 3.23 10.38
Smile 3.46 0.15 78.69 15.23 2.46
Squint 17.00 1.23 6.54 73.54 1.69

Surprise 1.69 7.54 3.15 5.00 82.62
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Figure 2: An example of face images (disgust) from Multi-PIE database [4]. Top row-the
view variant from -90◦ to the frontal view. Bottom row-the view variant from +15◦ to +90◦.

performs the PCA, LPP and NPE, in which their rates are 7.71%, 2.27% and 2.71% higher,
respectively. And our method also performs better than LDA by 0.74%.

Table 4 shows the confusion matrix of 5 facial expressions using our method. The facial
expressions with the recognition performance ranked from the best to the worst are follow-
ing: scream, surprise, smile, squint, disgust. The recognition rate for scream is 83.54%,
while for disgust it is 65.77%.

4 Conclusion
Pose variations are challenging to facial expression recognition. In this paper, we propose
a multi-view discriminative neighbor preserving embedding approach for recognizing facial
expressions in different views. In our method, we propose to exploit the intra-class intrin-
sic structure and the inter-class penalty graph for strengthening the discriminative power
of neighbor preserving embedding. In addition, we present to embed this method into the
multi-view model. In order to make intra-class samples with distinct views staying close,
MCCA is used to maximize their correlation. These schemes therefore lead to lower dimen-
sional feature spaces having discriminative capability independent to view variations. The
proposed method is tested on face images with various views in BU-3DFE and Multi-PIE
databases. The experimental results show that our method can achieve a promising recogni-
tion performance.
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