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Abstract

In this paper, an infrared thermography technique is used to assess the fiber

orientation on the surface of carbon fiber-reinforced polymer (CFRP) moulded

with randomly-oriented strands (ROS). Due to the randomness of the material

a point by point inspection would be very time consuming. In this paper it

is propose the use a flying laser spot technique to heat a line-region on the

surface of the sample instead of a spot. During our experiments, a flying laser

spot inspection was performed in a half of a minute while a point by point

inspection of the same area would last about 25 minutes. Artificial neural

network (ANN) is then used to estimate the fiber orientation over the heated

line. The classification rate obtained with the network was 91.2% for the training

stage and 71.6% for the testing stage.

Keywords: A. Carbon fibres, A. Randomly-oriented strands, B. Fiber

orientation, D. Non-destructive testing, D. Infrared (IR) spectroscopy

1. Introduction

In the last decades composite materials (CM) has become very important

in the aeronautic industry. The mass percentage of the Boeing 787 for example

is more than 50% composed of composite materials (excluding the engines) [1].

One of the factors that motivates the use of CM is the fact that they are typically5
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lighter and more resistant to corrosion than the metallic material that have been

traditionally used. Fiber orientation and distribution is an important feature

of fiber-reinforced composite materials (CFRP) since material’s strength and

stiffness are larger on the direction of the fibers. Thus it is important to assess

the fiber orientation on such materials for quality control purposes. Infrared10

thermography enables such assessment.

Infrared thermography (IT) is a safe non-destructive testing (NDT) tech-

nique that has a fast inspection rate and is generally contactless. It is used

for diagnostics and monitoring in several fields such as electrical components,

thermal comfort, buildings, artworks, composite materials and others. IT popu-15

larity has grown in the recent years due to spatial resolution and acquisition rate

improvements of infrared cameras while they became more affordable. Another

factor is the development of advanced image processing techniques focused on

this kind of image. In active IT an external heat source is used to stimulate

the material being inspected in order to generate a thermal contrast between20

the feature of interest and the background. The active approach is adopted in

many cases given that the inspected parts are usually in equilibrium with the

surroundings [2].

A pulse laser heating spot technique known as Pulsed Thermal Ellipsome-

try (PTE) [3, 4, 5] enables the assessment of the fiber orientation of a region25

around a single spot. In the case of laminates which usually have an uniform

fiber orientation on each ply, the inspection of two or three points with PTE

would give a good indication of the fiber orientation on the surface for exam-

ple. However, in the case of randomly-oriented strands (ROS) plates it is more

complicated. Due to the randomness of the structure of the plate the fiber ori-30

entation on the surface would also be random and to have a good assessment of

the fiber orientation distribution, several points covering all the surface should

be inspected. This would prove to be very time consuming using the single

spot-heating technique such as PTE. Thus, we propose in this paper a faster

technique to assess the fiber orientation on the surface of a ROS plate: a flying-35

spot technique in combination with an artificial neural network (ANN) to assess
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the fiber orientation over a line on the surface of a ROS plate.

This paper is organized as follows: the next section presents the material

and methods including a brief literature review on PTE and ROS samples as

well as a review on the flying spot technique used and ANNs; in section 3 results40

obtained are presented and in section 4 they are discussed; finally in our final

considerations are presented in section 5 .

2. Material and methods

2.1. Randomly-oriented strand (ROS) material

Introduced in the late 2000s, a novel composite material called randomly-45

oriented unidirectional strands (ROS) composites allows the manufacturing of

high performance complex parts. ROS utilizes the performance benefits of con-

tinuous fibers while sharing the advantages of processability common to short

discontinuous fibers. This is illustrated schematically in Figure 1.

Conventional continuous fibers offer the mechanical performance but they50

are very difficult to form. On the other hand, parts with complex features can

be injection moulded using lower volume content of short fibers, but they will

lack mechanical properties. ROS composites lie in between these two material

configuration. ROS composites are obtained from a bulk moulding compound

comprised of strands of high fiber volume content unidirectional thermoplas-55

tic/thermoset pre-impregnated tape that are compression moulded with heat

Figure 1: Processing and performance of various composite materials systems.
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Figure 2: ROS manufacturing cycle. Adapeted from [6].

and pressure. Figure 2 depicts the manufacturing cycle of ROS composite parts

by compression moulding.

CFRP panels inspected in this paper were moulded using carbon/PEEK

unidirectional slit tape, which was cut into strands of 25 x 8 mm using an60

automated tape cutter. Strands were placed into the mould in small batches

and shuffled each time to better control their distribution and to minimize their

out-of-plane orientation. The mould was closed, placed into a pre-heated press

and a pressure of 34 bars was applied. The mould temperature was increased

up to 380◦C and was maintained for 15 minutes. It was then cooled down at65

an approximate rate of 10◦C/min and removed from the press. Panels were

then cut in 100 x 100 mm samples for inspection. Figure 3 shows the three

inspected samples in the scope of this research. In each sample, 4 different lines

(a) (b) (c)

Figure 3: Inspected ROS samples.

4



were inspected with the approach described in sub-section 2.3. Thus, a total 12

different lines (regions) were inspected.70

2.2. Pulsed Thermal Ellipsometry - PTE

More than one century ago, De Senarmont [7] applied a thermal approach

to determine the principal orientations in crystal plates: he covered them with

a thin layer of wax, heated them over a small spot and monitored the isotherm

shape revealed by the solid/liquid transition contour appearing in the wax layer.75

The isotherm proved to be elliptical and its aspect ratio is related to the square

root of the principal conductivities in the surface plane.

Later, Krapez et al. [3, 4] applied this method (with, of course, up-to-

date experimental equipment) on polymer materials to establish a correlation

between their draw ratio and the induced thermal anisotropy. They referred80

to the method as “Thermal Ellipsometry”. It was also used to evaluate the

fiber orientation in the case of composite materials using short or long carbon

fibers. For the latter problem, Cielo et al. presented in [8] a comparative

review of a number of optical techniques for the characterization of non-metallic

materials. One possibility reported by them is the evaluation of phase (or fiber)85

orientation in stretched polymer films or in composites by an analysis of the

thermal propagation pattern. They spot-heated the inspected part by a narrow

laser beam and the resulting heat-propagation pattern was analyzed by an IR

camera. If the material is oriented an elliptical thermal pattern is observed,

with the ratio between the two principal axes (b/a) being related to the square90

root of the thermal conductivities in the longitudinal and transverse directions.

A test on an isotropic material would give a circle instead of an ellipse. A typical

set-up used in PTE inspection is showed in Figure 4 .

Krapez conducted a detailed theoretical analysis [3] through an analytical

treatment of thermal diffusion in laminates made of orthotropic layers assuming95

the surface is submitted to concentrated heating. Three temporal regimes were

considered in that study: steady-state regime, transient regime and modulated

regime (in order to analyze how the so-called thermal waves “propagate” in
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Figure 4: Pulsed Thermal Ellipsometry (PTE) schematic set-up for fiber orientation assess-

ment in CFRP. Adapted from [9].

orthotropic laminates). Experiments were performed on carbon-epoxy laminates

for all three regimes. In [4], Krapez used the same theory, i.e. thermal anisotropy100

measurements method which consists in analyzing the shape of the isotherms

which develop around a heated spot, to develop a thermal inversion method to

infer thickness of skin and core layers of a 3-layer carbon/epoxy laminate.

In our previous work [10], as in Karpen et al. [11], lock-in thermography

(harmonic thermal waves) is used to probe orientation fields of carbon fibers105

both along the surface and in depth at low modulation frequencies and within

a short time. Later Karpen et al. [12] developed a theoretical model in order

to correctly interpret their measurements.

2.3. Flying laser spot

Flying laser spot is a dynamic active thermography technique, which can110

be employed for the inspection of materials by heating a component, point-by-

point, while acquiring a series of thermograms with an infrared camera. This can

be done in two ways, either the thermographic head, consisting of an infrared

camera and an energy source, i.e. a CW laser source, moves along the surface

while the sample to be inspected is motionless, or it may be the sample that is115

in motion while the thermographic head stands still. In both cases, the thermal

history for every pixel can be precisely tracked by controlling the displacement

speed, either the laser or the sample, and the rate of data acquisition. Detailed
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theoretical and experimental aspects of this technique can be found in [13].

In this work, the approach adopted is the one which the camera and CW120

laser source are motionless and the inspected sample moves. For each inspection,

the sample is displaced in front of the thermographic head in a way that in the

first recorded image the sample does not appears in the recorded image and

in the last one the sample does not appear either. In the images between the

first and last one, the sample appears in different positions on each image. This125

displacement of the sample is performed with an aid of a robotic arm which

moves the inspected sample from left to right (or right to left) in front of the

camera’s field of view. The use of a robotic arm provides the possibility to

program the inspection path and to control the inspection speed displacement

and acquisition rate in a precise manner.130

In the recorded raw sequence, the sample obviously appears to be moving. In

order to perform advanced image process technique, the sequence must be rear-

ranged into a pseudo-static sequence so that the sample appears motionless. The

Figure 5: Pseudo-static sequence reconstruction. In the top of the figure, three images from

the original sequence at different times are shown. Bellow these images, the experimental

set-up is shown: the infrared camera and the inspected sample can be seen as well as the

robotic-arm used to displace the sample. The green arrow indicates the sense of displacement.

On the right, an image from the reconstructed pseudo-static sequence is showed.
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reconstructed sequence (matrix) is obtained by following the temporal evolution

of every pixel independently, in such a way that, a given pixel of the original135

sequence P (xi, yj , t), is recovered frame by frame through time t and reallocated

into a new image. For instance, a pixel P that is in a determined position at

time t will be in a different position at a later time. Figure 5 shows some im-

ages of an original sequence and an image from the corresponding pseudo-static

reconstructed sequence. Part of the experimental set-up used is also showed140

(the laser source is not shown). The arrow indicates the sense of the sample’s

movement.

2.4. Infrared image processing

After the pseudo-static sequence is obtained, principal component thermog-

raphy (PCT) is applied in the reconstructed sequence. PCT, originally proposed145

by Rajic in[14], extracts the image features and reduces undesirable signals. It

relies on singular value decomposition (SVD), which is a tool to extract spatial

and temporal data from a matrix in a compact manner by projecting original

data onto a system of orthogonal components known as empirical orthogonal

functions (EOF).150

The SVD of a MxN matrix A, where M > N, can be calculated as follows:

A = URV T (1)

where U is a MxN orthogonal matrix, R being a diagonal NxN matrix (with

singular values of A present in the diagonal), V T is the transpose of a NxN

orthogonal matrix (characteristic time) as proposed in [14].

Hence, in order to apply the SVD to thermographic data, the 3D thermogram155

matrix representing time and spatial variations has to be reorganised as a 2D

MxN matrix A. This can be done by rearranging the thermograms for every time

as columns in A, in such a way that time variations will occur column-wise while

spatial variations will occur row-wise. Under this configuration, the columns of

U represent a set of orthogonal statistical modes known as empirical orthogonal160

functions (EOF) that describe the data spatial variations. On the other hand,
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the principal components (PCs), which represent time variations, are arranged

row-wise in matrix V T . The first EOF will represent the most characteristic

variability of the data; the second EOF will contain the second most important

variability, and so on. Usually, original data can be adequately represented with165

only a few EOFs. Typically, an infrared sequence of 1000 images can be replaced

by 10 or less EOFs.

Figure 6 shows an example of a line region (from sample showed in Figure 3a)

inspected with the flying laser spot approach. The reconstructed line obtained

from the flying laser spot inspection was, at early times, approximately 3 mm170

wide which is the same diameter as the spot that heated the sample’s surface.

The length of the line was 100 mm, which is the same dimension of the sample.

Figure 6a shows a the region that was inspected on the surface of the sample,

Figure 6b show the first EOF image, normalized between 0 and 1, obtained from

the PCT application on the pseudo-static reconstructed sequence and Figure 6c175

shows the the binary image obtained from Figure 6b. Both the first EOF image

(a)

(b)

(c)

Figure 6: (a) Region on the surface of the sample inspected with the flying laser spot approach,

(b) first EOF image obtained with the application of PCT on the pseudo-static reconstructed

infrared sequence and (c) correspondent binary image calculated from (b).
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Figure 7: ANN with one hidden layer. It approximates functions that can depend on a large

number of input values and are generally unknown.

and respective binary image are used in the following steps of our approach in

order to assess the fiber orientation.

2.5. Artificial neural networks - ANNs

Artificial Neural Network (ANN) is an information processing paradigm that180

is inspired by the way biological nervous systems, such as the brain, process in-

formation. It is composed of a large number of highly interconnected processing

elements (neurons) working in unison to solve specific problems. ANNs, like

people, learn by example. An ANN is configured for a specific application, such

as pattern recognition or data classification, through a learning process. Learn-185

ing in biological systems involves adjustments to the synaptic connections that

exist between the neurons. This is true of ANNs as well. Figure 7 shows how an

ANN (with one hidden layer) basically works. There are several works involving

ANN in the literature. A good review on image processing with ANN can be

found in [15]. In infrared thermography, ANN has also been used for years for190

defect depth estimation [16, 17, 18, 19].

In this work, a two-layer feed-forward network, with sigmoid hidden and soft-

max output neurons trained with scaled conjugate gradient backpropagation is

used to classify points on the reconstructed line obtained with the pseudo-static

infrared sequence into their corresponding class (fiber orientation). Sample, i.e.195

points extracted from the line, are divided into three sets of samples: 70% of
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the total of samples is used to train the network, 15% is used for validation

during training and the remaining 15% is used for testing the network after the

training has finished. Next, data representation of input samples is detailed as

well as how classes are organized.200

2.6. Data representation

After each one of the 12 lines were inspected and PCT applied on the recon-

structed pseudo-static sequences, each of the binary EOF images were divided

into 49 samples of 10 x 89 pixels each. Then, each one of these samples (588 in

total) were later used to estimate the fiber orientation of each particular region.205

However, before estimating the fiber orientation, it is important to define the

data structure to be used to represent each sample. These data is used later as

input of the ANN.

The envelope of the binary line (a binary line example can be can be found

in Figure 6c) is extracted and then 11 features are calculated for each sample.210

Figure 8 shows the envelope extracted from the image on Figure 6c. Each sample

has two line segments originating from the line envelop: top and bottom line

segments. These line segments belong to the edges of the binary image. The first

two extracted features are the normal to the line segment orientation regarding

the x-axis: θ1 and θ2. The next two features are the curvature values (k1 and215

k2: it is a measure of how much the curve deviates from a straight line) in the

middle points of the top and bottom line segments. The fifth feature is the width

of the envelope on its middle section. The last six extracted features are also

related to the width of the envelop: the distance (in pixels) from the envelope’s

centroid to six points on the envelope edges (Figure 9 show the position of these220

points).

The original EOF image is divided in the same manner that the binary

image was divided. Then, the pixels of each sample (from the EOF image) are

rearranged line-wise. The input data of the ANN, i.e. the data used to describe

each sample, is the combination of the 11 features calculated before with the225

line-wise pixels from the EOF image and its immediate left and right neighbors.
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Figure 8: Line envelope. Red points represent the points that belong to the envelope and the

green lines are the normal to the envelope. The magnitude of the green line represents the

curvature on the point (times 300).

In total, each sample is represented by a set of 2681 numerical values. These

values are the input of the network.

The output of the ANN is the class of the sample presented in the input layer.

In this research, samples were classified into 4 classes. Each class covers a range230

of 45◦. For instance, class 4 is centered at 90◦ and represents orientation angles

ranging from 67.5◦ to 112.5◦. Figure 10 shows an schematic example explaining

how the 4 classes are divided. Thus, the output layer of the ANN has 4 neurons.

Each neuron is in charge of recognizing one class, i.e. if the sample presented in

the input layer belongs to first class the first neuron would has the value 1 and235

the other neurons value 0 (in the perfect recognition scenario). Figure 11 shows

the same line showed in Figure 6 and in Figure 8 however color-coded with the

target classes of each section of the line.

All 180 angles possibilities were not considered as individual classes because

it would make the classification processes impossible due to the lack of infor-240

mation present on the line envelop that could be extracted. For instance,the

distinction between an input belonging to class 15◦ and an input belonging to

class 16◦ would be impossible. This point is discussed more details in section 4.

Figure 9: Line envelope width of a single sample. w1 ... w6 are the distance between the

sample’s centroid and six points on the envelope.
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Figure 10: How recognition classes are divided. Each class covers a range of 45◦.

2.7. Fiber orientation assessment

The goal of this research is to develop an approach that could estimate the245

fiber orientation on the surface of a ROS sample using a line heating obtained

with a flying laser spot inspection. ANNs were chosen because they have the

capability of estimating or approximating functions that can depend on a large

number of inputs and are generally unknown which is the case. If one observes

the result obtained with the PCT application on the reconstructed pseudo-static250

sequence (see Figure 6 and Figure 8 for instance) it can be easily observed that

there is information linked to the fiber orientation on the edges of the line

envelope. However, a relation between these information and the actual fiber

orientation is not easily achieved. Thus, an ANN is employed.

The first step in order to employ an ANN to approximate this problem255

is to structure the network. In this work, a two-layer feed-forward network,

Figure 11: Inspected line color-coded with the corresponding target class. Blue is class 1,

green is class 2, orange is class 3 and red is class 4.
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with sigmoid hidden and softmax output neurons trained with scaled conjugate

gradient backpropagation, is used. The input layer has 2681 neurons (one for

each input value), the hidden layer has 512 neurons and the output layer has 4

neurons (one for each class).260

Next, the network must be trained, i.e. the network must learn how to clas-

sify a sample. In order to train an ANN, a set of samples which the classification

of each sample is known beforehand must be created. In order to create a train-

ing dataset, 49 points were previously inspected on the same region where each

flying laser spot inspection would be later conducted. The same approach used265

in or previous work [5] was employed to assess the fiber orientation of a single

point using a static laser spot heating source (or PTE, see Figure 4). Thus,

588 PTE inspections were performed in order to create a database with known

orientations that are used as ground truth. From this database 412, samples

were used to train the network. They were presented to the network as well as270

their respective classes. During the training process the network adjusts itself

(its internal weights) in order to recognize the input samples presented during

training into their classes with an acceptable error. From the other 176 sample,

half was used for validation purpose. The other half is not presented to the

network during training process and is used in order to test the network after275

training. Results of training and testing are presented next.

Figure 12: ANN best performance achieved during training.
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3. Results

A dataset with 588 points from 12 different lines was created in order to test

the proposed approach as described in the previous section. Each pseudo-static

line obtained from a flying laser spot inspection was processed with PCT and280

divided into 49 sample of 11 x 89 pixels. 11 features were extracted from each

binary image and combined with pixels values of the samples from the original

EOF image obtained with PCT bringing the total of 2681 input values for each

sample. 412 samples were used for training the network while 88 samples were

used for validation control. The other 88 samples were later used for testing the285

network.

Figure 12 shows a graph with the evolution of training, validation and testing

Figure 13: ROC curves.
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Figure 14: Confusion matrices.

performance of the network for each epoch. The training stops after 6 epochs

when no improvement was achieved in the classification of the samples in the

validation group. Thus, the training stopped after 118 epochs and took about290

0.58 seconds in a Matlabr environment using a PC with a 2.8 GHz Intelr i7

processor and 24 GB of RAM memory. Figure 13 shows the receiver operating

characteristic curves (ROC curves) obtained for training, validation and testing.

A ROC curve considering all samples is also presented. Finally, Figure 14 shows

the confusion matrices, or error matrices, for each one of the sets: training,295

validation, testing and total.
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Figure 15: Results form an inspection of an unseen ROS surface. Left image is the picture of

the original ROS region and the left image shows the color-coded classification performed by

the ANN. Colors used are the same used in Figure 10.

Another ROS sample, which was not previously seen by the network, was

tested. An region of 100 x 50 mm was inspected using the flying laser spot

approach. 11 lines were inspected where the distance between each line was 5

mm. Similarly to the other tests, each line was later divided into 49 samples.300

Figure 15 shows the region of the sample that was inspected and the resulting

color-coded classification performed by the ANN. The same colors used in Figure

10 are used here. If one visually compares the region of the sample and the

classification result obtained, it can be verified the good agreement between the

orientation of the strands, and consequentially the fiber, with the classification305

(fiber orientation) showed in the color-coded map.

4. Discussion

Accuracy obtained in the training stage was 91.3% while accuracy obtained

in the testing stage was 71.6%. First, if one observes the ROC curve obtained

with the testing dataset (see Figure 13) can observe that the samples of classes310

2 and 3 (45◦ and -45◦) were the ones with worst performance while sample of

classes 1 and 4 (0◦ and 90◦) performed slightly better. This suggests that the

technique is having difficulties to handle samples of classes 2 and 3 however

performs relatively well in the other cases.

Second, by observing the confusion matrix of all data (see Figure 14), it can315

be seen that the most cases of errors occurred because the network misclassified

a sample into an adjacent class, i.e. sample was categorized into a class ‘±45◦’

of the class that it should be classified. For instance, the class of the sample
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was 1 (0◦) and the network classified it as 2 or 3 (45◦ and -45◦) or the class of

the sample was 2 (45◦) and the network classified it as 1 or 4 (0◦ and 90◦) and320

so on.

Third, the number of classes was limited to 4 in order to develop a first

solution that could be improved later. In the current state of this research, each

class is 45◦ wide. However, if 6 or 9 classes were used instead of 4 (30◦ or 20◦

wide respectively), the performance of the network would be severally affected.325

Generally, the classification rate in the testing dataset went down to 30% and

25% respectively. Nevertheless, this first results obtained with 4 classes are very

promising.

Despite of its limitations, the proposed approach showed potential to assess

the fiber orientation on the surface of ROS samples using a line heating region330

obtained with a flying laser spot. Using the proposed approach, it is possible to

estimate the fiber orientation with an accuracy of 71.6%. This accuracy rate is

even more acceptable when one compares the inspection time. Using the flying

laser spot and ANN approach proposed in this research, the inspection time is

under 30 seconds while using the classical static laser spot (PTE) inspection ap-335

proach the same region would take about 25 minutes to be inspected. Moreover,

the same approach was taken to assess the fiber orientaion of flat laminates with

known uniform fiber orientation on the surface (0◦ and 90◦). In this case, an

accuracy rate of 100% was achieved in both training and testing. Thus, these

show the great potential of proposed approach.340

5. Conclusions

In this work, an approach to assess the fiber orientation on the surface of

randomly-oriented strands (ROS) composite samples was presented. It uses a

flying laser spot inspection technique inspired on the classical PTE (static single

point) inspection technique. The proposed approach uses an artificial neural345

network (ANN) to estimate the fiber orientation over a line region (instead of a

point) on the surface of the sample.
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Tests were conducted with 3 different samples. 12 lines, 4 from each sample,

were inspected with the flying laser spot technique and processed with PCT.

Then, features were extracted from the obtained line to describe the changes350

in direction present on the edges of the line. These variations are clear related

to the different fiber orientations present on the region. With these features, a

ANN was used to estimate the fiber orientation of each section of each line. An

accuracy of 71.6% was obtained. It is important to highlight that the inspection

of the same region would take about 25 minutes with the classical PTE inspec-355

tion (inspecting point by point) while using the proposed approach the same

region is inspected in under 30 seconds. Thus, using the proposed technique

one can easily create a surface orientation map of the fiber orientation of a ROS

sample with an accuracy of 71.6% (see Figure 15).

ROS composites allow the manufacturing of high performance complex parts.360

There are several work available in the literature focusing on the inspection

of 3D complex shaped parts [20, 21] using infrared thermography. The final

goal of this research is to assess the fiber orientation on complex shaped parts

manufactured with ROS material. This was done in our previous work [9] for

the case of a static single point inspection (PTE). Next steps of this research365

include the adaptation of the proposed technique to assess fiber orientation on

the surface of a complex shaped part considering its 3D complex surface and

the improvement of the features used as input to the network in order to better

recognize fiber orientations around 45◦ and -45◦ angles.
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tation in composite, Tiré à part- Office national d’études et de recherches

aerospatiales (171) (1994) 26.

[4] J.-C. Krapez, Thermal ellipsometry: A tool applied for in-depth resolved

characterization of fibre orientation in composites, in: D. O. Thompson,

D. E. Chimenti (Eds.), Review of Progress in Quantitative Nondestructive395

Evaluation, Springer US, 1996, pp. 533–540.

[5] H. C. Fernandes, X. Maldague, Fiber orientation assessment in carbon fiber

reinforced composites using infrared thermography, in: S. V. Hoa, P. Hu-

bert (Eds.), Proc. 19th International Conference on Composite Materials

(Montreal, Canada, July 2013), Vol. 1, 2013, pp. 4970–4977.400

[6] M. Selezneva, K. Kouwonou, L. Lessard, P. Hubert, Mechanical proper-

ties of randomly oriented strands thermoplastic composites, in: S. V. Hoa,

P. Hubert (Eds.), Proc. 19th International Conference on Composite Ma-

terials (Montreal, Canada, July 2013), Vol. 1, 2013, pp. 480–488.

20

http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
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