
Author(s)
Javed A. Aslam, Sergey Bratus, David Kotz, Ron Peterson, Brett Tofel, and Daniela Rus

This article is available at IRis: http://iris.lib.neu.edu/comp_info_sci_fac_pubs/6

http://iris.lib.neu.edu/comp_info_sci_fac_pubs/6

Intrusion Analysis

N etwork-based intrusions have become a signif-
icant security concern for system administra-
tors everywhere. Existing intrusion-detection
systems (IDSs), whether based on signatures or

statistical learning of normal behavior, give too many
false positives, miss intrusion incidents, and are difficult to
keep current with all known attacks. Although recent
high-level correlation tools improve the quality of alerts
to system administrators,1 they have a limited success rate,
tend to detect only known attack types, and ultimately
generate nothing but alert messages to human adminis-
trators. As such, human experts still need to analyze each
alert (and related data) to determine the attack’s exact na-
ture. Human experts are also the key tool for identifying,
tracking, and disabling new attack forms. This work often
involves experts from several organizations working to-
gether to share their observations, hypotheses, and attack
signatures. Unfortunately, few tools help these experts
with the process of analyzing log data.

To alleviate this situation, we developed the Kerf
toolkit (so-named because a “kerf” is the slit made by a
saw as it cuts through a log, and Kerf is our project for pro-
cessing computer logs.). Its goal is to provide an
integrated set of tools that aid system administrators in
analyzing the nature and extent of an attack and then
communicating the results to other administrators or law
enforcement agencies.

An important part of the discovery, analysis, and de-
fense against new distributed attacks is the cooperation
that occurs between experts in different organizations.
Thus, Kerf contains semiautomated tools that help sys-
tem administrators identify an attack’s characteristics
based on data from network and host-based sensors, de-

velop a hypothe-
sis about the attack’s
nature and origin, share that hypothesis with security
managers from other sites, and then test the hypothesis at
other sites and coordinate the testing results.

Kerf and intrusion analysis
Picture the typical system administrator, responsible for a
collection of hosts on one or more subnets in an organiza-
tion. Each host logs its activity using the Unix syslog
facility or the Windows’ Event Logging service. An IDS
monitors some or all the hosts—possibly even the entire
network—and generates and logs alerts about potential
attacks. Once a system administrator discovers an attack,
he or she must investigate it further.

Kerf is intended to assist in this investigation, called an
intrusion analysis, after the attack is detected. We assume
that correct and complete host and network logs are avail-
able, up to a point, because Kerf forwards encrypted log
records to a secure off-host logging server. The analyst’s
goal is to reconstruct evidence of the attack from individ-
ual event records in the available logs.

The analysis process is inherently interactive: the
sysadmin begins with a vague mental hypothesis about
what happened and then uses Kerf tools to test and revise
it. The process is also inherently iterative: each new piece
of information lets the sysadmin revise the hypothesis and
explore further. The hypothesis is alternately refined, as
information that partially confirms it is discovered, and
expanded, as the sysadmin tries new avenues that broaden
the investigation. The result is a specific hypothesis about
the attack’s source and nature with concrete evidence to
support it.

JAVED ASLAM

Northeastern
University

SERGEY

BRATUS, DAVID

KOTZ, RON

PETERSON, AND

BRETT TOFEL

Dartmouth
College

DANIELA RUS

Massachusetts
Institute of
Technology

The Kerf Toolkit
for Intrusion Analysis

42 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

To aid system administrators with post-attack intrusion

analysis, the Kerf toolkit provides an integrated front end

and powerful correlation and data-representation tools, all

in one package.

Intrusion Analysis

Using traditional tools, such as grep and awk (or
their equivalent), the sysadmin browses each host’s log
file and examines the resulting text output. This ap-
proach is difficult for several reasons: it requires the con-
struction of complex regular expressions or scripts for
searching the logs, manual correlation of events from dif-
ferent logs or hosts, and systematic recording of actions
and results for later study or action. Because this process
is difficult and tedious, most sysadmins can’t fully explore
and understand an attack or document it so that others
can study it.

Components
The Kerf approach contributes five key components to
the intrusion-analysis process.

Secure logging. After successfully compromising a sys-
tem, most hackers remove traces of their intrusion from
the system’s logs. Thus, it is important to securely forward
and store logging information off the host. (For more in-
formation on remote logging, see the “Remote logging
in practice” sidebar.) Many approaches and existing soft-
ware exist for secure real-time transfer of log data from a
collection of hosts to a secure log server. Kerf can take ad-
vantage of any such mechanism. For the purposes of our
prototype, we implemented a secure logging host that
can receive, decode, and store logging information from
multiple sources.

Our approach is similar to that used by the Honeynet
Project.2 The key difference is that the Kerf system em-
ploys only a user-level daemon to forward ordinary sys-

log events, whereas Honeynet uses kernel modifications
to collect and forward more in-depth information,
which involves system performance and management
costs that are undesirable on production systems. Also,
obfuscation of both the origin and character of the
logged traffic is essential to the Honeynet Project’s ap-
proach, whereas we encrypt but don’t disguise our traf-
fic. Kerf ’s logging host receives encrypted User Data
Protocol (UDP) datagrams from its networked clients,
but the logging host itself does not have an IP address.
Thus, the logging host is relatively secure from conven-
tional Internet attacks. The current implementation ac-
cepts Unix syslogs and Windows EventLogs (still under
development). Users can add support for HTTPd logs,
IDS events in intrusion-detection message-exchange
format (IDMEF) format, and network logs,3 or adapt
our logging host to accept log data from other secure
remote-logging tools.

Database. Many intrusions involve multiple hosts, and
evidence of an intrusion might be spread across several
logs of different types. To support fast retrieval of relevant
records, the logging host stores incoming log records in a
database, indexing on important fields (such as host, facil-
ity, and any IP address or username mentioned in the
record). This approach also isolates the log-collection
mechanism from the analysis mechanism and limits the
amount of parsing, indexing, and searching that must be
done within our analysis tool. The current implementa-
tion uses MySQL.

We’ve mentioned how Kerf can aid analysts in exam-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 43

Several free software and commercial tools offer some form of

automation for analyzing system logs from multiple sources;

Tina Bird compiled an excellent survey of these, together with a

collection of links to remote-logging tutorials and system-specific

information (see www.loganalysis.org). Others have also dis-

cussed the practical issues of log processing and database

storage elsewhere.1,2

Efforts to protect remote-logging mechanisms from a sophis-

ticated attacker have been applied in three different directions:

encrypting transmitted information, making the central log host

harder to attack by operating it in sniffing-only mode without

an IP address, and concealing the logging mechanism’s very

existence.

Eric Hines provided a detailed tutorial on using SSL to deliver

syslog events to a central host running Snort (www.securityfocus.

com/guest/3159 and www.securityfocus.com/guest/13283).

However, this approach requires the logging host to have an IP

address. We’re not the first to suggest the use of an IP-less host for

remote logging; indeed, Mick Bauer presented the details at

DefCon.3 Andrew Mitchell and Giovanni Vigna’s Mnemosyne uses

a similar technique to send control messages to an IP-less network

monitor.4 The Honeynet Project combines remote logging with

encrypted packets with an IP-less gateway host much as in Kerf,

but their implementation modifies the Linux kernel and stresses

obfuscation of the logging mechanism’s presence.5

References

1. J. Allison. “Automated Log Processing,” ;login:, vol. 27, no. 6, 2002, pp. 17–20.

2. A. Chuvakin, “Advanced Log Processing,” 2002, http://online.security

focus.com/infocus/1613.

3. M. Bauer, “Stealthful Sniffing, Logging, and Intrusion Detection: Useful

and Fun Things You Can Do Without an IP Address,” presentation at Def-

Con X, Aug. 2002; http://defconx.wiremonkeys.org.

4. A. Mitchell and G. Vigna, “Mnemosyne: Designing and Implementing Net-

work Short-term Memory,” Proc. IEEE Int’l Conf. Eng. of Complex Computer

Systems (ICECCS 02), IEEE CS Press, 2002, pp. 91–100.

5. L. Spitzner, “The Honeynet Project: Trapping the Hackers,” IEEE Security &

Privacy, vol. 1, no. 2, 2003, pp. 15–23.

Remote logging in practice

Intrusion Analysis

ining and extracting data for reporting an incident to law
enforcement authorities. Although the specifics are be-
yond this article’s scope, any such tools must be developed
carefully if their results are to be admissible as evidence.
An analyst can use Kerf to explore the data and then re-
turn to the original files to obtain an “original” copy as
needed. To assist in this process, the logging host can
record the incoming syslog records in flat files as well as
the database, storing each record’s file offset in the data-
base so that records extracted from the database can be
tied back to the flat file as needed.

Domain-specific query language. Given the database of
log records, the analyst could use SQL queries to search for
relevant records. SawQL (pronounced SAW-quill) is our
extension to SQL designed specifically to express a sysad-
min’s hypothesis about an attack with maximum flexibility
by abstracting the underlying database’s schema and join
semantics. SawQL is oriented toward extracting sequences
of logged event records correlated either temporally or on
variables corresponding to common record fields such as
hostnames, IP addresses, ports, and usernames.

By building these features into Kerf ’s language, we
hope to speed up discovery of interesting links in the data
and avoid the problems inherent in using traditional tools.
Such tools offer little help with organizing search results,
correlating results, and suggesting new queries that orga-
nize or refine data sets.

Data organization and presentation. The centerpiece
of the Kerf toolset is the Landing application, which pro-
vides the sysadmin with a graphical interface. Landing lets
the user enter SawQL queries, displays their results, and
lets the user provide feedback to the hypothesis engine.

Given the amount of log data collected from an orga-
nization’s hosts, many queries will retrieve a large number
of matching sequences. Our current implementation
presents the sequence set as a set of trees and uses seman-
tic compression to reduce the matching sequences to a set
of patterns that describe those sequences. We also intend
to explore other approaches.

Hypothesis engine. Given a SawQL query from the
sysadmin, Kerf extracts and displays the matching se-
quences. Using the GUI, the sysadmin can mark each se-
quence as “suspicious” or “innocuous” (not all sequences
need to be marked) and indicate the interesting elements of
each suspicious sequence. Using any feedback provided,
the engine uses algorithms drawn from the machine-learn-
ing community to suggest new queries that better fit the
suspicious data, thus aiding hypothesis refinement.

This component is under development, and the full
details are beyond this article’s scope. When complete,
the hypothesis engine will also support extrapolation
and generalization.

SawQL
SawQL combines the power of relational data representa-
tion with the expressive power of a domain-specific syn-
tax and semantics.

SawQL provides four critical extensions to SQL:

• It includes keywords to describe common features of
log records, such as hostnames, IP addresses, and user-
names. In our implementation, the logging host parses
each incoming log record to extract these fields for the
database record, so later queries can quickly extract
matching records.

• It provides special syntax to express and retrieve se-
quences of correlated logged events, which in raw
SQL would require unwieldy join constructs to de-
scribe. This improvement is essential because most at-
tacks involve a sequence of actions that are visible as a
sequence of records in one or more log files. The goal
of intrusion analysis is to piece together this sequence
of actions.

• It can express connections between records in a se-
quence, using variable names. The query-execution
engine correlates log records into sequences with con-
sistent variable bindings. The two expressions ser-
vice ‘adduser’ AND user ‘%newuser’ and
service ‘login’ AND user ‘%newuser’,
when used in conjunction in a query, would match
pairs of records that referred to the same user.

• It can also express the temporal relationship between
records in a sequence; for example, RELTIME +/- 5
minutes. The temporal proximity of two events is a
critical feature in identifying some attacks. This feature
also constrains the search.

When using traditional tools such as grep, the analyst
must take the results of one search, extract interesting ele-
ments (such as time, username, or IP address), and run
new searches on each. Manual use of the command line,
or writing ad hoc scripts, can be error-prone, time-con-
suming, and difficult to manage. We expect that signifi-
cant gains in analysts’ productivity will come from allevi-
ating these problems.

Temporal correlation is particularly important for an-
alyzing modern network attacks, in which a sophisticated
attacker is likely to conduct reconnaissance, penetration,
and control (removal of penetration traces, installation of
backdoors, and so on) stages from different hosts. Any hy-
pothesis about such an attack necessarily involves an ex-
pression of the temporal proximity of these events and,
thus, temporal correlation of the relevant log records.
Moreover, in a distributed system with many compo-
nents, a certain amount of clock skew is inevitable, and
conceptually simultaneous events will have slightly vary-
ing timestamps. With SawQL, the user can conveniently
mask a known small clock skew in logs by using the REL-

44 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

Intrusion Analysis

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 45

TIME clause with a longer time interval to account for
the skew.

SawQL syntax overview
A SawQL query is a sequence of one or more subqueries
that describes the desired sequence of log records. A se-
quence of records matches the whole query if each record
matches the corresponding subquery in the query, and
the specified temporal relationships between matching
records are satisfied.

Within a subquery, each keyword describes one fea-
ture of the log record (such as a hostname or IP address)
and requires one or more parameters. Each parameter can
be a word or phrase (in single quotes), a regular expres-
sion, a variable name, or a comma-separated list of al-
lowed values (lists will be supported soon).

The Kerf parser converts statements in SawQL into a
set of SQL queries to run against the database.

SawQL correlation engine
SawQL lets the user correlate log entries by time (using
RELTIME) or by keyword values.

Temporal correlation occurs whenever a query con-
tains multiple subqueries. The RELTIME operator sepa-
rates subqueries, expressing the maximum time between
records in the sequence.

Variable correlation occurs whenever the query con-
tains a variable name in place of a parameter’s value. The
variable name begins with a percent sign (%), and the
variable type is defined by the keyword that precedes it
(such as IPADDRESS %addr). Variables express correla-
tions between subquery expressions. For example, when
looking for all FTP accesses on any hosts accessed from
the same remote IP address,

(HOSTS ’.*’ AND SERVICE ’ftp’ AND
IPADDRESS %addr)

RELTIME ’+/- 3 hours’

(HOSTS ’.*’ AND SERVICE ’ftp’ AND
IPADDRESS %addr),

Kerf implements both forms of correlation in the same
manner, as shown in Figure 1’s flowchart, ultimately real-
izing them as inner joins on temporary tables holding in-
termediate results.

Once the correlations are complete, the results are dis-
played in the form of a correlation tree with extracted log
records as nodes; their placement in the tree shows their
positions in the correlated sequences. We delve further
into the display tree and our plans to augment it in the
“Landing application” section.

SawQL examples
The following query examples demonstrate SawQL’s ex-
pressive power.

Finding intrusion traces step by step. A system ad-
ministrator can start with a suspicious event and, in
several steps, interactively derive a query that not only
describes an intrusion but can be run against logs on
other sites or hosts.

Consider the syslog from www.loganalysis.org/
sections/signatures/log-hacked.html. This log corre-
sponds to a real intrusion, and was posted without analy-
sis. Although this example is very simple, it illustrates how
the details observed in the result set lead to the next step.

First, this syslog contains records of activities by a non-
root user with user ID 0, a sign of trouble. A log-watching
component of an IDS can raise an alert about them. This
role could be played on our systems by a periodically sched-
uled set of SawQL queries that includes the following:

(HOSTS ’www’ AND service ’PAM_pwdb’

AND user ’.*/0’ AND NOT user

’root/0’);

This query will flag two matching records:

Sep 23 17:55:34 www PAM_pwdb[28610]:

password for (jogja/506) changed

by ((null)/0)

Sep 23 18:02:48 www PAM_pwdb[30102]:

Figure 1. SawQL query flow. These are the steps involved in running
a SawQL query on the database.

Input: User clicks exec
with valid SawQL statement

Output: Build result tree nodes

Parse SawQl into a command list of SQL queries, variables, relative times

Execute all SQL statements and store intermediate results in database

Determine if result sets need joins for RELTIME or variable correlation

As needed, do RELTIME correlation substitutions into intermediate results

As needed, do RELTIME correlations

As needed, do variable correlations

As needed, do variable correlation substitutions

Intrusion Analysis

password for (D/507) changed by

(jogja/0)

Next, from these two records, the administrator
would immediately notice two suspicious users, jogja and
D, and check for their creation and activities with the fol-
lowing query:

(HOSTS ’www’ AND (user ’D’ OR user

’jogja’));

which would return over 50 lines:

Sep 23 17:52:38 www useradd[28609]:

new user: name=jogja, uid=506,

gid=10, home=/etc/jogja,

shell=/bin/bash

Sep 23 17:55:34 www PAM_pwdb[28610]:

password for (jogja/506) changed by

((null)/0)

Sep 23 17:58:11 www PAM_pwdb[28612]:

authentication failure; (uid=0) ->

jogja for login service

Sep 23 17:58:12 www login[28612]:

FAILED LOGIN 2 FROM 203.155.35.132

FOR jogja, Authentication failure

Sep 23 17:58:16 www PAM_pwdb[28612]:

(login) session opened for user

jogja by (uid=0)

Sep 23 18:00:05 www login[28632]:

FAILED LOGIN 1 FROM 203.55.35.132

FOR D,

User not known to the underlying

authentication module

Sep 23 18:00:12 www PAM_pwdb[28632]:

(login) session opened for user

jogja by (uid=0)

Sep 23 18:02:32 www adduser[30101]:

new user: name=D, uid=507, gid=507,

home=/home/D, shell=/bin/bash

Sep 23 18:02:48 www PAM_pwdb[30102]:

password for (D/507) changed by

(jogja/0)

...

46 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

We list some work in the field that’s related to Kerf.

Remote logging
The Unix syslog facility had long been capable of sending log

records to other hosts for processing or storage,1 but it doesn’t

provide a built-in mechanism for securing this data. Adding

security to remote logging proved to be a nontrivial engineering

problem in the real world, even with IPSec and SSH available for

constructing secure tunnels.2

Languages
Domain-specific languages for intrusion detection (such as STATL,

a state transition-based attack description language;3 Common

Intrusion Language, CISL, http://ieeexplore.ieee.org/xpl/abs_free.

jsp?arNumber=821507; and the RUSSEL query language of ASAX,

(Language for Universal Audit Trail Analysis4) as well as correlation

of event traces are powerful methods of analysis.5,6

These works concentrate on either a systems or theory aspect

of the problem. An intrusion specification language, for example,

can’t usually be directly translated into a query that can be run

against a centralized database of log records. Analyst console tools

don’t usually provide a language that could be used to export and

share an attack’s descriptions.

Kerf combines the strengths of these approaches, providing at

the same time a distributed infrastructure for secure logging, an

analyst’s GUI with a tree-based presentation of query results, and a

domain-specific correlation-oriented language that is both general

enough to express and share information about intrusions, and

can be efficiently used directly in the console application as a

query language for its correlation engine.

Kerf compared to other tools
On one level, Kerf’s architecture reflects the basic necessities of log

processing: parsing event records for useful features and storing

these along with the record’s original form in such a way that sys

admins can search efficiently. However, Kerf, while making the

choices discussed below, adds another level of abstraction to save

the analysts’ time and effort.

Parsing
Kerf attempts to automate the process of loading logs with a syslog-

like format (which is highly variable and not standardized in the

message part of the records)as much as possible. The difficulties of

parsing a significant number of log records are often overlooked,

whereas in practice this can be, and generally is, an arduous task.

Indeed, most log messages come from applications, and follow

whatever format discipline can be enforced on their developers

(almost none in the case of the standard Unix logging, and only a

little better in the Windows world). A parser can be preloaded with

the rules sets for parsing messages from popular applications (such

as Microsoft’s LogParser (www.microsoft.com/windows2000/

downloads/tools/logparser/ and various Web server reporting tools),

but our experience suggests that support for importing logs in a

custom format is crucial. (Sorenson, in his tutorial at www.securi-

tyfocus.com/infocus/1679, discusses a number of tools that output

system information in text format. Although his focus is primarily

Related work

Intrusion Analysis

The administrator can then choose to match con-
nections from a class B network corresponding to the
IPs in the log in step 2 (class C patterns yield no
matches):

(HOSTS ’www’ service ’useradd’ AND

LOGMSG ’new user’ AND user ’jogja’)

RELTIME ’-1 hour’

(HOSTS ‘www’ IPADDRESS ‘203.55.*.*’);

Alternatively, the administrator, having been advised
of a recent ftp vulnerability, can try to ftp messages within
an hour before the first suspicious user creation:

(HOSTS ’www’ service ’useradd’ AND

LOGMSG ’new user’ AND user

’jogja’)

RELTIME ’-1 hour’

(HOSTS ’www’ service ’ftpd’);

Either one of these queries will find the following
records:

Sep 23 17:33:20 www ftpd[28594]: FTP

LOGIN REFUSED (ftp in /etc/ftpusers)

FROM 203.55.23.150

[203.55.23.150], ftp

Sep 23 17:33:47 www ftpd[28595]: FTP

LOGIN REFUSED (ftp in /etc/ftpusers)

FROM 203.55.23.150 [203.55.23.150],

ftp,

which likely give the IP address of the machine used in
penetration.

Notice that the administrator could pursue one line of
queries for a time and then return to an earlier query and
extend it differently. Keeping several branches of investi-
gation open simultaneously is an important requirement
for the GUI.

At this point, the administrator can write a query de-
scribing the attack:

(HOSTS ’www’ service ’ftpd’ AND LOGMSG

’FTP LOGIN REFUSED’)

RELTIME ’+1 hour’

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 47

on obtaining the data in a forensically clean way, we can also think

of this data as input to an intrusion-analysis tool for correlation or

statistical analysis.) To this end, Kerf provides PatternHelper, a tool

for guessing patterns in batches of syslog-like records, and an

interface for user-supplied parser plug-ins for binary formats, fol-

lowing the example of tools such as Snort (www.snort.org), Ethereal

(www.ethereal.com), and others.

Storage
Although many have tried storage solutions other than the rela-

tional database (ASAX is optimized to operate on sequential log

files, suitably reformatted, in one pass), it’s still the simplest choice

for implementations, and almost immediately puts the power of

SQL at the user’s disposal. In this, Kerf is no different from other

log-processing tools (such as ACID; http://acidlab.sourceforge.net)

and other tools that Tina Bird surveyed (www.loganalysis.org).

Expressing correlation
What separates Kerf from other tools using relational databases and

SQL as a back end is its approach to expressing correlations between

events. The main point of its query language design is to allow

describing a sequence of events, correlated on time or use of a par-

ticular system or network resource, in the most natural and concise

form. In other words, SawQL is targeted to describe processes, not

signatures. This significantly differs from the design principles of

pattern-matching languages targeting intrusion signatures (such as

Snort and ASAX). It’s worth noting that pattern-matching languages

tend to expose their underlying matching mechanisms of doing cor-

relation, a variant of a finite-state machine, whereas SawQL hides

the complexity of its own mechanism, leaving space for back-end

optimization of resulting multiple joins in the underlying SQL

queries. SawQL is closer to the STATL approach,3 which provides

more limited support for time correlations.

Framework
Additionally, Kerf attempts to provide a single framework for

handling log data. With Kerf, an initial investment in defining the

features of log records will help save the effort spent on continually

reformatting data during analysis with Unix command-line tools.

Furthermore, Kerf offers a more flexible environment for statistical

analysis of query results than the standard sortable table displays of

Ethereal and SQL-based tools (such as ACID and LogParser).

References

1. S. Romig, “Correlating Log File Entries,” ;login:, vol. 25, no. 7, 2000, pp.

38–44; www.usenix.org/publications/login/2000-11/pdfs/log.pdf

2. V. Prevelakis, “A Secure Station for Network Monitoring and Control,” Proc.

8th Usenix Security Symp., Usenix Assoc., 1999, pp. 115–122.

3. S.T. Eckmann, G. Vigna and R.A. Kemmerer, “STATL: An Attack Language

for State-Based Intrusion Detection,” J. Computer Security, vol. 10, no. 1,

2002, pp. 71–104; www.cs.ucsb.edu/~vigna/publications.html

4. N. Habra et al., “Asax: Software Architecture and Rule-based Language for

Universal Audit Trail Analysis,” Proc. European Symp. Research in Computer

Science (ESORICS 92), Springer-Verlag, 1992, pp. 435–450.

5. P. Ning, Y. Cui, and D.S. Reeves, “Analyzing Intensive Intrusion Alerts via

Correlation,” Proc. 5th Int’l Symp. Recent Advances in Intrusion Detection

(RAID 02), LNCS 2516, Springer-Verlag, 2002, pp. 74–94.

6. B. Morin et al., “M2D2: A Formal Data Model for IDS Correlation,” Proc.

5th Int’l Symp. Recent Advances in Intrusion Detection (RAID‘02), LNCS 2516,

Springer-Verlag, 2002, pp. 115–137.

Intrusion Analysis

48 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

(HOSTS ’www’ service ’useradd’ AND

LOGMSG ’new user’ AND USER

%newuser)

RELTIME ’+10 minutes’

(HOSTS ’www’ service ’PAM_pwdb’ AND

LOGMSG ’password for .* changed

by’ AND USER ’(null)’);

An alternative way of analyzing this attack, if the net-
work had also contained a sensor machine running Snort,
would involve the administrator being warned about the
attack by a Snort alert like this:

Sep 23 17:22:00 ids snort: FTP EXPLOIT

x86 linux overflow [Classification:

Attempted Administrator Privilege

Gain] [Priority: 1]: {TCP}

203.55.23.150:2095 ->

129.170.213.121:21

(129.170.213.121 is our own Web server’s address,
which we substituted for that of the attacked machine
“www.”)

In this case, rather than the query in the first step, the
analysis’ starting point could have been

(HOSTS ’ids’ service ’snort’ AND
LOGMSG ’FTP EXPLOIT’)

RELTIME ’+1 hour’

(HOSTS ’www’ service ’login’);

At this point, the administrator might want to
check whether any users from this machine had con-
nected to other machines while it was compromised
(starting from the first ftpd attack and lasting three
days).

(HOSTS ’www’ service ’ftpd’ AND

ATTACK TYPE DESCRIPTION FINAL SAWQL QUERY

URL: www.loganalysis.org

Attack on ftpd Failed login of one user followed (HOSTS ’www’ service ’PAM_pwdb’ AND LOGMSG ’FAILED

by a login of another, non-root LOGIN’ AND user %newuser)

user and addition of the first user RELTIME ’+5 minutes’

(HOSTS ’www’ service ’PAM_pwdb’ AND LOGMSG ’login’

AND user %olduser AND NOT user ’root’)

RELTIME ’+5 minutes’

(HOSTS ’www’ service ’adduser’ AND LOGMSG ’new

user’ AND user %newuser);

URL: http://project.honeynet.org/challenge/results/submissions/peter/files/messages

Attack on gethostbyname Useradd shortly after a gethost (HOSTS ’www’ service ’rpc.statd’ AND LOGMSG

byname error ’gethostbyname error for’)

RELTIME ’+1 hour’

(HOSTS ’www’ service ’useradd’ AND LOGMSG ’new

(user|group)’);

URL: http://cert.uni-stuttgart.de/archive/bugtraq/2000/05/msg00142.html

Attack on sshd Failed login instantly followed by (HOSTS ’pigpen’ service ’PAM_pwdb’ AND LOGMSG

a successful login ’authentication failure’ AND user %someuser)

RELTIME ’+5 seconds’

(HOSTS ’pigpen’ service ’PAM_pwdb’ AND LOGMSG

’session opened’ AND user %someuser);

http://cert.uni-stuttgart.de/archive/incidents/2000/01/msg00056.html

Buffer overflow attack Amd requested mount instantly (HOSTS ’zenith’,’happy’ service ’amd’ AND LOGMSG

on amd followed by root logout and soon ’amq requested mount’)

followed by a password change RELTIME ’+5 seconds’

(HOSTS ’zenith’,’happy’ service ’PAM_pwdb’ AND

LOGMSG ’session closed’ AND user ’root’)

RELTIME ’+10 minutes’

(HOSTS ’zenith’,’happy’ service ’PAM_pwdb’ AND

LOGMSG ’password for .* changed’);

Table 1. Sample SawQL queries.

LOGMSG ’FTP LOGIN REFUSED’)

RELTIME ’+1 hour’

(HOSTS ’www’ service ’useradd’ AND
LOGMSG ’new user’ AND USER

%newuser)

RELTIME ’+3 days’

(HOSTS ’*’ service ’login’ AND LOGMSG

’FROM www’);

Other examples. Along with this example, we’ve col-
lected several real intrusion logs that were either
posted on the Web or sent to security mailing lists by
system administrators, and wrote SawQL queries that
matched the traces left by the intruders (see Table 1).
Together, these queries illustrate most of SawQL’s
features.

Landing application
We implemented the Kerf user interface, called Landing,
as a stand-alone Java/Swing application. Currently, Land-
ing enables the following functionality (also depicted in
Figure 2):

• entry of SawQL queries;
• control of query execution on the database;
• display of result sets in tree fashion with branch node la-

bels showing the correlation and leaf nodes showing ac-
tual log lines;

• automated hypothesis engine operating independently
in the background while the user works, thanks to its
multithreaded operation;

• user feedback input, to help drive the automated hy-
pothesis engine;

• toggle controls to view the automated query or its results;
• browser-style history list of previously tried queries;
• cut, copy, and paste of SawQL queries; and
• text output of result set.

After executing a query, Landing displays the results
as a tree, with expansion buttons similar to those in
many file managers. The current implementation of
the tree display builds a branch node for each correla-
tion. Nodes are labeled using pieces of the user’s origi-
nal query. The tree’s first level corresponds to initial
events of extracted sequences, and the second and
deeper levels are made up by their respective correlated
following events.

Within the tree display, we embed user interface el-
ements needed for the user to give feedback about a
particular log line’s relevance to their current inquiry.
As noted earlier, each tree node can optionally be
marked relevant (suspicious) or not relevant (not suspi-
cious), as indicated by a check or X. If the user chooses
to give feedback, it is used as an input for the hypothe-
sis engine.

Data organization and presentation
Because the typical data set used with Kerf is large, we
need management tools for organizing the large num-
ber of records retrieved in response to queries. One of
Kerf ’s display tools automatically structures the data
display by analyzing distributions of record parameters
in a result set. For a large result set, we use a recursive
entropy-based algorithm to split the set’s records or
record sequences into groups either directly (using val-
ues of their fields such as IP address or user group) or
indirectly (using features computed from these fields,
such as the likely IP segment of origin). As mentioned
earlier, this structure is superimposed on the existing
Landing correlation tree. The resulting tree has a
nonuniform depth and branching factor, and reflects
the original correlations. The algorithm’s goal is to
achieve a low maximum branching factor at each level
of the refined tree. This property of the tree should
simplify the following tasks, familiar to any analyst
faced with a large result set:

• discovering the result set’s actual composition,
• understanding the distribution and ranges of selected

field values in event records and finding subsets of
anomalous records,

• navigating to the subsets of interest, and
• extracting the subsets of interest for use with another

query.

An important side effect of the grouping algorithm is
that it will likely separate the main bulk of results (“nor-

Intrusion Analysis

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 49

Figure 2. The Landing application interface, with feedback panel.
The user enters a SawQL query in the upper left, and results appear
in the bottom pane. Users can mark records as interesting or not
using the checkboxes in the results area or mark parts of a record in
the fields along the right edge.

mal” events) from the statistically anomalous rest of the
distribution, which is where leads for intrusion-
hypothesis refinement are often found.

The user can add additional levels of grouping by
choosing from a list of standard features or defining cus-
tom ones, or they can directly specify how the tree should
be rearranged from the top down, bypassing the grouping
algorithm. In either case, the tree is rebuilt without re-
running the query by a module separate from the Kerf
query engine.

We record all the user’s grouping records and feature
choices and save them as a classification template that
can be applied to other result sets, instantiating group-
ing nodes to refine them for easier handling. This
recording is transparent to the user, although he or she
could choose to view the templates and edit them. The
template language resembles XSLT, a language for
transforming XML documents into other XML docu-
ments, and combines features of decision lists and clas-
sification trees.

Kerf users will notice that the simplest operations on
the tree’s group nodes (that is, subsets of the result set)
have effects similar to those of grep ... | sort |
uniq -c | sort -n or select distinct ...

group by ... order by ... statements of shell
and SQL environments respectively, but give the user
much more flexibility in defining and connecting the fil-
ters and in keeping all the records within a common clas-
sification framework.

A simple example
Let’s look at an example of reducing a flat list of records
(from a simple query without correlation, on an actual

Unix system log) into a manageable tree. The user is a
system administrator concerned with logins from a cer-
tain ISP’s network and wants a brief summary of failed
and successful logins. A query for login events from
*.isp.net returns some 600 records. It turned out that all
logins were from two legitimate users who happened
to inhabit distinct dynamic IP ranges, one of whom was
prone to typos. The feature pair (user, host) was found
by the entropy-based data organization algorithm to
produce the best tree-form. The user was thus pre-
sented with a 12-line summarization of the 600-line
result set. It also became clear that most logins came
from one of these users, and his login records were fur-
ther grouped by month for better presentation (shown
in Figure 3).

Performance
We investigated the scalability of Kerf ’s performance for
log-message reception and processing and log line re-
trieval when doing correlation.

Load scalability of
log message processing
We measured the performance of Kerf ’s log-collection
component (which comprises syslog-receiving applica-
tion and the MySQL database) to discover the maximum
amount of message traffic our system can handle. A com-
puting cluster with 11 cluster nodes acted as clients, send-
ing syslog data to the log host. The nodes were connected
via gigabit Ethernet through a switch to a gateway ma-
chine, which linked them to our 100-Mbps building
LAN.

CPU utilization reached a plateau at 539,352 mes-
sages per hour, with an average log message size of 74
bytes, indicating a performance limit. Both CPUs were
still about 48 percent idle, proving that the log host was
not CPU-bound. Measurements of network band-
width utilization averaged about 80,000 bytes per sec-
ond, which corresponds to 1/100th of the total net-
work bandwidth available; thus, network bandwidth
was not the limiting factor. Measurements of disk I/O
showed write speed to the disk to be the limiting factor
in performance. In particular, disk-seek times for data-
base index writes to the disk were the primary limit on
disk-write speed, even though there was unused disk-
bus capacity.

Although more tests are necessary to adequately
map the performance of a larger range of message sizes
and log host configurations, it’s clear that with a server
of the size and capabilities we chose, a single host per-
forming log collection could support a fairly large col-
lection of client machines.

Query scalability
When the Landing application is used to input SawQL,

Intrusion Analysis

50 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

Figure 3. Tree view, some nodes expanded. The Kerf module for
adaptive display of query results chose this summarization of the
600+ login events from *.isp.net.

each atomic SawQL statement generates a single SQL
query. Each SQL query returns a result set of the actual
log lines matching those parameters. When time or vari-
able correlation is included as part of the SawQL state-
ment, it’s necessary to store these intermediate result sets
as temporary database tables and perform what is nor-
mally an inner join to get the final results.

We studied SawQL queries involving variable cor-
relation. In the variable correlation case, the number of
found results to correlate is the most important factor
in determining how long a query will take to resolve.
This number is the intermediate result set size; it is the
number of results returned by the previous, non-
joining SQL queries.

For the following query form,

(HOSTS ’tahoe’ service ’ftpd’ AND
ipaddress=%ipaddress AND
ABSTIME ’11/10/02 04:00 AM,

EDT’, ’11/30/02 06:33 AM, EDT’)

RELTIME ’+/-0 days 1:00:00’

(HOSTS ’tahoe’ service sshd’ AND
ipaddress=%ipaddress AND
ABSTIME ’11/10/02 04:00 AM,

EDT’, ’11/30/02 06:33 AM, EDT’);

Figure 4 plots the total query time as the intermediate re-
sult set size grows, as well as two key components of the
total query time: the time spent correlating records based
on one variable, and the time spent correlating the results
on time. While the time for a query does grow in a
superlinear fashion, we believe it grows in a limited
enough fashion to show that Kerf would be useful on
large log databases—even when the analyst wants to per-
form the most demanding task of variable correlation on
items that appear frequently in the database. The spike in
the lower curve (time correlation) at the far right of Fig-
ure 4 is due to filling real memory and forcing the kernel
to swap out to disk. We can alert the user that his or her
query will use more than the available physical memory
in future versions.

With tuning, we believe we can reduce the total query
time and flatten the curves in Figure 4. Several improve-
ments are possible in the code that manages the correla-
tion process (see Figure 5). We also plan to use a newly re-
leased feature of MySQL that allows for subselects, which
should let us remove the code for managing the storage of
intermediate result set tables and reduce much of the as-
sociated interprocess communication time. We might
also use a “RAIDb” configuration, in which the database
query can be spread across multiple database engines,
hosts, and disks.

Our goal is to support open-ended queries on data-
bases that might contain many matching instances, be-
cause an analyst’s initial hypothesis (query) could be quite

broad. To work toward this goal, we’re trying to increase
system performance and provide more support in the
user interface to let analysts prejudge queries’ effective-
ness and time to complete.

Possible vulnerabilities
This discussion wouldn’t be complete without examin-
ing Kerf ’s weaknesses. Most are characteristic of any
remote-logging scheme.

Attackers can use several possible approaches to at-
tack a Kerf installation. They can try to prevent log mes-
sages from reaching the central logger by creating a de-
nial-of-service condition on the network; in particular,
they can attempt to cause another machine with a Kerf

Intrusion Analysis

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 51

Figure 4. Intermediate result set size versus time for queries involving
correlation. The graph shows how query time (and the time-
correlation and variable-correlation components of the query time)
vary as the size of the results returned by the query varies.

Ti
m

e
(s

ec
on

ds
)

Intermediate result set size (log lines)
0 100,000 200,000 300,000

2,500

2,000

1,500

1,000

500

0

Time correlation
Variable correlation
Total query time

Figure 5. Time breakdown of a query involving time and variable
correlation. This graph shows the contributions each step of the
query process contributes to the overall query time.

Total time for query

SQL joins for correlations

Our code-managing SQL

Storing result sets

Building display nodes

0 87.5 175.0 262.5 350.0

Time (seconds)

Intrusion Analysis

transponder to emit a lot of messages with which the
message relevant to ongoing penetration of the current
target will have to contend. The hope here is that the
important trace message will be dropped (and then
deleted from the local log when penetration succeeds).
Additionally, once attackers achieve user-level privi-
leges on a Unix machine with standard syslogd, they can
forge messages from any daemon using the logger utility
or syslog. These two methods can be used, respectively,
to deny the analyst vital information for analysis and to
confuse him or her with false intrusion traces. The
prospective Kerf user should be aware of these issues and
account for the possibility that messages from a compro-
mised machine might not only be masked, but also
forged, and watch out for high levels of noise.

I n the near term, we plan to extend our system to
handle other kinds of logs—in particular, kernel logs

such as those produced by Sun’s Solaris Basic Security
Module (wwws.sun.com/software/security/audit/)
and Linux syscall loggers such as Snare (www.intersect
alliance.com/projects/Snare/) or Syscalltrack (http://
syscalltrack.sourceforge.net/).

In the long term, a major goal of the Kerf project is to
provide semiautomated tools to aid the analyst in hy-
pothesis generation, refinement, archival, generaliza-
tion, and extrapolation. To this end, we’re developing a
hypothesis engine, consisting of a hypothesis-genera-
tion module that assists the user in formulating the ini-
tial hypothesis; a hypothesis-refinement module, which
assists the user in modifying the initial hypothesis to bet-
ter target suspicious behavior; and a hypothesis-sharing
module, which assists the user in taking the final hy-
pothesis and archiving it for later use, extrapolating for
other specific users and domains, and generalizing it for
wider applicability.

We expect our new algorithms and tools to be a
unique contribution to the current state of intrusion-
analysis tools.

Acknowledgments
Marco Cremonini and Andrea Schiavoni designed and implemented an
earlier prototype of a similar log-collection and analysis tool. We thank
Giovanni Vigna and George Bakos for their helpful discussions and for
help locating host and network log data. We also appreciate the input of
other members of the Institute for Security Technology Studies who com-
mented on the current state of the art and needs of intrusion-analysis tools.

The Kerf project is part of Dartmouth’s Institute for Security Tech-
nology Studies (ISTS), and it is funded under award number 2000-
DT-CX-K001 from the US Office for Domestic Preparedness, US
Department of Homeland Security, which supported this project.
Points of view in this document are those of the authors and don’t nec-
essarily represent the official position of the US Department of Home-
land Security.

References
1. J. Haines et al., “Validation of Sensor Alert Correla-

tors,” IEEE Security & Privacy, vol. 1, no. 1, 2003, pp.
46–56.

2. L. Spitzner, “The Honeynet Project: Trapping the Hack-
ers,” IEEE Security & Privacy, vol. 1, no. 2, 2003, pp.
15–23.

3. A. Mitchell and G. Vigna, “Mnemosyne: Designing and
Implementing Network Short-term Memory,” Proc.
IEEE Int’l Conf. Eng. Complex Computer Systems
(ICECCS 02), 2002, IEEE CS Press, pp. 91–100.

Javed Aslam is an associate professor in the College of Com-
puter and Information Science at Northeastern University. His
research interests include machine learning, information
retrieval, computer security, and the design and analysis of algo-
rithms. Aslam received a BS in electrical engineering and math-
ematics from the University of Notre Dame, and a PhD in
computer science from MIT. He is a member of the ACM and
the IEEE. Contact him at jaa@ccs.neu.edu.

Sergey Bratus is a postdoctoral research associate at Dartmouth
College’s Computer Science Department. His research focuses
on applications of machine learning and AI techniques to intru-
sion analysis. He received his undergraduate education at the
Moscow Institute of Physics and Technology and his PhD from
Northeastern University. He is a member of Usenix. Contact him
at sergey@cs.dartmouth.edu.

David Kotz is a professor of computer science at Dartmouth
College, director of the Center for Mobile Computing, and exec-
utive director of the Institute for Security Technology Studies.
His research interests include context-aware mobile computing,
pervasive computing, wireless networks, and intrusion detec-
tion. He received an AB in computer science and physics from
Dartmouth and a PhD in computer science from Duke Univer-
sity. He is a member of the ACM, the IEEE Computer Society,
Usenix, and Computer Professionals for Social Responsibility.
Contact him at dfk@cs.dartmouth.edu.

Ronald Peterson is a senior programmer in Dartmouth College’s
Computer Science Department, and owner of Peterson Enter-
prises, which develops PC-based MIDI musical instruments and
graphics software. His research interests include cybersecurity,
wireless sensor systems, cattle herding, mobile agents, and
machine-vision interfaces for novel musical instruments. He
received a BA in physics from Lawrence University. Contact him
at rapjr@cs.dartmouth.edu.

Daniela Rus is an associate professor in the Electrical Engineer-
ing and Computer Science department at MIT. Her research
interests include distributed robotics, mobile computing, and
self-organization. She has a PhD in computer science from Cor-
nell University. She was the recipient of an NSF Career award,
is an Alfred P. Sloan Foundation Fellow, and a class of 2002
MacArthur Fellow. Contact her at rus@csail.mit.edu.

Brett Tofel is a research associate at Dartmouth College’s Insti-
tute for Security Technology Studies. His research focuses on the
fast analysis of logs from numerous hosts looking for intrusion
detection. He has founded and sold a publicly-traded software
company; been a senior network engineer for five years for
ValleyNet, a nonprofit ISP; and climbed Mount Shasta. He has
a BS in engineering from Rensselaer Polytechnic Institute. Con-
tact him at btofel@valley.net.

52 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

	Northeastern University
	November 01, 2004
	The Kerf toolkit for intrusion analysis
	Javed A. Aslam
	Sergey Bratus
	David Kotz
	Ron Peterson
	Brett Tofel
	See next page for additional authors
	Recommended Citation
	Author(s)

