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Audio-visual Information Fusion In Human
Computer Interfaces and Intelligent Environments:
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Abstract—Microphones and cameras have been extensively
used to observe and detect human activity and to facilitate
natural modes of interaction between humans and intelligent
systems. Human brain processes the audio and video modalities
extracting complementary and robust information from them.
Intelligent systems with audio-visual sensors should be capable
of achieving similar goals. The audio-visual information fusion
strategy is a key component in designing such systems. In
this paper we exclusively survey the fusion techniques used
in various audio-visual information fusion tasks. The fusion
strategy used tends to depend mainly on the model, probabilistic
or otherwise, used in the particular task to process sensory
information to obtain higher level semantic information. The
models themselves are task oriented. In this paper we describe
the fusion strategies and the corresponding models used in audio-
visual tasks such as speech recognition, tracking, biometrics,
affective state recognition and meeting scene analysis. We also
review the challenges and existing solutions and also unresolved
or partially resolved issues in these fields. Specifically, we discuss
established and upcoming work in hierarchical fusion strategies
and crossmodal learning techniques, identifying these as critical
areas of research in the future development of intelligent systems.

Index Terms—Multimodal systems, Information fusion, Audio-
visual fusion, human activity analysis, Machine learning, Hidden
Markov models, Dynamic Bayesian networks, Human activity
modeling.

I. INTRODUCTION

THE Turing test [1] suggests that a machine can be
considered intelligent if a human judge involved in a

natural conversation with a human and the machine, cannot
distinguish between the two. The field of artificial intelligence,
thus has its roots in making machines human-like, with the
ability to perceive, analyze and respond to their surroundings
in a way that is natural and seamless to humans. Since human
perception is multimodal in nature, with speech and vision
being the primary senses, significant research effort has been
focussed on developing intelligent systems with audio and
video interfaces[2].

The traditional interfaces such as keyboard, mouse and even
close-talking microphones are considered too restrictive to
facilitate natural interaction between humans and computers.
Research efforts have been focussed on developing non-
intrusive sensors such as cameras and far field microphones so
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that humans can communicate through natural means like con-
versational speech and gestures, without feeling encumbered
by the presence of sensors. In other words, the computer has to
fade into the background, allowing the users of the intelligent
systems to conduct their activities in a natural manner. This
necessitates the use of multimodal, especially audio-visual
systems. Audio-visual systems are not restricted to human
computer interfaces (HCI) alone. In several applications such
as meeting archival and retrieval and human behavioral studies,
audio-visual fusion can be applied as a post processing step.
The techniques covered in this survey are also applicable in
this context and not restricted to real-time interfaces.

Another significant advantage of using multimodal sensors
is the robustness to environment and sensor noise that can
be achieved through careful integration of information from
different types of sensors. This is particularly true in cases
where a particular human activity can be deduced from two
or more different sensory cues, like for example, audio and lip
movements in the case of human speech. Many other tasks like
person tracking, head pose estimation, affective state analysis
also exhibit significant overlap in the information conveyed
over multiple modalities, especially audio and video.

Though different sensors might carry redundant information
as suggested in the previous paragraph, these sensors are rarely
equal, in the sense, they carry complementary information too,
making it advantageous to use certain sensors over others
for certain tasks. This is clearly demonstrated in the case
of speech and gesture analysis for HCI applications, where
the information carried through gestures complements the
information presented through speech. Utilizing both these
cues leads to a system that can understand the user more
completely than using just one of the modalities.

There is yet another advantage of multimodal systems that
has not been explored much in the existing literature. It is the
ability to utilize the different modalities to learn cross-modal
correspondences in an unsupervised manner. This has been
studied in much detail in human cognitive studies[3][4]. This
line of research holds promise in allowing us to exploit one
of the biggest advantages of multimodal systems[5].

In this survey, we restrict our attention to systems that
integrate multimodal sensory information to recognize human
activities. Several recent surveys have been published in the
area of human computer interfaces. Past surveys have looked
into general information fusion schemes [6]. However, we
are not aware of any survey that is wholly dedicated to
sensory information fusion techniques used in multimodal
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Fig. 1. An audio-visual emotion detection example illustrating the key
issues in multimodal emotion detection and highlighting those discussed in
this survey.

human activity analysis systems. The application domains of
such systems are varied and include meeting analysis, robotics,
biometrics, smart rooms etc.

Past surveys indicate the necessity for further research in the
fusion schemes [7] [8]. Through this survey we hope to fill in
the gap that exists in the systematic understanding of the chal-
lenges and existing solutions for fusion of sensory information
across varying application domains. We critically compare
the models and algorithms used to fuse information from
multimodal, primarily audio-visual, sensors for human activity
analysis. We also present some recent work from related fields
like cognitive sciences that are relevant to addressing some of
the challenges in current multimodal human activity analysis
systems. In the present survey, we also restrict our attention
to multimodal systems which use audio and visual sensors.
However, the fusion techniques described are in general appli-
cable to a variety of multimodal systems and hence wherever
appropriate we refer to multimodal systems as opposed to
audio-visual systems. In Figure 1, we use the example of
an audio-visual emotion detection scheme to illustrate some
key points of information fusion covered in our survey. There
are other components of interest in these schemes such as
sensor configuration, feature selection, modeling and training.
It is almost impossible to totally separate these issues from
one another and from the fusion strategies used. However,
for the purpose of this survey, we try to focus on the fusion
strategies alone. In the final sections of the survey, we focus
our attention on critical future research directions in the areas
of intelligent system design in general and human activity
analysis in particular.

The rest of this paper is organized as follows. In section
II, we discuss the theoretical and practical benefits of audio-
visual fusion. We also outline a few concrete application areas
where such fusion schemes can be very useful. In Section
III, we propose a criterion for organizing the fusion strategies
described so far in literature and we describe the fusion
techniques in general, organized according to this criterion. We
then compare some important fusion schemes used in practice
in Section IV, organized according to their application domain.
Finally in Section V, we highlight three key challenges that
need to be addressed in the future and the ongoing efforts in

that direction.

II. BENEFITS OF AUDIO-VISUAL FUSION

Human activity and interaction is inherently multimodal.
Vision and hearing are the primary senses used by humans
to comprehend the complex world as well as to communicate
with each other. Several psychological studies have outlined
the fusion of audio and visual information by humans for
performing particular tasks. A classic example is that of lip
reading. Another example is that of audio source localiza-
tion. These studies provide the basis for intelligent system
researchers to incorporate either audio or visual or both
the modalities in order to accomplish a particular task. It
is necessary while designing such systems to evaluate the
benefits and costs associated with using both audio and visual
sensory modalities as opposed to using just one of them.

An example is the detailed analysis provided in Table II
for the audio-visual speech recognition task. Such an analysis
requires the collection of a standard dataset to evaluate the
performance of the system. However, in practice, collecting
such a dataset is extremely difficulty due to the varied nature
of scenes and sensor configurations in which audio-visual
fusion is applied. Consider the application of audio-visual
speech recognition for a menu based system on an aircraft
carrier deck with very high background noise levels. In such
a situation, the performance depends on the configuration of
the microphones as well as whether a head-mounted camera
can be used to capture the lips of the speaker. In a meeting
room however, the cameras and microphones are usually
farther away from the users and though background noise is
not much of an issue, far field sensors pose new challenges
here. This is further complicated by the fact that the size
and composition of the room affects the reverberation and
visual clutter, posing different challenges to the audio and
video processing. Inside a car cockpit, audio-visual speech
recognition needs to address the issue of reverberation, back
ground noise as well as overlapped speech from the other
passengers. Thus there is a need to collect domain-specific
audio-visual datasets as opposed to task specific datasets. For
example, the CLEAR 2006 evaluation [9] and CLEAR 2007
evaluation [10] consider the domain of meeting scenes and
then poses the question - what audio-visual fusion strategies
can be employed in this context.

Cameras and microphones are ubiquitous and the current
challenge is no longer the cost of deploying these sensors.
Computational resources necessary to process the multiple
data streams might be a limitation in some applications such
as in mobile devices. However, the ongoing trends indicate
that computational power will not be a bottleneck either. In
order to be effective, an audio-visual system needs to use an
effective fusion strategies. As outlined in the later sections
of this survey, several audio-visual tasks, their corresponding
suitable feature sets and fusion strategies have been explored
by the research community. However, the selection of a
suitable fusion strategy for a particular task at hand is non-
trivial and requires domain expertise. This is a significant
hurdle in the widespread deployment of audio-visual systems.
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Future research needs to address this challenge by developing
adaptive and context based fusion strategies. Online learning
and automatic sensor calibration strategies will play a major
role in the next generation of audio-visual systems.

A. Application domains

As discussed in the previous section, the selection of audio-
visual fusion strategies is specific to the scene and sensor
configuration. In this section we will briefly outline a few
practical application domains.

The most extensively researched domain is that of meeting
scenes. The challenge here is to use far-field cameras and
microphones to analyze the human activity in a meeting scene,
which typically has multiple subjects. A practical example of
meeting analysis can be seen in [11]. Far-field sensors are
necessitated for developing an unobtrusive system. Tasks such
as person tracking, speech recognition, speech enhancement
and person identification are performed using audio and visual
cues.

Natural human computer interfaces are another domain
where audio-visual fusion is critical. Here again, far-field
sensors are used, however, the subject is usually co-operative
and frequently adapts to the system.

Health smart homes and assisted living for people with
disabilities is yet another area where audio-visual systems are
needed [12]. This includes passive surveillance of the scene for
detecting certain events of interest such as an individual losing
consciousness/mobility as well as active interaction with the
subjects.

Intelligent vehicles have advanced significantly and include
several driver assistance technologies [13][14]. Such driver as-
sistance systems and the interaction with the car’s infotainment
system could benefit significantly by the use of both audio
and visual cues[15]. Speech recognition, person identification,
affect analysis are tasks of interest in this context.

Several psychoanalytical studies involve the segmentation
and labeling of audio-visual recording of subjects. Using
audio-visual fusion framework to develop segmentation al-
gorithms has a great potential in making this process more
efficient and affordable.

In figure 2, we present audio-visual testbeds involving
meeting scenes, natural HCI and intelligent vehicles. Though
audio-visual fusion is not commonly employed in the real-
world applications at present, there is a lot of potential that
needs to be explored and these testbeds are a first step in that
direction.

III. AUDIO-VISUAL INFORMATION FUSION SCHEMES

The varied application domains of multimodal human activ-
ity analysis systems have always presented a challenge to the
systematic understanding of their information fusion models
and algorithms. The traditional approach to information fusion
schemes classifies them based on early, late and interme-
diate fusion strategies and describes their associated merits.
However most multimodal systems are built to exploit one
or more of the advantages as described in Section I. Thus a
classification of the fusion strategies based on their ”intent”

would provide a new angle to look at these schemes. Also, the
various models used, probabilistic and otherwise also need
to be examined for their merits in the fusion schemes. In
this survey, we organize the existing research in multimodal
information fusion schemes based on these criteria.

Humans are the ultimate intelligent systems equipped with
multimodal sensors and the capability to seamlessly process,
analyze, learn and respond to multimodal cues. Humans beings
seem to learn the cross-modal correspondences early on and
use that along with other techniques to combine the multi-
modal information at various levels of abstraction. This seems
to be the ideal approach to sensory information fusion as
exemplified by the success of hierarchical modeling schemes.
However significant progress is necessary before computers
can begin to process multimodal information at the level of
humans. The models and algorithms used in intelligent sys-
tems need not be motivated by human information processing
alone. However, human cognition can provide valuable insight
into the what and how of intelligent systems.

It is extremely challenging to organize the extensive litera-
ture in the field of multimodal systems in a precise and useful
manner, in order to be able to extract meaningful information
from it. In this survey, we aspire to systematically classify
and study the various multimodal information fusion schemes
reported in the literature of human activity analysis so far. In
this section we organize the multimodal fusion schemes based
on their primary ”intent”, that is, the primary reason among
those specified in Section I that the researchers have tried
to address in designing the system. For example, an audio-
visual speech recognition system’s intent would be to achieve
robustness to environmental and sensor noise. Further, we
explore the traditional early/intermediate/late fusion strategies
and the different modeling techniques used under each of these
main categories. Thus the systems are classified as those that
use multimodal sensors primarily for

• Achieving robustness to environmental and sensor
noise.

• Facilitating natural human computer interaction.
• Exploiting complementary information across modal-

ities.
Achieving robustness to environmental and sensor noise is

the traditional motivation for audio-visual information fusion.
Thus this category includes the major part of the multimodal
fusion strategies studied so far. The most widely accepted
notion of sensory information fusion applies to these systems.
Those tasks which involve redundant cues in multiple modal-
ities due to the nature of the human activity, fall under this
group. Audio-visual speech recognition is the classic example
of such a task. It is also one of the earliest areas to gener-
ate considerable research interest in multimodal information
fusion techniques. We also cover other areas including audio-
visual person tracking, affect analysis, person identification
etc. However, the organization will be based on the fusion
strategies rather than the particular application domain. In
earlier literature[16][7], fusion strategies have been classified
as follows -

• Signal enhancement and sensor level fusion strategies.
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Fig. 2. Audio-visual testbeds involving a meeting scene, natural HCI and an intelligent vehicle. These are some of the examples where the benefits of
audio-visual fusion are being demonstrated in real-world situations.

• Feature level fusion strategies.
• Classifier level fusion strategies.
• Decision level fusion strategies.
• Semantic level fusion strategies.
In the following sections we will explore systems that utilize

these strategies and discuss their relative merits and de-merits.

A. Signal enhancement and sensor level fusion strategies

This includes signal enhancement techniques such as beam-
forming using microphone arrays. It is conceivable that video
information could be useful in the beamforming process as in
[17][18][19]. Also, camera networks could benefit from the
source localization and pan-tilt-zoom cameras might be able
to capture better images of the scene. However such schemes
are rarely described in isolation and we present more examples
in later sections (V-A) that deal with hierarchical approaches.

B. Feature level fusion strategies

Cognitive scientists refer to this as the early fusion strategy.
This is also referred to as the data to decision fusion scheme

in literature[20][21]. Some tasks such as automatic speech
recognition, person tracking, affect analysis etc produce cues
in multiple modalities in a temporally correlated manner. Note
that an up-sampling or a down-sampling stage is sometimes
necessary in order to align the streams to each other. A
representative example is the case of audio signals and lip
movements carrying the information about the spoken word in
the audio and visual modality respectively. In these cases, an
early fusion strategy is feasible. In this case, one concatenates
the feature vectors from the multiple modalities to obtain a
combined feature vector which is then used for the classifi-
cation task. Figure 4 is a schematic representation of typical
feature fusion schemes.

This early fusion has the advantage that it can provide
better discriminatory ability for the classifier by exploiting
the covariations between the audio and video features[20].
However, the larger dimensionality of the combined feature
vector presents challenges for the classifier design. In order to
overcome this, standard dimensionality reduction techniques
such as DCT, PCA, LDA and QDA are applied. LDA and QDA
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Fig. 3. Information fusion at various levels of signal abstraction is depicted here.

based systems are know to out-perform PCA based systems
in classification tasks. However, in the presence of limited
training data, PCA is more stable than LDA[22]. The optimal
dimensionality reduction technique also depends on the nature
of the classifier used. Theoretically, kernel based classifiers
like SVMs do not require an explicit dimensionality reduction
step. However, most multimodal systems adopting an early
fusion strategy are based on HMM based classifiers and do
benefit from dimensionality reduction.

As an example, [23] presents an elaborate scheme for
early fusion of audio-visual information for speech recognition
which includes both early and late fusion. The early fusion
consists of the DCT and multiple PCA steps to reduce the
dimensionality of the audio-visual feature vector. Early fusion
strategy with a HMM based classifier is also explored in [24]
for the purpose of analyzing group actions in meetings. 39
features including 18 audio features and 21 visual features are
concatenated and used to recognize group actions in meeting
recordings. This early fusion scheme is second in performance
only to an intermediate fusion strategy using asynchronous
HMMs (10% vs 9.2% error rates), revealing that the simple
early fusion strategy is quite effective if used in the right task.
Another example of early fusion for audio-visual tracking can
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be seen in [25]. Here the microphone arrays and cameras are
treated as generalized directional sensors and treated equiva-
lently. [26] proposes an iterated extended Kalman filter (IEKF)
for audio-visual source tracking by concatenating audio and
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visual features.
The early fusion technique has the advantage of being the

simplest to implement and is suitable for those applications
which require very fast processing of cues. However, it cannot
be applied to most tasks where strictly temporally synchro-
nized cues are not present. Also, the feature concatenation
performs poorly when the reliability of the different modalities
during the training phase differ from the actual operation
phase.

C. Classifier level fusion strategies

Cognitive scientists refer to this as the intermediate fusion
strategy. This is typically encountered in cases where HMMs
(and their hierarchical counterparts) and Dynamic Bayesian
networks are used to model individual streams. In such cases,
the information can be fused within the classifier, but after
processing the feature vectors separately. Thus a composite
classifier is generated to process the individual data streams.
The intermediate fusion strategy is an attempt to avoid the
limitations of both early and late fusion strategies . Un-
like early fusion, fusion at the classifier level does allow
the weighted combination of different modalities based on
their reliability[27]. These weighted combinations however are
taken on each frame, allowing for a much finer combination
of cues than in late fusion. Such fusion schemes are widely
used in audio-visual speech recognition systems. Figure 5
is a schematic representation of typical intermediate fusion
schemes.

Asynchrony between the different streams can be modeled
to some extent. This is critical in cases such as audio-visual
speech recognition where the audio and video asynchrony
is of the order of 100ms whereas the frame duration is
typically 25ms[28][16]. Different degrees of asynchrony are
allowed at the cost of complexity and speed. The multi-
stream HMM[29][30] assumes perfect synchrony between the
different streams. On the other extreme is the model that
allows complete asynchrony between the streams. This is
however infeasible due to the exponential increase in the
number of state combinations possible due to the asynchrony.
An intermediate solution is given by the product HMM [31]
or the coupled HMM [32]. In case of audio-visual speech
recognition, this corresponds to imposing phone synchrony as
opposed to the frame synchrony of the multistream HMM.

The coupled hidden Markov model and the multistream
hidden Markov model have been used to improve the
performance of audio-visual speech recognition [29], [32],
[33]. These schemes have also been applied in other areas
of research such as biometrics[34], audio-visual head pose
estimation using the particle filter framework[35], audio-
visual person tracking[36][37][38][39], audio-visual aggres-
sion detection[40]. However, in the real-world situations, the
reliability of the different streams varies with time. For exam-
ple, the video channel in audio visual speech recognition might
be completely unreliable if the speaker covers the mouth with
the hand or turns away from the camera[41]. In this case, it is
useful to be able to estimate the reliability of each channel
continuously and weight them accordingly. Stream weight
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estimation and its adaptive counterparts have been presented in
literature[16][42]. The iterative decoding algorithm [41] solves
this problem by using techniques burrowed from turbo codes
[43]. The iterative decoding algorithm has been applied to the
problem of audio visual speech recognition[33] on the GRID
audio-visual speech corpus[44] and to the problem of person
tracking using the audio-visual cues in [37].

D. Decision level fusion strategies
Late or decision level fusion involves the combination of

probability scores or likelihood values obtained from separate
uni-modal classifiers to come up with a combined decision.
In cases where strictly temporally synchronized cues are
absent, late integration is still feasible. Typically late fusion
involves using independent classifiers, one for each modality
and combining the likelihood scores based on some reliability
based weighting scheme. The training and decoding these uni-
modal models scales linearly in the number of streams which
makes these schemes particularly attractive. The reliability
of the streams is typically used by exponentially weighting
the probability scores from individual streams before taking
their product. Such a combination scheme with appropriate
weighting scheme has been used for audio-visual speech
recognition[29]. However, in case of audio-visual speech
recognition, the late fusion strategy has been shown to be
inferior to the intermediate fusion strategy discussed in the
previous section[29]. Figure 6 is a schematic representation
of typical decision fusion schemes.

The weighting scheme used in late fusion draws upon the
work in combination theory to estimate the best weighting
factors based on the training data. This is however a limitation
when there is a mismatch between the training database and
the actual operation. As with the intermediate fusion strategy,
decision fusion allows for separate weighting of the different
streams based on the reliability. However the fusion is not at
the level of frames but at a higher levels. For example, in
the audio-visual speech recognition context, the decision level
fusion could take place at the utterance level. Decision level
fusion allows maximum flexibility in the choice of individual
classifiers. [45] explores the use of decision level fusion for
audio-visual person identification. The lack of state correspon-
dences in the text independent person ID task imposes the late
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fusion strategy in this case. The authors also acknowledge
the importance of optimal weighting in the decision fusion.
[46] is another audio-visual person identification system based
on decision level fusion. [47] describes an audio-visual affect
recognition which uses decision level fusion to combine facial
expressions and prosodic cues for affective state recognition.

E. Hybrid fusion strategies

A combination of the above mentioned fusion strategies is
also reported in literature. In [16] a combination of feature
level fusion with decision level fusion is used in the context
of an audio-visual speech recognition task. The audio and
visual feature are combined early on through a discriminatory
feature selection process and the discriminatory features are
used again as one of the streams in a multi-stream based
decision fusion technique. There is no theoretical basis for
such a scheme, however in practice, it is shown to improve the
recognition accuracy. Canonical correlation analysis (CCA)
is a statistical approach that combines linear dimensionality
reduction and fusion by computing linear projections that are
maximally correlated. It is a combination of early and late
fusion strategies. [48] applied CCA to a open-set speaker
identification problem. More recently, a spectral diffusion
framework has been proposed to provide a uniform embedding
of data for multisensory fusion [49].

F. Semantic level fusion strategies

It is conceivable that higher level information can be merged
after the semantic interpretation of the sensory information.
This is beyond the scope of our survey because usually
such fusion schemes will involve other modalities like text,
webpages and other such sources of information that are
amenable to semantic interpretation.

G. Facilitating natural human computer interaction

This is yet another category of audio-visual fusion strategies
that we will review briefly. In this category we include
those systems which use multimodal sensors with the primary

intention of facilitating natural modes of interaction for the
users. As such, these systems do not focus on the actual
fusion of multimodal sensory cues, with emphasis being more
on the interaction part rather than sensing part. Nevertheless
the systems use multimodal sensors and incorporate some
aspects of fusion. Human-robot interaction [50][36] and avatar
based HCI[51][52][53] are the most popular applications in
this category. As an example, [54] and [55] describe the
anthropomorphic robot ’Kismet’ which uses vision based
processing to perceive user intentions and a microphone to
enable vocal interactions in a turn-taking conversation. The
audio and visual information streams are not merged explicitly
but together enable the system to perform the task of carrying
out a sociable conversation.

H. Exploiting complementary information across modalities

The third main category of audio-visual fusion tech-
niques are reviewed in this section. Context aware intelligent
spaces[56][57] are good example of systems that can exploit
complementary information across modalities by extracting
information from different sensors based on the context.
Different sensors provide information about different aspects
of the overall task/goal of the system. Another example of
a system using such a fusion strategy is the gesture driven
speech recognition interface. Here, the gestures compliment
the information provided through speech. In both these cases,
the information carried in different modalities are generally
disjoint and are integrated at higher levels of abstraction
to achieve a comprehensive task. Systems modeling group
interactions and meetings[58][59] typically fall under this
category. Human Robot interaction is another area in which
speech and gestures are usually combined with the gestures
complementing the information obtained from speech com-
mands. [60] describes a system that integrates spoken natural
language and natural gesture for command and control of
a semi-autonomous mobile robot.[61] is another example of
using vision and speech where a finite state machine structure
is used to enable the robot to learn a map of the area using
human assistance. The commands are speech based but human
detection and hand gesture recognition are used to resolve
some ambiguities in the speech commands and to select and
localize objects referred to by speech.

IV. COMPARISON OF FUSION STRATEGIES ON A TASK
SPECIFIC BASIS

In the preceding sections, fusion strategies are described
in general for the various audio-visual tasks. An important
observation is that the modeling technique and task specific
details determine the fusion algorithms used. The modeling
techniques are themselves task dependent. For example, re-
searchers from the audio-visual tracking community prefer
to use Bayesian networks with particle filter based inference
[62][63][64][65][66]. In the following sections, we review and
compare the key contributions in fusion techniques on a task
specific basis.
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TABLE I
RELATIVE MERITS AND DEMERITS OF TRADITIONAL CATEGORIES IN AUDIO-VISUAL INFORMATION FUSION STRATEGIES.

Fusion scheme Noiseless case Noisy case Modeling restriction
Feature level Can use the co-variations

in data streams
Cannot separate out the noisy fea-
tures

Applicable to most of the generic
classifiers

Classifier level Cannot use the co-
variations

Can separate the influence of the
noisy modality and fuse the appro-
priate information at each frame

Applicable to specific models like
HMMs and DBNs

Decision level Cannot use the co-
variations

Can separate the influence of the
noisy modality but the fusion is at
a coarser level

Applicable to most generic classi-
fiers

A. Fusion strategies in audio-visual speech recognition tasks

Audio-visual speech recognition is one of the first tasks to
highlight the fusion of audio and visual information to achieve
robustness to background noise and to improve the recogni-
tion accuracy by including additional visual information to
the audio based speech recognition. Speech is bimodal in
nature [67][68][2]. Audio based automatic speech recognition
is extremely sensitive to background noise. Incorporating
visual information provides robustness to background audio
noise. The fusion schemes have evolved with the modeling
techniques and are mostly based on appropriate weighting of
the audio and video streams based on the level of background
noise. At very high audio SNR, audio-only speech recognition
performs as well as the audio-visual recognizer. At very low
SNR, the performance is worse and closer to that of the video-
only speech recognizer. In between these two extremes, the
aim of the fusion schemes has been to achieve a graceful
degradation in performance as the SNR decreases. Another
challenge in audio-visual speech recognition is the lack of one-
to-one correspondence between the phonemes and visemes.
Yet another important aspect is the difficulty in extracting
clean audio and video features from the speaker. Speech is
a natural mode of interaction for humans and the use of lapel
microphones and cameras with frontal view of the speakers
makes the speech recognition interface restrictive. Microphone
arrays and visual face tracking using multiple cameras have
been used to undo this restriction to some extent. Also, the
recognition accuracy for conversational speech is quite low
and thus restricts the usage of automatic speech recognition
in meeting scenes. Further research in audio-visual strategies
is necessary to tackle these limitations. Some key contributions
have been summarized in Table II.

Initial work in ”speech reading” [69] was based on binary
images of the mouth region and involved a sequential recogni-
tion strategy. The audio recognizer was first used to come up
with a candidate list of words and the visual features were used
on this list to arrive at the final decision. This system was later
improved in [70] by utilizing rule based heuristics to combine
the audio and visual recognition results. The experiments were
restricted to a limited vocabulary, speaker dependant speech
recognition task. In [71], the authors explored a different
strategy for fusion of information by using a neural network to
map the visual features to the acoustic spectrum domain. The
fusion is achieved by weighted averaging of the actual acoustic

spectrum and the spectrum obtained from the visual features.
Multi state Time delay neural networks (MS-TDNN) were
used in [72] and reported 50% reduction in error rates in some
cases with acoustic noise, on a speaker dependent task. This
work extended the audio visual fusion scheme to connected
letter recognition using the dynamic time warping(DTW)
framework. The combination of the audio visual information
at different levels of the neural network is also considered in
[72] and the relevant weights are learned by back-propagation
on the training set. [73] introduces an HMM based recognizer
for audio-visual speech recognition. [74] investigates an HMM
based speech recognizer with feature concatenation strategy
on speaker independent connected digits task. The system
performed as expected, with little change in the high SNR
case. As the SNR decreased and the performance of the audio-
only recognizer worsened, the visual information provided a
gain of about 10dB in SNR. [75] describes the efforts towards
a large vocabulary continuous speech recognition using audio-
visual features and efforts to develop a database to facilitate
the research in the same. These various fusion schemes are
organized and are compared in [20] which also introduces
a new fusion approach by mapping the acoustic and visual
streams to the motor space. The results suggest that both
early and late fusion schemes have similar performance and
the performance of the motor recoding and dominant mode
recoding schemes is worse.

Hidden Markov models(HMM) with Gaussian mixture
model(GMM) observation densities are commonly used in
more recent speech recognition systems for modeling and
recognizing speech[76]. Several audio and video features have
been proposed in literature but feature selection is outside
the scope of this survey. [23] is the outcome of the 2000
Johns Hopkins University workshop on audio-visual speech
recognition. The following models were evaluated and the
results summarized in Table II.

• Early fusion technique by concatenating the audio and
visual features - AV-Concat

• Early fusion technique with Hierarchical LDA for dimen-
sionality reduction - AV-HiLDA

• Multistream HMM with jointly trained unimodal
models[77] - AV-MS-1

• Multistream HMM with individually trained unimodal
models - AV-MS-2

• Multistream HMM with jointly trained unimodal models
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and utterance specific stream weights - AV-MS-UTTER
• Multistream Product HMM which allows for state asyn-

chrony between modalities[29] - AV-PROD)
• Late integration with discriminatory model

combination[78] - AV-DMC
The results show that on the speaker-independent audio-

visual large-vocabulary continuous speech recognition task,
Av-HiLDA, AV-MS-UTTER and AV-PROD provided consis-
tent improvement for both clean and noisy audio conditions
considered. The multistream HMM based fusion schemes
performed slightly better than the feature fusion schemes. The
choice of the exponents for the different streams in multistream
HMM is not completely resolved. Only the AV-MS-UTTER
estimates the exponents based on the degree of voicing in
the utterance. The rest of the schemes rely on estimating the
optimal weights based on a training set. But in practice, the
noise levels are not known apriori.

[79][80][81] use a probabilistic descent algorithm on word
classification error on held-out data for stream exponent max-
imization. These and related techniques are not suitable for
practical systems. The quality of the audio and video streams
varies with time and it is not optimal to estimate the stream re-
liability exponents based on a predetermined training set. [16]
addresses the issue of stream reliability estimation from the
observations without the use of annotated training data. Given
the observations of individual streams, the class conditional
likelihoods of their N-best most likely generative classes are
used to estimate the N-best likelihood difference and the N-
best likelihood dispersion. These measures are well correlated
to the WER and are used to estimate the stream weighting
exponents. Important stream weight selection criteria have
been summarized in Table IV.

Another issue that needs to be incorporated in the modeling
scheme is the relative asynchrony between the audio and visual
cues. [82] compares the performance of the coupled HMM
and factorial HMM on a large vocabulary continuous audio-
visual speech recognition task. The coupled HMM performs
better than the factorial HMM. Both the models are treated
as specific instances of dynamic Bayesian networks. DBNs
have also been used to model auxiliary information in speech
such as articulator positions [83][84][85]. More recently dis-
criminatory techniques such as boosting and SVM have been
employed in hybrid architectures to improve the recognition
accuracy[86][87]. In practice however, audio-visual speech
recognition remains a challenging problem due to the time
varying nature of the audio and visual streams[23]. This could
involve the conditions like non-stationary background noise
in the audio domain and occlusions and changes in position
and orientation of the human head in the visual domain. [33]
explores the use of the iterative decoding scheme to combine
the audio-visual cues. In the iterative decoding scheme, the
reliability of the individual modality is implicitly modeled by
the distribution of the extrinsic information passed back and
forth between the two modalities.

The schemes described so far assume the availability of
close talking microphones and cameras with frontal view of
the speaker. This is a severe restriction in many cases such as
meeting scenes where the participants’ position and orientation

varies with time. Multiple cameras and microphone arrays
have also been studied to localize and extract robust features
for speech recognition[88][89][19]. These systems use the
audio-visual speaker localization to enhance the speech signal
using beamforming techniques. This line of research has its
limitations based on the room acoustics [90], environmental
noise conditions and the overlapping speech during meetings.
Thus a combination of the speech enhancement techniques for
far-field microphone arrays, augmented with visual informa-
tion in the form of lips and contextual information promises
to yield fruitful results.

B. Fusion strategies in audio-visual person localization and
tracking

Person tracking has been a computer vision problem that
received considerable attention[93]. Audio source localization
is also a well researched field [90][94]. Localizing and track-
ing individuals using audio-visual information has recently
received much attention. Some key contributions have been
summarized in Table V.

Camera epipolar constraint and microphone array geometry
based schemes have been reported [95] [96] [97].[98] presents
a skin tone based algorithm for omni directional cameras. The
HMM based tracker has been used in [99] in conjunction
with the iterative decoding scheme. [100] describes a audio
localization system for camera pointing which uses audio-
visual correspondences to calibrate a microphone network for
source localization relative to the camera. Audio-visual syn-
chrony and correlation have been exploited to locate speakers
in [65][101][102]. Bayesian networks with the particle filtering
based inference technique have been widely used in audio-
visual tracking [103] [104] [105] [66] [64] [63] [38] [26]
[62] [39]. Approximate inference in the dynamic Bayesian
network framework, necessitated by the complexity and non-
Gaussianity of the joint models, is performed by the use of
particle filters [62],[63]. An HMM based iterative decoding
scheme is presented in [99]. In Table V, we see that the
scene and sensor configurations are varied and the results
are not presented on any standard dataset. Hence it is not
possible to compare the different frameworks. The CLEAR
2006 evaluation [9] and CLEAR 2007 evaluation [10] address
this issue by providing a standard dataset to evaluate person
tracking frameworks. In [99], the authors compare the iterative
decoding framework with the particle filter framework. The
results are presented in Figure 7. Note that the particle filter
framework which tracks in the 3D co-ordinates is sensitive
to accurate sensor calibration as opposed to the iterative
decoding scheme which tracks in the local sensor coordinates.
Calibration of the sensors with respect to the 3D world co-
ordinates is an important issue in person tracking systems.
We do not discuss the different calibration schemes in detail
in this review. However, automatic calibration of sensors is a
major advantage of audio-visual systems and this aspect needs
to be explored further.

We observe that earlier work on audio-visual tracking
involved the development of a framework for data association
and tracking based on audio and video cues. More recent work
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TABLE II
THE ACCURACY OF DIFFERENT FUSION SCHEMES FOR AUDIO-VISUAL SPEECH RECOGNITION HAVE BEEN COMPARED ON A LVCSR TASK :

SUMMARY OF RESULTS FROM [23]

Model Clean Noisy Model Clean Noisy
Audio-only 85.56% 49.90% AV-MS-1 85.38% 63.39%
AV-Concat 84.00% 60.00% AV-MS-2 85.08% 62.62%
AV-HiLDA 86.16% 63.01% AV-MS-PROD 85.81% 64.79%
AV-DMC 86.35% — AV-MS-UTTER 86.53% 64.73%

Par. Fil. − Acc. Calib. It. Dec.  − Acc. Calib. Par. Fil. − Calib. Err. It. Dec. − Calib. Err.
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Fig. 7. Results from [99] - percentage of occlusions that are correctly resolved
by the iterative decoding framework in comparison with the Particle filtering
based tracker. Note that the performance of the two schemes is very similar
when accurate calibration is available whereas the performance of the particle
filter based tracker degrades in the presence of calibration errors.

includes the use of hierarchical fusion schemes for augmenting
the tracks with additional information. In [39][17] person
ID is combined with the tracks to improve the accuracy of
tracking. Audio-visual tracking is a fundamental task in any
human activity analysis system. However, fusing audio-visual
cues for person tracking is extremely challenging and will
likely include many different kinds of cues such a speaker
identification and face recognition (Section V-A).

C. Fusion strategies in audio-visual affective state recognition
and emotion recognition

Early research in audio-visual affective state recognition
[106] was based on rule based classification of audio visual
cues into one of the six categories: happiness, sadness, fear,
anger, surprise and dislike. Pitch, intensity and pitch contours
were utilized as acoustic features, whereas facial features like
eyebrow position, opening of eyes and mouth and frowning
are measured and classified based on a set of rules. [107] used
similar features but classified visual features using a nearest
neighbor classifier and the audio features using an HMM. If
the audio and video results did not concur, the decision of
the dominant mode prevailed. The dominant mode for each
emotion was selected based on the training data. [108] used
an ANN classifier for visual classification and HMM for audio
emotion recognition. The resulting scores were averaged be-
fore making the final decision. The above research considered
person dependent models. In [109], the authors investigated

both person-dependent and person-independent models. The
person-dependent model achieved a recognition accuracy of
79% whereas the person-independent model achieved 56%
accuracy.

Audio visual feature extraction for emotion detection is a
very challenging field in itself but is outside the scope of this
survey.

More recent work includes the use of discriminative classi-
fiers like SVMs[110][111] and boosting and more expressive
generative classifiers like Bayesian networks [112] to fuse
audio-visual information. Table VI lists the details of some
key fusion schemes reported in literature. There are a lot of
open challenges in affective state analysis. One specific issue
that is very evident in emotion detection is the temporal offset
between the expression of the audio and visual emotional
cues. This temporal mismatch is much more pronounced in the
features related to emotion detection than other audio-visual
tasks. Another important challenge is the lack of suitable
large emotion databases in American English. Moreover at its
current stage, most of the systems are designed to work with
close talking microphones and cameras with good frontal view.
This places severe constraints on the users of such systems.
Techniques need to be developed to use distributed array of
cameras and microphones and detect the emotional state of
subjects involved in mostly unconstrained activities.

D. Fusion strategies in audio-visual person identification

Biometrics is another active area of research for audio-visual
fusion. Though biometrics several fingerprints, palm prints,
hand and finger geometry, hand veins, iris and retinal scans,
infrared thermograms, DNA, ears, faces, gait, voice and sig-
nature, the audio and video modalities facilitate unobtrusive,
user friendly, lower-costing-sensor based person identification
[117]. Moreover, multi modality is not only used to extract
complimentary information to boost recognition accuracy, but
is also helpful in making the person identification systems
fool-proof against imposters attacks [118][119]. Audio-visual
fusion has been used in both open-set[34] and closed-set[120]
person identification tasks. [121] presents a good overview of
the various information fusion schemes used in audio-visual
person identification. The pre-classifier level, classifier level
and post-classifier fusion examples are presented along with
an evaluation of fixed and adaptive fusion techniques. The
authors also propose a piecewise linear classifier and modified
Bayesian post classifier that adapt the decision boundaries
based on the environmental noise level. [122] presents another
evaluation of fusion schemes but in the context of more general
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TABLE III
SUMMARY OF FUSION SCHEMES IN AUDIO-VISUAL SPEECH RECOGNITION A - ISOLATED WORD/LETTER/DIGIT. B - CONNECTED

LETTERS/WORDS/DIGITS. C - CONTINUOUS SPEECH. D - STATIC VOWEL. P - SPEAKER DEPENDENT. Q - SPEAKER INDEPENDENT. X - SMALL
VOCABULARY. Y - LARGE VOCABULARY.

Fusion strategy for audio-visual speech
recognition

Model Domain Performance -
Audio - Visual -
Audio-visual

Publication and
Year

Sequential, starting with audio Template matching A,P,X - Petajan [69] 1984
Rule based Vector quantization and

dynamic time warping
A,P,X 63% 72% 86% Petajan et. al.

[70] 1988
Mapping visual features to acoustic
spectrum and weighted averaging

Spectrum based classifica-
tion

D,P,X 60% — 81% Yuhas et. al. [71]
1989

Product rule Time delay neural network
(TDNN)

A,Q,X 43% 51% 75% Stork et. al. [91]
1992

Weighted combination of beliefs in the
NN

Multi state Time delay
neural network (MS-
TDNN)

B,P,X 47% 32% 76% Bregler et. al.
[72] 1993

Late integration with weighted proba-
bility scores

Hidden Markov Model
(HMM)

A,P,X 70% 76% 96% Adjoudani and
Benoit[73] 1996

Late integration by weighted log-
likelihood combination

Multistream HMM B,P,X 19% 36% 86% Potamianos and
Graf[79] 1998

Classifier level fusion based on proba-
bilistic inference

Dynamic Bayesian net-
work (DBN)

A,Q,X 90% — 92% Stephenson et. al.
[84] 2000

Late integration by optimally weighted
log-likelihood combination

Multistream HMM B,Q,X 62% — 91% Nakamura et. al.
[80] 2000

see Table II C,Q,Y Neti et. al. [23]
2001

Weighted HMM-state likelihood com-
bination

Coupled HMM C,Q,Y 50% 67% 77% Nefian et. al. [82]
2002

Hybrid fusion : feature and decision
level fusion

Multistream HMM C,Q,Y 60% —- 78% Potamianos et. al.
[16] 2003

AdaBoost Boosted HMM classifier B,P,X 66% 36% 73% Yin et. al. [86]
2003

Classifier level fusion based on proba-
bilistic inference

Dynamic Bayesian Net-
works

C,Q,X 76% 53% 88% Gowdy et. al. [85]
2004

Late integration with weighted proba-
bility scores

Hybrid SVM-HMM A,Q,X 80% 80% 91% Gurban and
Thiran[87] 2005

Iterative decoding Multistream HMM A,P,X 60% 72% 75% Shivappa et. al.
[33] 2008

multimodal biometric systems. Table VII lists the details of
some key fusion schemes reported in literature. It is easily
seen from the table that the weighted combination of classifier
scores is a very popular fusion strategy. Person identification
task is a very structured classification task and hence the
polarization towards the particular fusion strategy. However
the selection of weights is an open issue and researchers
have addressed it using different techniques. Predominant
are the ones based on classification error and the reliability
of the modality which makes intuitive sense. However, an
existing challenge is to incorporate person identification into
a setup with distant microphones and cameras. Some groups
have begun to address this issue [39][17]. Further research is
necessary to bring out the strengths of person identification
systems not only in biometrics applications but also in other
human activity analysis. Person identification is an inherently
multimodal task and will form the basis for future hierarchical

information fusion schemes (Section V-A).

E. Fusion strategies in audio-visual meeting scene analysis

Audio-visual analysis of human activity in meeting rooms
for meeting scene understanding, segmentation, archival and
retrieval has received a lot of attention in the recent past.
Systematic comparison of the different fusion approaches in
meeting scene analysis is extremely challenging due to varying
scenarios considered by different groups. Moreover, many
of the systems described above (ASR, biometrics, tracking,
emotion detection etc.) are used as subsystems of the meeting
analysis system.

One of the early research studies in observing human
activities in an instrumented room is described in [129]. A
graphical summary of the human activity is generated. The
audio and visual information is used in identifying the current
speaker based on a rule based decision fusion. [130] and [131]
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TABLE IV
SUMMARY OF STREAM WEIGHT SELECTION SCHEMES IN AUDIO-VISUAL SPEECH RECOGNITION

Stream weight selection criterion Model Publication and Year
Empirically determined linear function of the SNR Spectrum based classifica-

tion
Yuhas et. al. [71]
1989

Neural network weights trained to minimum error Time delay neural network
(TDNN)

Stork et. al. [91]
1992

Relative entropy - between all audio and video phone state
activations

Multi state Time delay
neural network (MS-
TDNN)

Bregler et. al. [72]
1993

N-best word probability dispersion Hidden Markov Model
(HMM)

Adjoudani and
Benoit [73] 1996

No weighting used - performs worse than with weighting Semi-continuous HMM Su and Silsbee [92]
1996

Probabilistic gradient descent on classification error Multistream HMM Potamianos and Graf
[79] 1998

Probabilistic gradient descent to maximize the relative like-
lihood of the best word

Multistream HMM Nakamura et. al. [80]
2000

Max. Entropy and Min. classification error Multistream HMM Gravier et. al. [81]
2002

Empirically determined for given SNR Coupled HMM Nefian et. al. [82]
2002

N-best log likelihood difference and N-best log likelihood
dispersion

Multistream HMM Potamianos et. al.
[16] 2003

AdaBoost Boosted HMM classifier Yin et. al. [86] 2003
Minimum word error after reducing to two stream Dynamic Bayesian Net-

works
Gowdy et. al. [85]
2004

Empirically determined for given SNR Hybrid SVM-HMM Gurban and Thiran
[87] 2005

Stream entropy Multistream HMM Gurban et. al. [42]
2008

Variance of extrinsic information Multistream HMM Shivappa et. al. [33]
2008

describe another meeting room analysis system which also
fuses audio-visual stream for person identification, in addition
to using the audio for automatic transcription and archival
purposes. [132] investigates speech, gaze and gesture cues for
high level segmentation of a discourse into topical segments
based on a psycholinguistic model.

More recent work in [24] models the action of the group of
individuals in a meeting instead of individual actions. HMMs
are used to statistically model the state of the group using au-
dio and video features and the interactions between individuals
are inherently accounted for in the model. Using this formula-
tion, meetings are segmented into five categories: Discussions,
Monologues, Note-Taking, Presentations and White-Board
presentations. Different fusion schemes were evaluated and the
early integration strategy performed the best followed closely
by the asynchronous HMM. The feature concatenation scheme
could suffer from the curse of dimensionality. Intutively, there
is a certain amount of asynchrony between the audio and
visual streams in a meeting scene and this hints at the possible
inadequacy of using simple HMMs to model the meeting
scenes. [133] describes a two layered HMM model to segment
the meeting at the individual and group levels respectively. In

this case, the asynchronous HMM performs best at the lower
level as expected. Dynamic Bayesian networks were explored
for suitability in modeling meetings in [134]. An comparison
of various modeling techniques is provided in [135].

A number of multimodal meeting rooms equipped with
multimodal sensors have been established by various research
groups and consortiums. Annotated audio-visual corpora have
been collected and standard evaluations have been organized
to compare existing frameworks on specific tasks. Table VIII
lists the details of a few important meeting corpora. Another
recent effort in collecting and organizing multimodal corpora
is presented in [136].

Recent evaluations of meeting scene analysis systems in-
clude the CLEAR 2006 evaluation [9] and CLEAR 2007
evaluation [10].

V. EXISTING CHALLENGES AND FUTURE DIRECTIONS

Significant progress has been made in the areas of multi-
modal human activity analysis. However, there exists signifi-
cant challenges to enable human-like intelligence to intelligent
spaces. In this section we discuss two important issues that we
consider are central to developing systems capable of human-
like intelligence.
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TABLE V
SUMMARY OF FUSION STRATEGIES IN AUDIO-VISUAL PERSON LOCALIZATION AND TRACKING

Fusion strategy for audio-visual person
localization and tracking

Sensors Scene
com-
plex-
ity

Model Publication and Year

Proximity based speaker association 1,2 S Camera epipolar
geometry and audio
cross-correlation

Pingali et. al. [95]
1999

SNR based weighted average of SPMs 2,3 S Spatial probability maps Aarabi [96] 2001
Feature concatenation without weighting 1,2 S Probabilistic tracking with

particle filters
Vermaak et. al. [103]
2001

Proximity based association of audio and
visual events

1,4 M Auditory epipolar geome-
try and face localization

Nakadai et. al. [97]
2001

Product rule 2,14 M Probabilistic tracking with
particle filters

Zotkin et. al. [104]
2002

Importance sampling and product rule 2,14 M Probabilistic tracking with
particle filters

Gatica-Perez et. al.
[105] 2003

Speaker detection using audio 1,3 M Skin tone based face de-
tection in omni-camera

Kapralos et. al. [98]
2003

Feature concatenation without weighting 1,2 M Bayesian network Beal et. al. [66] 2003
Weighted addition of proposal distribu-
tions from each sensor

5,2 M Probabilistic tracking with
particle filters

Chen and Rui [64]
2004

Product rule 2,16 M Probabilistic tracking with
particle filters

Checka et. al. [63]
2004

Feature concatenation without weighting 4,12 M Probabilistic tracking with
particle filters

Nickel et. al. [38]
2005

Sequential state update using audio and
video

4,16 M Iterated extended Kalman
filter

Gehrig et. al. [26]
2005

Feature concatenation without weighting 2,14 M Markov Chain Monte
Carlo particle filter

Gatica-Perez et. al.
[62] 2007

Feature concatenation without weighting 4,14 M Particle filter Bernardin et. al. [39]
2007

Finite state machine for appropriate
weighting

1,14 M Particle filter Bernardin et. al. [39]
2007

Iterative decoding algorithm 2, 8 M Hidden Markov Model Shivappa et. al. [99]
2010

A. Hierarchical Fusion Strategies

While little is known on how humans understand and inter-
pret the complex world, the consensus is that an integration of
information at different levels of the semantic hierarchy has
to come together for this task. Most recently, the researchers
in the intelligent systems design have also started exploring
hierarchical fusion schemes. In practice, an intelligent space
or system equipped with multiple audio-visual sensors, can
extract many kinds of audio and video cues such as sound
source location, person tracks, speech content, beamformed
or enhanced speech, speaker identity etc. Significant benefits
of fusion emerge from using the different audio and visual
cues together. For example, in [143], the audio localization
is used to focus the attention of the video processor which
uses skin tone detection and face detection to interact with
the user. Such integration is necessary to design and develop
context aware systems [144]. In [17], the authors develop a
hierarchical fusion framework and explore the relationship

between tasks such as person tracking, speech recognition,
beamforming, speaker identification, head pose estimation and
key word spotting. It is demonstrated that these tasks can be
synergetically performed and the whole is greater than the
sum of the parts. [145] outlines a meeting analysis task that
is based on the probabilistic fusion of audio and visual cues.
In [146], the authors propose a hierarchial HMM framework
for modeling human activity. More recent hierarchical fusion
strategies include [133][147][148][149]. In [149], the authors
develop a probabilistic integration framework for fusion of
audio visual cues at the track and identity levels. This is an
example of fusion at multiple levels of abstraction. Similarly,
in [18], the utility of head pose estimation and tracking for
speech recognition from distant microphones is explored. In
[19], the authors use video localization to enhance the per-
formance of the beamformer for better speech reconstruction
from far field microphones. The utility of hierarchical fusion
to develop robust human activity analysis algorithms is quite
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TABLE VI
SUMMARY OF FUSION STRATEGIES IN AUDIO-VISUAL EMOTIONAL STATE RECOGNITION

Fusion strategy for audio-visual
emotion detection tasks

Language Model(Video) Model(Audio) Publication and
Year

perceptually dominant modality
based weighting

Spanish, Sin-
hala

— — De Silva et. al.
[113] 1997

Decision tree-like classifier on au-
dio and video features

Spanish, Sin-
hala

— — Chen et. al. [106]
1998

Dominant mode prevails in case
of conflict

Sinhala Nearest
neighbor

HMM De Silva and Ng
[107] 2000

Weighted average of confidence
scores

Japanese Neural
Network

HMM Yoshitomi et. al.
[108] 2000

— Am. English Sparse
network
of winnows

Gaussian density Chen and Huang
[109] 2000

Emotion with maximum score
among audio and video scores is
chosen

Korean Wavelets and
LDA

Wavelets and
codebook based
multiple band
classification

Go et. al. [114]
2003

Feature fusion and decision fu-
sion

Am. English SVM SVM Busso et. al.
[110] 2004

Fisher boosting classifier Am. English — — Zeng et. al. [47]
2005

Weighted average of confidence
scores

German and
Am. English

SVM and
ANN

SVM Hoch et. al. [111]
2005

Bayesian networks — — — Sebe et. al. [112]
2006

Multistream Fused HMM Am. English HMM HMM Zeng et. al. [115]
2008

Decision fusion using Bayesian
networks

Am. English GMM and
HMM

HMM Metallinou et. al.
[116] 2010

evident from these existing examples.

In Figure 8, we present a flow diagram of the fusion
of multimodal cues explored in [17]. The audio and video
signals provide the person location information and this is
fused in the audio-visual tracking step to come up with robust
estimates of the 3D co-ordinates of the subjects. The tracking
information is augmented with the speaker ID when available
and this betters the re-identification of the tracks in ambiguous
cases. The location and head pose estimates are fused for
effective beamforming. The reconstructed clean speech from
the beamformer is used by the speaker ID module which
identifies the active speaker. The speech recognizer uses both
the speaker ID and the reconstructed speech to recognize full
speech or spot keywords in the utterance.

Thus, when the various blocks for audio-visual human
activity analysis are put together, there is a whole range
of fusion possibilities to make the system more robust and
effective. As an example, one can consider the fusion of head
dynamics, gestures and speech that is explored in [150]. This
comprehensive fusion hierarchy, combining audio and visual
cues at such varying levels of abstractions to achieve a set of
tasks together is an important research direction and there is
a need to develop a formal probabilistic framework to address
the same. Though the benefits of such hierarchical fusion

schemes are quite evident, the choice of cues to use and the
fusion framework is very domain specific. There is a great
interest in developing adaptive frameworks that can learn and
adapt to new scenes as well as sensor configuration. In the
next section, we explore this issue in detail.

B. Learning from Multimodal Correspondences

Learning in audio-visual systems can involve various as-
pects of the framework. Significant among them are

• Automatic calibration for learning new sensor configura-
tions.

• Unsupervised learning for model adaptation in new
scenes.

• Model learning - learning the relevant correspondences
similar to human learning based on cognitive studies.

C. Automatic calibration

In this survey we have presented several systems that use
multiple audio and video sensors. A major issue in deploying
these systems is the calibration of the sensors with respect to
each other and with respect to the world co-ordinates. Any
change in the position or the orientation of the sensors leads
to the system having to be re-calibrated. One way to avoid
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TABLE VII
SUMMARY OF FUSION STRATEGIES IN AUDIO-VISUAL PERSON IDENTIFICATION

Fusion strategy for audio-visual
person identification

Num.
Sub-
jects

Model(Video) Model(Audio) Publication and
Year

Empirically determined weighted
combination of classifier scores

10 ANN ANN Chibelushi et. al.
[123] 1993

Weighted average of scores 89 Nearest neighbor Vector quantization Brunelli and
Falavigna[124]
1995

Weighted average of scores 37 HMM HMM Jourlin et. al.
[125] 1997

Weighted average of scores based
on classification error

37 GMM GMM Wark et. al. [126]
1999

SVM 295 Robust
correlation

Harmonic sphericity based
similarity score

Ben-Yacoub et.
al. [127] 1999

Adaptive weighted combination of
scores based on dispersion confi-
dence measure

37 GMM GMM Wark and Sridha-
ran [120]2001

Adaptive cascade with the ordering
based on reliability of classifier

50 Eigen faces HMM Erzin et. al. [128]
2005

Reliability -weighted summation of
scores

50 GMM GMM Erzin et. al. [34]
2006
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Fig. 8. The overall organization of a general human activity analysis in audio-visual spaces [17].

this issue is to develop fusion algorithms that do away with
the accurate calibration and can learn the correspondences
between sensors while being operational. [99] and [100] are
examples of such algorithms. Audio-visual systems also allow
for evolving new ways to calibrate sensors as well. Also

popular in literature are systems which have fixed geometry
and hence can be pre-calibrated as in [25]. Mounting the
sensors on the users is also explored in certain applications
such as gaming and military applications. In any case, the
sensor calibration issue needs to be resolved to facilitate the
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TABLE VIII
STANDARD AUDIO-VISUAL MEETING SCENE CORPORA AND THEIR SENSORY/SCENE/PARTICIPANT INFORMATION.

ISL [137] : The Interactive System Labs of CMU, Pittsburgh has collected a database consisting of more than 100 diverse
meetings, combined total of 103 hours (4.3 days). Each meeting lasted an average of 60 minutes. The meetings have an
average of 6.4 participants. The meetings have been collected since 1999. A meeting in the database is a minimum of three
individuals speaking to one another. The results are presented in a maximum of eight mono audio files in WAV format,
so-called speaker and recording protocol files containing information about the participants, equipment, environment and
scenario, three video tapes, one transcription file of the entire meeting, so-called marker file containing begin and end time
stamps for conversation contributions, and a list of the meetings vocabulary. The meeting scenarios include ProjectWork
Planning, Military Block Parties, Games, Chatting, and Topic Discussion.

ICSI [138] : International Computer Science Institute, Berkeley, California has collected a 75-meeting corpus with audio
and transcripts of natural meetings recorded simultaneously with head-worn and tabletop microphones. The corpus contains
75 meetings of 4 main types and 53 unique speakers. The data totals to over 70 meeting-hours and up to 16 channels for
each meeting. The ICSI effort is predominantly an audio scene analysis and meeting transcription effort.

NIST [139] : NIST has constructed a Meeting Data Collection Laboratory (MDCL) to collect corpora to support meeting
domain research, development and evaluation. The NIST Smart Data Flow architecture, developed by the NIST Smart Spaces
Laboratory, streams and captures all of the sensor data from 200 mics and 5 video cameras on 9 separate data collection
systems in a proprietary time-indexed SMD format. This architecture also ensures that all data streams are synchronized
(via the Network Time Protocol and NIST atomic clock signal) to within a few milliseconds. The NIST Meeting Room
Pilot Corpus consists of 19 meetings/15 hours recorded between 2001 and 2003. In total, the multi-sensor data comes to
266 hours of audio and 77 hours of video.

CHIL [140] : The CHIL (Computers in the Human Interaction Loop) consortium is an European reserach effort with the
participation of 15 partner sites from nine countries under the joint coordination of the Fraunhofer - IITB and the Interactive
Systems Labs (ISL) of the University of Karlsruhe, Germany. Five smart rooms have been set up as part of the CHIL project,
and have been utilized in the data collection efforts. Two types of interaction scenarios constitute the focus of the CHIL
corpus: lectures and meetings. The CHIL corpus is accompanied by rich manual annotations of both its audio and visual
modalities. In particular, it contains a detailed multi-channel verbatim orthographic transcription of the audio modality that
includes speaker turns and identities, acoustic condition information, and name entities for part of the corpus. Furthermore,
video labels provide multi-person head location in the 3D space, as well as information about the 2D face bounding box and
facial feature locations visible in all camera views. In addition, head-pose information is provided for part of the corpus.
Each smart room contains a minimum of 88 microphones that capture both close-talking and far-field acoustic data. There
exists at least one 64-channel linear microphone array, namely the Mark III array developed by NIST. The video data is
captured by five fixed cameras. Four of them are mounted close to the corners of the room, by the ceiling, with significantly
overlapping and wide-angle fields-of-view.

use of audio-visual systems in practice.

D. Unsupervised learning

Significant progress has been made in designing systems
that fuse audio and visual information to achieve better accu-
racy and robustness to background noise. A very commonly
seen paradigm in fusion schemes is the appropriate weighting
of input streams according to their reliability. The assessment
of the quality of individual streams is a challenging task
in itself and needs further research. Common measures like
SNR are useful but there is a necessity for other measures to
quantify the reliability of extracted cues from audio and video
streams. As an example, consider a speaker whose lips are
sometimes partially or fully occluded from the camera due to
his changing orientation on an audio-visual speech recognition
system. How to enable the system to weight the audio and
visual cues appropriately in this case?

The question can be reposed as, how to build a system that
can adapt to changing situations? This leads us to the bigger
problem of learning. Most of the systems described in this
survey learn model parameters in a supervised fashion. This
requires a lot of annotated training data and also places the
restriction that the conditions during the deployment of the
system cannot be significantly different from the training con-
ditions. This highlights the utility of semi-supervised and un-
supervised methods for learning parameters. Semi-supervised
learning allows one to learn model parameters from a small
amount of annotated training data and large amounts of non-
annotated training data. Unsupervised learning has also been
used in ambient intelligence systems to classify previously
unseen activities [58]. Existing research has addressed the
problem of learning at several levels. Multimodality has an
advantage in unsupervised learning through the presence of
cross-modal correspondences.
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TABLE IX
STANDARD AUDIO-VISUAL MEETING SCENE CORPORA AND THEIR SENSORY/SCENE/PARTICIPANT INFORMATION. (CONTD.)

VACE [141] : Under this research effort, Air Force Institute of Technology (AFIT) modified a lecture room to collect
multimodal, time-synchronized audio, video, and motion data. In the middle of the room, up to 8 participants can sit around
a rectangular conference table. 10 camcorders and 9 Vicon MCam2 near-IR cameras, driven by the Vicon V8i Data Station
record the video data. For audio, the participants wear Countryman ISOMAX Earset wireless microphones to record their
individual sound tracks. Table-mounted wired microphones are used to record the audio of all participants (two to six XLR-
3M connector microphones configured for the number of participants and scenario, including two cardioid Shure MX412 D/C
microphones and several types of low-profile boundary microphones (two hemispherical polar pattern Crown PZM-6D, one
omni-directional Audio Technica AT841a, and one four-channel cardioid Audio Technica AT854R). For the VACE meeting
corpus, each participant is recorded with a stereo calibrated camera pair. The Vicon system is used to obtain more accurate
tracking results to inform subsequent coding efforts, while also providing ground truth for video-tracking algorithms.

AMI & AMIDA [142] : The AMI and AMIDA projects are EU projects concerned with the recognition and interpretation of
multiparty meetings.Three standardized meeting rooms were constructed at IDIAP, TNO and University of Edinburgh. Each
room consisted of at least 6 cameras and 12 microphones. The different recording streams are synchronized to a common
timeline. The corpus consists of 100 hour annotated corpus of meetings, with speech annotations aligned to the word level.
Also, manual annotations of the behavior of the meeting participants are provided at various levels namely dialogue acts,
topic segmentation, extractive and abstractive summaries, named entitie, gaze direction etc.

TABLE X
SUMMARY OF HIERARCHICAL FUSION STRATEGIES IN AUDIO-VISUAL HUMAN ACTIVITY ANALYSIS

Audio-visual tasks involved Publication and Year
Human activity recognition Oliver et. al. [146] 2002
Group and individual activity recognition Zhang et. al. [133] 2004
Speech Reconstruction - Person Tracking, Beamforming, Speech
Recognition

Maganti et. al. [19] 2007

Assitive meeting - Person tracking, Hand tracking, Speaker Orientation
and Head pose

Dai and Xu [148] 2008

Identity tracking - Person Tracking, Face recognition, Speaker ID Bernardin et. al. [149] 2008
Scene Understanding - Person Tracking, Head pose, Beamforming,
Speaker ID and Keyword spotting

Shivappa et. al. [17] 2009

E. Model learning

Recent work in cognitive sciences has led to the design
of systems that can learn primitive correspondences across
different modalities in a manner similar to the learning ex-
periences of a human child. More specifically, systems that
ground language in perceptual cues have been proposed. From
the previous sections we can conclude that there are a very
large number of strategies for fusion of information in human
activity analysis systems. Humans are extremely competent at
such tasks and seem to employ an near-optimal fusion strategy
for each situation. However, most approaches to automatically
recognize multimodal actions are based on having a annotated
training set[5]. To quote the authors,

. . . However, no matter based on feature or semantic
fusion, most systems do not have learning ability in
the sense that developers need to encode knowledge
into some symbolic representations or probabilistic
models during the training phase. Once the systems
are trained, they are not able to automatically gain
additional knowledge even though they are situated
in physical environments and can obtain multisen-
sory information. . . .

Yu and Ballard[151] present a unified framework to learn
perceptually grounded meanings of spoken words without tran-
scriptions. This is the first step towards building a system that
can learn for perceptual cues without the necessity to encode
the knowledge in some symbolic representation. The percep-
tually grounded words provide the symbolic representation[5].
The opposite process where visually-guided attention helps in
understanding a complex auditory scenes has also been studied
in literature [152].

Modeling schemes influence the fusion strategy used and
the modeling schemes are themselves are heavily task ori-
ented, as seen in the preference of the speech recognition
community in using HMMs and the tracking community
in using particle filters. An intelligent system will have to
simultaneously perform these tasks in order to perform tasks
like a human. A framework to fuse the different systems
would have to be developed. Learning such a framework by
starting with a certain amount of pre-programmed intelligence,
but streamlining the models and adding extra functionalities
both by supervised learning and observing multimodal data
for cross-modal correspondences in a manner similar to the
development of human cognition is a challenge towards which

To Appear in Proceedings of the IEEE, 2010 



18

the research community is making advances towards.

VI. CONCLUDING REMARKS

We have presented an organized review of the various
audio-visual fusion schemes. We have presented a systematic
organization of the fusion schemes used in audio-visual human
activity analysis. We have compared the relative advantages
and performances of the various fusion schemes in a task
specific manner. We have also discussed in detail the important
future steps for developing an audio-visual system capable of
human-like behavior by reviewing established and upcoming
work in hierarchical fusion strategies and crossmodal learning
techniques. We wish to provide the reader a comprehensive
view of the challenges and solutions for designing fusion
schemes for observing humans with audio and video sensors.
To this end, we hope to have filled in the need for a survey
dedicated entirely to audio-visual information fusion strate-
gies.
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