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Biometric Systems: Privacy and Secrecy Aspects
Tanya Ignatenko, Member, IEEE, and Frans M. J. Willems, Fellow, IEEE

Abstract—This paper addresses privacy leakage in biometric
secrecy systems. Four settings are investigated. The first one is
the standard Ahlswede–Csiszár secret-generation setting in which
two terminals observe two correlated sequences. They form a
common secret by interchanging a public message. This message
should only contain a negligible amount of information about the
secret, but here, in addition, we require it to leak as little infor-
mation as possible about the biometric data. For this first case,
the fundamental tradeoff between secret-key and privacy-leakage
rates is determined. Also for the second setting, in which the
secret is not generated but independently chosen, the fundamental
secret-key versus privacy-leakage rate balance is found. Settings
three and four focus on zero-leakage systems. Here the public
message should only contain a negligible amount of information
on both the secret and the biometric sequence. To achieve this, a
private key is needed, which can only be observed by the termi-
nals. For both the generated-secret and the chosen-secret model,
the regions of achievable secret-key versus private-key rate pairs
are determined. For all four settings, the fundamental balance
is determined for both unconditional and conditional privacy
leakage.

Index Terms—Biometric secrecy systems, common randomness,
privacy, private key, secret key.

I. INTRODUCTION

A. State of the Art

W ITH recent advances of biometric recognition technolo-
gies, these methods are seen to be elegant and inter-

esting building blocks that can substitute or reinforce traditional
cryptographic and personal authentication systems. However, as
Schneier [34] pointed out, biometric information, unlike pass-
words and standard secret keys, if compromised cannot be can-
celed and easily substituted: people only have limited resources
of biometric data. Moreover, stolen biometric data result in a
stolen identity. Therefore, use of biometric data rises privacy
concerns, as noted by Prabhakar et al. [30]. Ratha et al. [32]
investigated vulnerability points of biometric secrecy systems,
and at the DSP forum [40], secrecy- and privacy-related prob-
lems of biometric systems were discussed.

Considerable interest in the topic of biometric secrecy sys-
tems resulted in the proposal of various techniques over the
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past decade. Recent developments in this area led to methods
grouped around two classes: cancelable biometrics and “fuzzy
encryption.” Detailed summaries of these two approaches can
be found in Uludag et al. [39] and in Jain et al. [20].

It is the objective of cancelable biometrics, introduced by
Ratha et al. [32], [33], Ang et al. [3], and Maiorana et al. [25],
to avoid storage of reference biometric data in the clear in bio-
metric authentication systems. These methods are based on non-
invertible transformations that preserve the statistical properties
of biometric data and rely on the assumption that it is hard to ex-
actly reconstruct biometric data from the transformed data and
applied transformation. However, hardness of a problem is dif-
ficult to prove; and, in practice, the properties of these schemes
are assessed using brute-force attacks. Moreover, visual inspec-
tion shows that transformed data, e.g., the distorted faces in
Ratha et al. [33], still contain a lot of biometric information.

The “fuzzy encryption” approach focuses on generation and
binding of secret keys from/to biometric data. These secret keys
are used to regulate access to, e.g., sensitive data, services, and
environments in key-based cryptographic applications and, in
particular, in biometric authentication systems (all referred to
as biometric secrecy systems). In biometric secrecy systems, a
secret key is generated/chosen during an enrollment procedure
in which biometric data are observed for the first time. This key
is to be reconstructed after these biometric data are observed
again during an attempt to obtain access (authentication). Since
biometric measurements are typically noisy, reliable biometric
secrecy systems also extract so-called helper data from the bio-
metric observation at the time of enrollment. These helper data
facilitate reliable reconstruction of the secret key in the authen-
tication process. The helper data are assumed to be public, and
therefore they should not contain information on the secret key.
We say that the secrecy leakage should be negligible. Important
parameters of a biometric secrecy system include the size of the
secret key and the information that the helper data contain (leak)
on the biometric observation. This latter parameter is called pri-
vacy leakage.1 Ideally, the privacy leakage should be small, to
avoid the biometric data of an individual’s becoming compro-
mised. Moreover, the secret-key length (also characterized by
the secret-key rate) should be large to minimize the probability
that the secret key is guessed and unauthorized access is granted.

Implementations of such biometric secrecy systems include
methods based on various forms of Shamir’s secret sharing [35].
These methods are used to harden passwords with biometric
data; see, e.g., Monrose et al. [27], [28]. The methods based on
error-correcting codes, which bind uniformly distributed secret
keys to biometric data and which tolerate (biometric) errors in

1The privacy leakage is only assessed with respect to the helper data. We do
not consider the leakage from the secret key, since secret keys are either stored
using one-way encryption (in authentication systems) or discarded (in key-based
cryptographic applications).
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these secret keys, were formally defined by Juels and Watten-
berg [22]. Less formal approaches can be found in Davida et al.
[10], [11]. Later error-correction based methods were extended
to the set difference metric developed by Juels and Sudan [21].
Some other approaches focus on continuous biometric data and
provide solutions that rest on quantization of biometric data as
in Linnartz and Tuyls [24], Denteneer et al. [12] (with emphasis
on reliable components), Teoh et al. [38], and Buhan et al. [6].
Finally, a formal approach for designing secure biometric sys-
tems for three metric distances (Hamming, edit, and set), called
fuzzy extractors, was introduced in Dodis et al. [13] and Smith
[36] and further elaborated in [14]. Fuzzy extractors were subse-
quently implemented for different biometric modalities in Sutcu
et al. [37] and Draper et al. [15].

B. Motivation

A problem of the existing practical systems is that some-
times they lack formal security proofs and rigorous security
formulations. On the other hand, the systems that do provide
formal proofs actually focus on secrecy only while neglecting
privacy. For instance, Frykholm and Juels [16] only provide
their analysis for the secrecy of the keys. Similarly, Linnartz
and Tuyls [24] offer information-theoretical analysis for the se-
crecy leakage but no corresponding privacy leakage analysis.
Dodis et al. [13], [14] and Smith [36] were the first to address
the problem of code construction for biometric secret-key gen-
eration in a systematic information-theoretical way. Although
their works provide results on the maximum secret-key rates in
biometric secrecy systems, they also focus on the corresponding
privacy leakage. In a biometric setting, however, the goal is to
minimize the privacy leakage and, more specifically, to mini-
mize the privacy leakage for a given secret-key rate. The need
for quantifying the exact information leakage on biometric data
was also stated as an open question in Sutcu et al. [37]. In this
paper, we study the fundamental tradeoff between the secret-key
rate and privacy-leakage rate in biometric secrecy systems. This
tradeoff is studied from an information-theoretical prospective.

Our approach to the problem of generating secret keys out
of biometric data is closely related to the concept of secret
sharing, which was introduced by Maurer [26] and (slightly
later) by Ahlswede and Csiszár [1]. In the source model of
Ahlswede and Csiszár [1], two terminals observe two correlated
sequences and and aim at producing an as large as
possible common secret by interchanging a public message

. This message, which we refer to as helper data, should only
provide a negligible amount of information on the secret. It
was shown that the maximum secret-key rate in this model is
equal to the mutual information between the observed
sequences. The secret sharing concept is also closely related to
the concept of common randomness generation that was studied
by Ahlswede and Csiszár [2] and later extended with helper
terminals by Csiszár and Narayan [9]. In common randomness
setting, the requirement that the helper data should provide
only a negligible amount of information on the generated
randomness is dropped.

Recently, Prabhakaran and Ramchandran [31] and Gündüz et
al. [19] studied source coding problems where the issue of (bio-
metric) leakage was addressed. In their work, though, it is not

the intention of the users to produce a secret but to communicate
a (biometric) source sequence in a secure way from the first to
the second terminal.

C. Eight Models

In this paper, we consider four biometric settings. The
first one is the standard Ahlswede–Csiszár secret-generation
setting. There two terminals observe two correlated biometric
sequences. It is their objective to form a common secret by
interchanging a public message. This message should contain
only a negligible amount of information about the secret, but,
in addition, we require here that it should leak as little infor-
mation as possible about the biometric data. For this first case,
the fundamental tradeoff between the secret-key rate and the
privacy-leakage rate will be determined. It should be noted that
this result is in some way similar to and a special case of the
secret-key (SK) part of Csiszár and Narayan [9, Th. 2.4].

The second setting that we consider is a biometric model with
chosen keys, where the secret key is not generated by the termi-
nals but chosen independently of biometric data at the encoder
side and conveyed to the decoder. This model corresponds to
key-binding, described in the overview paper of Jain et al. [20].
For the chosen-secret setting, we will also determine the funda-
mental secret-key versus privacy-leakage rate balance.

The other two biometric settings that we analyze correspond
to biometric secrecy systems with zero privacy leakage. Ideally,
biometric secrecy systems should leak a negligible amount of
information not only on the secret but also on the biometric
data. However, in order to be able to generate or convey large
secret keys reliably, we have to send some data (helper data) to
the second terminal. Without any precautions, the helper data
leak a certain amount of information on the biometric data.
In this way, biometrics solely may not always satisfy the se-
curity and privacy requirements of certain systems. However,
the performance of biometric systems can be enhanced using
standard cryptographic keys. Although this reduces user conve-
nience since, e.g., extra cryptographic keys need to be stored on
external media or memorized, such systems may offer a higher
level of secrecy and privacy. Practical methods in this direc-
tion include attempts to harden the fuzzy vault scheme of Juels
and Sudan [21] with passwords by Nandakumar et al. [29] and
dithering techniques that were proposed by Buhan et al. [5].

In our models, we assume that only the two terminals have
access to an extra independent private key, which is observed to-
gether with the correlated biometric sequences. The private key
is used to achieve a negligible amount of privacy leakage (zero
leakage). We investigate both the generated-secret model with
zero leakage and the chosen-secret model with zero leakage. For
both models, we will determine the tradeoff between the pri-
vate-key rate and the resulting secret-key rate.

For the four settings outlined above, the fundamental balance
will be determined for both unconditional and conditional pri-
vacy leakage. This results in eight biometric models. Uncondi-
tional leakage corresponds to the unconditional mutual infor-
mation between the helper data and the biometric enrollment
sequence, while conditional leakage relates to this mutual in-
formation conditioned on the secret. These two types of privacy
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leakage are motivated by the fact that the helper data may pro-
vide more information on the pair of secret key and biometric
data than on each of these entities separately.

D. Modeling Assumptions on Biometric Data

In this paper, we assume that our biometric sequences
(feature vectors) are discrete, independent and identically
distributed (i.i.d.). Fingerprints and irises are typical examples
of such biometric sources. A discrete representation of other
biometric modalities can be obtained using quantization. The
independence of biometric features is not unreasonable to as-
sume, since principal components analysis, linear discriminant
analysis, and other transformations, which are applied to bio-
metric measurements during feature extraction (see Wayman et
al. [41]), result in more or less independent features. In general,
different components of biometric sequences may have dif-
ferent ranges of correlation. However, for reasons of simplicity,
we will only discuss identically distributed biometric sequences
here.

E. Paper Organization

This paper is organized as follows. First, we start with an ex-
ample demonstrating that time-sharing does not result in an op-
timal tradeoff between secret-key rate and privacy-leakage rate.
In Section III, we continue with the formal definitions of all the
eight models discussed above. In Section IV, we state the results
that will be derived in this paper. We will determine the achiev-
able regions for all the eight settings. The proofs of our results
can be found in the Appendixes. Section V discusses the proper-
ties of the achievable regions that play a role here. In Section VI,
we discuss the relations between the found achievable regions.
In Section VII, we present the conclusions.

II. AN EXAMPLE

Before we turn to a more formal part of this paper, we first dis-
cuss an example. Consider an i.i.d. biometric binary symmetric
double source with crossover
probability such that , for

and , for . In this example, we
use . In the classical Ahlswede–Csiszár [1] secret-gen-
eration setting, the maximum secret-key rate for this biometric
source is , where is the bi-
nary entropy function expressed in bits. The corresponding pri-
vacy-leakage rate in this case is . Then the
ratio between secret-key rate and privacy-leakage rate is equal
to .

Now suppose that we want to reduce the privacy-leakage rate
to a fraction of of its original size. We could apply a trivial
method in which we only use a fraction of the biometric sym-
bols, but then the secret-key rate is also reduced to a fraction of

of its original size, and there is no effect on the key-leakage
ratio. A question now arises of whether it is possible to achieve
a larger key-leakage ratio at reduced privacy leakage.

We will demonstrate next that we can achieve this goal using
the binary Golay code as a vector quantizer. This code consists
of 4096 codewords of length 23 and has minimum Hamming
distance of 3. It is also perfect, i.e., all 4096 sets of sequences
having a distance of at most 3 from a codeword are disjoint, and

their union is the set of all binary sequences of length 23. A de-
coding sphere of this code contains exactly 2048 sequences, and
within a decoding sphere there are 254 sequences that are dif-
ferent from the codeword at a fixed position. This perfect code
is now used as a vector quantizer for {0,1} ; hence each binary
biometric enrollment sequence is mapped onto the closest
codeword in the Golay code. Now we consider the derived
biometric source whose enrollment output is the quantized se-
quence of and whose authentication output is the se-
quence .

Again we are interested in the key-leakage ratio
, for which we can now write

(1)

Although computation shows that , it
is more intuitive to consider the following upper bound:

(2)

where we used that , since we
apply the Golay code as quantizer. If we substitute this upper
bound into (1), we get a lower bound for the key-leakage ratio
1.1550, which improves upon the standard ratio of 1.1322. The
exact key-leakage ratio is equal to 1.1925 and improves more
upon the standard ratio of 1.1322.

This example shows that the optimal tradeoff between se-
cret-key rate and privacy-leakage rate need not be linear.
Methods based on vector quantization result in better
key-leakage ratio than those that simply use only a frac-
tion of the symbols. In what follows, we will determine the
optimal tradeoff between secret-key rate and privacy-leakage
rate. It will become apparent that vector quantization is an
essential part of an optimal scheme.

III. EIGHT CASES, DEFINITIONS

A biometric system is based on a biometric source
that produces a biometric -se-

quence with symbols from the finite
alphabet and a biometric -sequence
having symbols from the finite alphabet . The -sequence
is also called enrollment sequence; the -sequence is called
authentication sequence. The sequence pair occurs
with probability

(3)

hence the source pairs are inde-
pendent of each other and identically distributed according to

.
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The enrollment sequence and authentication sequence
are observed by an encoder and decoder, respectively.

One of the outputs that the encoder produces is an index
, which is referred to as helper data. The

helper data are made public and are used by the decoder.
We can subdivide systems into those in which both termi-

nals are supposed to generate a secret (secret key) and systems
in which a uniformly chosen secret (secret key) is bound to the
biometric enrollment sequence ; see Jain et al. [20]. The gen-
erated or chosen secret assumes values in . The
decoder’s estimate of the secret also assumes values from

. In chosen-secret systems, the secret is a uni-
formly distributed index; hence,

for all (4)

Moreover, we can subdivide systems, according to the helper
data requirements, into systems in which the helper data leak
information about the biometric enrollment sequence
and systems in which this leakage should be negligible. In
the zero-leakage systems, both terminals have access to a
private random key . This key is uniformly
distributed; hence,

for all (5)

Finally, we consider two types of privacy leakage: a) uncon-
ditional leakage and b) conditional leakage. Unconditional
leakage corresponds to bounding the mutual information

, whereas conditional leakage corresponds to
bounding the conditional mutual information .
In general, conditional leakage does not imply unconditional
leakage, and vice versa.

Next four systems—1) generated-secret systems, 2) chosen-
secret systems, 3) generated-secret systems with zero leakage,
and 4) chosen-secret systems with zero leakage—are investi-
gated for both unconditional and conditional leakage. This re-
sults in eight biometric models.

A. Generated-Secret Systems

In a biometric generated-secret system (see Fig. 1), the en-
coder observes the biometric enrollment sequence and pro-
duces a secret and helper data ; hence,

(6)

where is the encoder mapping. The helper data are sent
to the decoder, which observes the biometric authentication se-
quence . This decoder now forms an estimate of the secret

that was generated by the encoder; hence,

(7)

where is the decoder mapping.
We will now define two types of achievability for biometric

generated-secret systems. The first one corresponds to uncon-
ditional leakage and the second to conditional leakage. These
definitions allow us to find out what secret-key rates and pri-
vacy-leakage rates can be jointly realized with negligible error

Fig. 1. Model for a biometric generated-secret system.

Fig. 2. Model for a biometric chosen-secret system.

probability and negligible secrecy-leakage rate. We
are interested in secret-key rates as large as possible and pri-
vacy-leakage rates as small as possible.

Definition 1: A secret-key rate versus privacy-leakage rate
pair with is achievable in a biometric generated-
secret setting in the unconditional case if, for all for all

large enough, there exist encoders and decoders such that2

(8)

In the conditional case, we replace the last inequality by

(9)

Moreover, let and be the regions of all achievable se-
cret-key rate versus privacy-leakage rate pairs for generated-se-
cret systems in the unconditional case and conditional case, re-
spectively.

B. Chosen-Secret Systems

In a biometric chosen-secret (key-binding) system (see
Fig. 2), a secret is chosen uniformly and independently of
the biometric sequences; see (4). The encoder observes the
biometric enrollment source sequence and the secret and
produces helper data ; hence,

(10)

where is the encoder mapping. The public helper data
are sent to the decoder that also observes the biometric authen-
tication sequence . This decoder forms an estimate of the
chosen secret; hence,

(11)

and is the decoder mapping. Again we have two types of
achievability.

Definition 2: In a biometric chosen-secret system, a se-
cret-key rate versus privacy-leakage rate pair with

is achievable in the unconditional case if, for all

2We take two as base of the log throughout this paper.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 15,2010 at 10:33:43 EST from IEEE Xplore.  Restrictions apply. 



960 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Fig. 3. Model for a biometric generated-secret system with zero-leakage.

for all large enough, there exist encoders and decoders such
that

(12)

In the conditional case, we replace the last inequality by

(13)

Moreover, let and be the regions of all achievable se-
cret-key rate versus privacy-leakage rate pairs for a chosen-se-
cret system in the unconditional case and conditional case, re-
spectively.

C. Generated-Secret Systems With Zero Leakage

In a biometric generated-secret system with zero leakage (see
Fig. 3), a private random key that is available to both the en-
coder and the decoder is uniformly distributed and independent
of biometric sequences; see (5). The encoder observes the bio-
metric enrollment sequence and the private key and pro-
duces a secret and helper data ; hence,

(14)

where is the encoder mapping. The helper data are
sent to the decoder that also observes the biometric authentica-
tion sequence and that has access to the private key . This
decoder now forms an estimate of the secret that was gener-
ated by the encoder; hence,

(15)

where is the decoder mapping.
Next we define achievability for zero-leakage systems. This

definition allows us to find out what secret-key rates and pri-
vate-key rates can be jointly realized with negligible error prob-
ability and negligible secrecy- and privacy-leakage
rates. Note that now we are interested in secret-key rates as large
as possible and private-key rates as small as possible.

Definition 3: In a biometric generated-secret system with
zero leakage, a secret-key rate versus private-key rate pair

with is achievable in the unconditional case if,
for all for all large enough, there exist encoders and
decoders such that

(16)

Fig. 4. Model of a chosen-secret system with zero leakage.

In the conditional case, we replace the last inequality by

(17)

Moreover, let and be the regions of all secret-key rate
versus private-key rate pairs for generated-secret sys-
tems with zero leakage in the unconditional case and conditional
case, respectively.

D. Chosen-Secret Systems With Zero Leakage

In a biometric chosen-secret system with zero leakage (see
Fig. 4), a private random key that is available to both the en-
coder and the decoder is uniformly distributed and independent
of biometric sequences; see (5). Moreover, a chosen secret
that is to be conveyed by encoder to the decoder is also uni-
formly distributed; see (4).

The encoder observes the biometric enrollment sequence
, the private key , and the secret , and forms helper data

. Hence,

(18)

where is the encoder mapping. The helper data are
sent to the decoder that also observes the biometric authentica-
tion sequence and that has access to the private key . This
decoder now forms an estimate of the secret that was chosen
by the encoder; hence,

(19)

where is the decoder mapping.
Definition 4: In a biometric chosen-secret system with zero

leakage, a secret-key rate versus private-key rate pair
with is achievable in the unconditional case if, for all

for all large enough, there exist encoders and decoders
such that

(20)

In the conditional case, we replace the last inequality by

(21)

Moreover, let and be the regions of all secret-key rate
versus private-key rate pairs for a chosen-secret system
with zero leakage in the unconditional case and conditional case,
respectively.
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IV. STATEMENT OF RESULTS

In order to state our results, we first define the regions ,
, , and . Then we present the eight theorems.

for (22)

for (23)

for (24)

Consider, e.g., region . The definition of region states
that it is a union of elementary regions

, one for each so-called test
channel . Note that each test channel
specifies the auxiliary alphabet and the mutual information

and . The union is now over all such test chan-
nels. In Appendix A, it is shown that the cardinality of the aux-
iliary random variable need not be larger than 1. This
result also applies to regions and .

The definition of the last region does not involve an auxiliary
random variable

(25)

Theorem 1 (Generated Secret, Unconditional):

(26)

Theorem 2 (Generated Secret, Conditional):

(27)

Theorem 3 (Chosen Secret, Unconditional):

(28)

Theorem 4 (Chosen Secret, Conditional):

(29)

Theorem 5 (Zero-Leakage Generated Secret, Uncondi-
tional):

(30)

Theorem 6 (Zero-Leakage Generated Secret, Conditional):

(31)

Theorem 7 (Zero-Leakage Chosen Secret, Unconditional):

(32)

Theorem 8 (Zero-Leakage Chosen Secret, Conditional):

(33)

The proofs of these theorems are given in Appendix B.

V. PROPERTIES OF THE REGIONS , , , AND

A. Convexity

Note that is convex. To see this, observe that if
for , there exists such that , and

and . Now let ,
and define a time-sharing variable , which is one with

probability and two with probability . Construct the
new auxiliary random variable and then observe
that and

(34)

and

(35)

From the above expressions, we conclude that
, and hence is convex. In a similar way,

we can show that and are convex. The proof that is
convex is straightforward.

B. Achievability of Special Points

By setting in the definitions of the regions , ,
and , we obtain the achievability of the pairs

(36)

in region , region , and region , respectively.
Observe that is the largest possible secret-key rate

for regions and , which is the Ahlswede–Csiszár secrecy
capacity [1], since . This
immediately follows from the Markovity .

Observe also that the largest possible secret-key rate for re-
gion is , which is the common randomness capacity
studied in Ahlswede and Csiszár [2].

Lastly, note that for , we may conclude that
. This is a consequence of

, which follows from .
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Fig. 5. Secret-key rate versus privacy-leakage rate function � ��� for three
values of the crossover probability �.

Fig. 6. Secret-key rate versus privacy-leakage rate function � ��� for three
values of the crossover probability �.

C. Example: Binary Symmetric Double Source

To illustrate the (optimal) tradeoff between the secret-key rate
and the privacy-leakage rate, and the secret-key rate and the pri-
vate-key rate, we consider a binary symmetric double source
with crossover probability ; hence

for and for . For such a
source

(37)

Mrs. Gerber’s lemma by Wyner and Ziv [43] tells us that if
, then , where

is the binary entropy function,
, and . If now

is such that , then and

. For binary symmetric with crossover proba-
bility , the minimum is achieved and, consequently,
using definition

for (38)

we obtain the secret-key versus privacy-leakage rate function

(39)

for satisfying . We have computed the
secret-key rate versus privacy-leakage rate function for
crossover probabilities and using (39) and
plotted the results in Fig. 5. From this figure, we can conclude
that for small , the secret-key rate is large compared to the pri-
vacy-leakage rate, while for large , the secret-key rate is smaller
than the privacy-leakage rate. Note that this function applies to
generated-secret systems and to chosen-secret systems in the
unconditional case.

For the chosen-secret system in the conditional case, we ob-
tain the corresponding secret-key versus privacy-leakage rate
function

(40)

for satisfying . The corresponding results for
crossover probabilities and are plotted in
Fig. 6. Note that now the secret-key rate cannot be larger than
the privacy-leakage rate.

For generated-secret systems with zero leakage and for
chosen-secret systems with zero leakage in the unconditional
case, it follows that the corresponding secret-key versus pri-
vate-key rate function takes the form

(41)

for satisfying . We have computed the
secret-key versus private-key rate function for crossover proba-
bilities and using (42). The results are plotted
in Fig. 7. From this figure, we can observe that the private-key
rate is never larger than the secret-key rate .

Lastly, for chosen-secret systems with zero leakage in the
conditional case, we obtain

(42)

This function indicates that the biometric sequences are useless
in this setting.

VI. RELATIONS BETWEEN REGIONS

A. Overview

In Fig. 8, we summarize our results on the achievable regions
obtained for all eight considered settings. The region pairs are
given for models with unconditional and conditional privacy
leakage.

Looking at Fig. 8, we can see that for models with generated
secret keys, we obtain the same achievable regions in both un-
conditional and conditional cases. However, when chosen secret
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Fig. 7. Secret-key rate versus private-key rate function � ��� for three values
of the crossover probability �.

Fig. 8. Region overview. By a slash (/) we separate the regions for models with
unconditional and conditional privacy leakage.

keys are used, then, depending on the type of leakage, i.e., un-
conditional or conditional leakage, we obtain different pair of
regions.

Consider first the models with privacy leakage. It is easy to
see that, since in a generated-secret model is a function of

, we have that . Therefore, the
achievable regions for generated-secret models in the uncondi-
tional and conditional cases are the same.

Now if we look at a chosen-secret model in the unconditional
and conditional case, we see that

.
Then, since we require and since

, we see that cannot be significantly smaller
than . This explains that the achievable region in the
conditional case cannot be larger than the achievable region in
the unconditional case.

It is also intuitively clear why, in the conditional case, privacy
leakage for chosen-secret models is larger than privacy leakage
for generated-secret models. Note that in chosen-secret models,
secret key is independent of , and therefore information
that a pair contains is larger than the information
that a pair corresponding to generated-secret models
contains. Next, note that to reliably convey , should
contain some information about both and . Thus, in
chosen-secret models, helper data also contain more in-
formation than the helper data in generated-secret models,
i.e., . Lastly, since in both

models we require secrecy leakage to be negligible, we obtain
that . This also implies that in
chosen-secret models, all the leakage “load” goes on biometrics.

Note that, since models with zero leakage are the extension of
models with privacy leakage when we additionally use private
key, also three of the four corresponding achievable regions are
the same.

B. Relation Between and

For each point , there exists an auxiliary random
variable with such that

(43)

Then also

(44)

and we may conclude that .

C. On and Its Relation to

Note that can be constructed as an extension of . In-
deed, observe that for each , there exists an auxil-
iary random variable with such
that

(45)

From these inequalities, it also follows that

(46)

Therefore, we may conclude that .
Similarly, for each , there exists an auxiliary

random variable with for which

(47)

and then, for , we obtain that

(48)

and consequently .
Lastly, note that if , there exists a as before,

such that

(49)

Then for any , we have

(50)

and therefore .
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Observe also that for , we can rewrite the bound for the
secret-key rate as

(51)

In this way, secret keys in models with achievable region
can be seen as a combination of common randomness (see
Ahlswede and Csiszár [2]) and a part of a cryptographic (pri-
vate) key that remains after masking the leakage. We may also
conclude that biometrics can be used to increase cryptographic
key size if both cryptographic and biometric keys are used
in secrecy systems. Moreover, in this setting, a biometric key
would guarantee the authenticity of a user, while in addition, a
cryptographic key would guarantee zero-privacy leakage.

D. On

Note that the form of implies that biometrics are actually
useless in the setting where both a chosen key and a private key
are involved in a secrecy system. Note that just as for , we
can see the bound for the secret-key rate as

(52)

Then secret keys in models with achievable region can be
seen again as a combination of common randomness and a part
of a cryptographic (private) key that remains after masking the
leakage (in ). In this case, however, we observe that, using
biometrics, we do not gain anything.

VII. CONCLUSIONS AND REMARKS

In this paper, we have investigated privacy leakage in
biometric systems that are based on i.i.d. discrete biometric
sources. We distinguished between generated-secret systems
and chosen-secret systems. Moreover, we have not only fo-
cused on systems in which we require the privacy leakage to
be as small as possible but also on systems in which a private
key is used to remove all privacy leakage. For the resulting
four biometric settings, we considered both conditional and
unconditional leakage. This led to eight fundamental balances
and the corresponding secret-key versus privacy-leakage rate
regions and secret-key versus private-key rate regions.

Summarizing, we conclude that for systems without a pri-
vate key, the achievable regions are equal to , except for the
chosen-key case with conditional leakage where the achievable
region is in principle smaller and only equal to . When is
the achievable region, the secret-key rate can be either larger or
smaller than the privacy-leakage rate depending on the source
quality. However, when is the achievable region, the se-
cret-key rate cannot be larger than the privacy-leakage rate.

Similarly, we may conclude that for zero-leakage systems,
the achievable region is equal to , except for the chosen-key
case with conditional leakage, where the achievable region is
only equal to . It is important to observe that in this last case,
the biometrics are actually useless. In zero-leakage systems, the
secret-key rate cannot be smaller than the private-key rate.

Regarding the achievable regions, we may finally conclude
that a secret-key versus privacy-leakage rate region is never
larger than the corresponding secret-key versus private-key rate

region. This is intuitively clear if we realize that a model is op-
timal if the private key is used to mask the helper data (pri-
vacy leakage) and remaining private-key bits are transformed
into extra secret-key bits.

Recall the key-leakage ratio discussed in the example in the
Introduction. This ratio characterizes the slope of the boundary
of the achievable regions found here. The higher the slope is,
the better the tradeoff between the secret-key rate and the pri-
vacy-leakage rate is. It is not difficult to see that the slope cor-
responding to the Ahlswede–Csiszár [1] result is the smallest
slope achievable in generated-secret systems; see also Fig. 5.

The achievability proofs that we have presented in this paper
can serve as guidelines for designing codes that achieve near-
optimal performance. They suggest that optimal codes should
incorporate both vector quantization methods and Slepian–Wolf
techniques. In the linear case, Slepian–Wolf coding is equivalent
to transmitting the syndrome of the quantized sequence.

The fundamental tradeoffs found in this paper can be used
to assess the optimality of practical biometric systems. More-
over, the tradeoffs that we have found can be used to determine
whether a certain biometric modality satisfies the requirements
of an application. Furthermore, as we could see, zero-leakage
biometric systems can be used to combine traditional crypto-
graphic secret keys with biometric data. It gives us the opportu-
nity to get the best of the two worlds: the biometric part would
guarantee the authenticity of a user and increase the secret key
size, while the cryptographic part provides strong secrecy and
prevents privacy leakage.

We have only looked at systems here based on a single bio-
metric modality. Further investigations are needed to find how
the tradeoffs behave in cases with multiple modalities.

In practice, biometric features are often represented by con-
tinuous vectors, and therefore the fundamental results for bio-
metric systems based on continuous Gaussian biometric data
would be an interesting next step to consider. Note that our
proofs make it easy to generalize our results to Gaussian bio-
metric sources.

Lastly, we would like to mention that after writing this paper,
the authors learned about recent results of Lai et al. [23] also
on the privacy-secrecy tradeoff in biometric systems. Although
there are some overlapping results (the two basic theorems), our
investigations expand in the direction of extra private keys and
conditional privacy leakage, while Lai et al. extended their basic
results by considering side information models.

APPENDIX A
BOUND ON THE CARDINALITY OF

To find a bound on the cardinality of the auxiliary variable ,
let be the set of probability distributions on and consider
the 1 continuous functions of defined as

for all but one

(53)

where, in the last equation, we use
, where .

By the Fenchel–Eggleston strengthening of the Caratheodory

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 15,2010 at 10:33:43 EST from IEEE Xplore.  Restrictions apply. 



IGNATENKO AND WILLEMS: BIOMETRIC SYSTEMS: PRIVACY AND SECRECY ASPECTS 965

lemma (see Wyner and Ziv [44]), there are 1 elements
and that sum to one, such that

for all but one

(54)

The entire probability distribution
and, consequently, the entropies and are now spec-
ified, and therefore also both and are. This im-
plies that cardinality suffices for all three regions

, , and .
APPENDIX B

PROOFS OF THEOREMS 1–8

The (basic) achievability proof for Theorem 1 is the most
involved proof. Here we only outline its main idea; the complete
proof is provided in Appendix C. The achievability proofs for
the other seven theorems are based on this basic achievability
proof. There this basic achievability proof is further extended
by adding an extra layer in which the one-time pad is used to
conceal a secret key in chosen-secret settings and helper data in
zero-leakage systems. The converses for all theorems are quite
standard.

A. Proof of Theorem 1

It should be noted that Theorem 1 is in some ways similar
to and a special case of Theorem 2.4 in Csiszár and Narayan
[\cite{Narayan2000}], the SK-part, since for a deterministic en-
coder . Csiszár and Narayan
considered a more general case with three terminals.

1) Achievability Part of Theorem 1: Although the com-
plete proof can be found in Appendix C, we will give a short
outline here. We start by fixing a conditional distribution

that determines the joint distribution
, for all , , and

. Then we randomly generate roughly 2 aux-
iliary sequences . Each of these sequences gets a random
-label and a random -label. These labels are uniformly

chosen. The -label can assume roughly 2 values,
and the -label roughly 2 values. The en-
coder, upon observing the enrollment sequence , finds a
sequence that is jointly typical with . It outputs the
-label corresponding to this sequence as a secret key and

sends the -label corresponding to this as helper data to
the decoder. The decoder observes the authentication sequence

and determines the auxiliary sequence with an -label
matching with the helper data, such that and are jointly
typical. It can be shown that the decoder can reliably recover

and the corresponding secret-key label now. It is
easy to check that the unconditional leakage is
not larger than . An important additional
property of the proof is that the auxiliary sequence can be
recovered reliably from both the -label and the -label. Using

this property, we can prove that is negligible and that
the secret is close to uniform.

2) Converse Part of Theorem 1: First, we consider the en-
tropy of the secret key . We use that and
Fano’s inequality , where

.

(55)

The last two steps require some attention. The last in-
equality in (55) results from

, since
. This Markovity follows from

(56)

i.e., . To obtain the last equality in
(55), we first define . Then, if we take a
time-sharing variable uniform over and inde-
pendent of all other variables and set , ,

and for , we obtain

(57)

Finally, note that

(58)

and therefore and consequently .
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If we now assume that is achievable, then
, and we obtain that

(59)

for some , where we have used
that, possibly after renumbering, .

Now we continue with the unconditional privacy leakage

(60)

for the joint distribution men-
tioned before. For achievable , we get, using ,
that

(61)

If we now let and , then we obtain the converse
from both (59) and (61).

B. Proof of Theorem 2

We prove Theorem 2 by showing that . Therefore,
first, assume that we have a code for the unconditional case,

Fig. 9. The masking layer.

hence a code satisfying (8). For this code

(62)

hence . On the other hand, if we have a code for the
conditional case, hence a code satisfying (9), then

(63)

which demonstrates that , and hence .

C. Proof of Theorem 3

The converse for this theorem is an adapted version of the
converse for secret generation in the unconditional case. The
achievability proof is also based on the achievability proof for
secret generation in the unconditional case.

1) Achievability Part of Theorem 3: The achievability proof
corresponding to Theorem 3 is based on the achievability proof
of Theorem 1. The difference is that we use a so-called masking
layer (see Fig. 9) that uses the generated secret in a one-time
pad system to conceal the chosen secret . Such a masking
layer was also used by Ahlswede and Csiszár [1]. The operations
in the masking layer are simple. Denote by addition modulo

and by subtraction modulo ; then

(64)

where should be considered as additional helper data.
Now keeping in mind that is uniform on

and independent of , the generated secret , and corre-
sponding helper data , we obtain

(65)
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and

(66)

Theorem 1 states that there exist (for all and large
enough) encoders and decoders for which
and

(67)

Therefore, using the masking layer implies that if
, and thus , and

(68)

and consequently secret-key rate versus privacy-leakage rate
pairs that are achievable for generated-secret systems in
the unconditional case are also achievable for chosen-secret sys-
tems in the unconditional case.

2) Converse Part of Theorem 3: As in the converse for gen-
erated-secret systems in the unconditional case

(69)

We use that , since
also here holds. As before, we de-
fine and take a time-sharing variable
uniform over and independent of all other vari-
ables, and we set , , and for

. Now again and consequently
hold. Since for achievable we have that ,
we obtain from (69) that

(70)

for some .
For the privacy leakage, we obtain as before

(71)

for the joint distribution men-
tioned above. For achievable , we get

(72)

where we used (70) to obtain an upper bound for .
If we now let 0 and , then (70) and (72) yield the
converse.

D. Proof of Theorem 4

1) Achievability Part of Theorem 4: The achievability part
follows again from the basic achievability proof, used in con-
junction with a masking layer, as in the achievability proof for
Theorem 3. Now we investigate the conditional privacy leakage

(73)

From (102) of the basic achievability proof in Appendix C, it
follows that by construction

(74)

and, therefore,

(75)

This step justifies that is achievable for chosen-secret sys-
tems in the conditional privacy-leakage case.

2) Converse Part of Theorem 4: First note that the part re-
lated to the secret-key entropy of the converse for Theorem 3
for chosen-secret systems in the unconditional case (70) also
applies here.

Now we continue with the conditional privacy leakage

(76)

for the joint distribution that was
defined in the secret-key entropy part of the converse for The-
orem 3. For achievable , we get

(77)
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If we now let 0 and , then we obtain the converse
from both (70) and (77).

E. Proof of Theorem 5

1) Achievability Part of Theorem 5: We demonstrate achiev-
ability here by first showing that . Assume that we
have a code for the conditional privacy-leakage case, hence a
code satisfying (17); then,

(78)

and therefore . In the achievability proof for The-
orem 6, we will prove that and therefore also

.
2) Converse Part of Theorem 5: We need to prove here that

. We start with the entropy of the secret

(79)

We used that
, since

. Moreover, we created

with and as before,
resulting in . Since, possibly after renumbering,

, we obtain for achievable pairs that
. Now

(80)

In a similar way, we find for the total leakage

(81)

Now we get for achievable , using , that

(82)
for as before.

If we now let 0 and , the converse follows from
(80) and (82).

F. Proof of Theorem 6

In the previous sections, we have seen that
. To prove Theorem 6, we therefore only need to show that

. This is done by the following achievability proof.
1) Achievability Part of Theorem 6: The achievability proof

is an adapted version of the basic achievability proof for gener-
ated-secret systems that appears in Appendix C. The first differ-
ence is that the secret is now the index of . This results in a
secret-key rate that is 4 and a helper rate that is equal
to 8 . Moreover, the helper data are
made completely uninformative in a one-time-pad way, using a
private key uniform over , the alphabet size of the helper
data . This results in modified helper data ,
where denotes addition modulo . Thus, the private-key
rate becomes equal to 8 .

Now, for the total leakage, we can write

(83)

The uniformity of the secret can be demonstrated using the
method described in Appendix C, since can be lower
bounded using (106). This argument demonstrated the achiev-
ability of .

Achievable regions for generated-secret systems with zero
leakage have the property that if an achievable pair be-
longs to it, then also does, for . The
reason for this is that extra private-key rate can always be
used as extra secret-key rate . This property now demonstrates
the achievability of all other pairs of rates in if we set

.
Observe that the method proposed here is very similar to the

common randomness proof that was given in [2]. The difference
is that here, the helper data are masked.

G. Proof of Theorem 7

1) Achievability Part of Theorem 7: We use a masking layer
on top of the scheme that demonstrates achievability for The-
orem 6. This masking layer combines the chosen secret and
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the generated secret into the additional helper ,
where the addition is modulo , the cardinality of the alphabet
for the generated secret . Now we obtain

(84)

and

(85)

where the last step follows from achievability for the case of
generated-secret systems with zero leakage.

2) Converse Part of Theorem 7: The part of this converse
related to the secret-key rate is similar to the secret-key-rate part
of the converse given for Theorem 5. It first leads to (79), from
which we conclude that, since , for achievable

it holds that

(86)

Consequently, we obtain

(87)

Next we concentrate on the privacy-leakage rate part

(88)

as before. For achievable , this results in

(89)

for . Here can be
bounded using (87).

Now if we let and , then (80) and (89) yield
the converse.

H. Proof of Theorem 8

1) Achievability Part of Theorem 8: The achievability fol-
lows immediately if we note that the private key can be used to
mask the chosen key in a one-time-pad manner. Observe that
we do not use the biometric sequences in any way.

2) Converse Part of Theorem 8: We start with the entropy of
the secret

(90)

The fourth inequality is based on
since , .

Then for achievable pairs , since , we
have that

(91)

If we let and , then we conclude from (91) that
, which finishes the converse.

APPENDIX C
BASIC ACHIEVABILITY PROOF

We start our achievability proof by fixing the auxiliary al-
phabet and the conditional probabilities

and . Now , for all
. Note that is

the distribution of the biometric source.
Our achievability proof is based on weak typicality, a concept

introduced by Forney [18] and further developed by Cover and
Thomas [7]. We will first give a definition of weak typicality.
After that, we will define a modified typical set that allows us
to obtain a weak-typicality alternative for the so-called Markov
lemma that holds for the strong-typicality case; see Berger [4].
StrongtypicalitywasfirstconsideredbyWolfowitz[42],butsince
then, several alternative versions have been proposed; see Berger
[4]butalsoCsiszárandKorner[8]andCoverandThomas[7].The
main advantage of weak typicality is that the results in principle
also hold for nondiscrete random variables. Therefore, our proof
generalizes, e.g., to the Gaussian case.

A. Definition and Properties of and

Definition 1: Let be a positive integer. The
set of -typical -sequences3

with respect to is, as in
Cover and Thomas [7, Sec. 15.2], defined as

(92)

3To get a more compact notation, we use here � instead of � , etc.
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where . Moreover, for given
, we define

(93)

Definition 2: Consider typicality with respect to distribution
. Now

the set is defined as

(94)

where is the output of a “memoryless channel”
for , whose input is .

Moreover, for all .
Property 1: If , then also

.
This follows from the fact that implies

that there is at least one such that .
Property 2: Let be i.i.d. with respect to

. Then for large enough

(95)

The statement follows from observing that

or

(96)

The weak law of large numbers implies that
for large enough. Then (95) follows

from (96).

B. Random Code Construction, Encoding, and Decoding

Random Coding: For each index ,
generate an auxiliary sequence at random according
to . Moreover, for each such
index (and the corresponding sequence ), generate a
secret-key label and a helper-data label

uniformly at random.
Encoding: The encoder observes the biometric source

sequence and then finds the index such that
. If such an index cannot be found, the encoder de-

clares an error and gets an arbitrary value from .

Using index , the encoder produces a secret key and helper
data . Next the encoder checks whether there is another
index such that and . If so,
the encoder declares an error. If no error was declared by the
encoder, then ; otherwise . The helper data are sent
to the decoder.

Decoding: The decoder upon observing the biometric source
sequence and receiving the helper data looks for the unique

index such that both and .
If such a unique index exists, the decoder produces a secret-key
estimate . If not, an error is declared.

C. Events, Error Probability

Events: Let and be the observed biometric source se-
quences, the index determined by the encoder, and
the random labels assigned to , and and
the actual labels. Then define the events

Error Probability: For the resulting error probability av-
eraged over the ensemble of codes, we have the following upper
bound. We assume that runs over

(97)

where in the last step, we used the fact that .
First Term: As in Gallager [17, p. 454], we write
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(98)

for large enough, if . Here (a) follows
from the fact that for , using Property 1, we
get

(b) from the inequality , which
holds for and ; and (c) from Property 2.

Second Term: If , then for all large
enough

(99)

Third Term: For this term, we get

(100)

where the last step follows directly from the definition of
.

Fourth Term: For a fixed

Now, if , for large enough

(101)

Solution of the Inequalities: The three inequalities
, , and

are satisfied by

(102)

D. Wrap-up

Secret-Key Rate and Error Probability: For all large
enough, there exist codes in the ensemble of codes ( se-
quences and and labels) having error probability

. Here denotes the error probability in the sense
of (97). For such a code

(103)

(104)

for our fixed . This follows from combining
(98)–(102).

Secrecy Leakage: First, observe that for any sequence

(105)

Then note that if no error was de-
clared by the encoder, and this happens with probability at least
1–2 . For the probability that index occurs to-
gether with , we can therefore write that

and, consequently,

(106)

Next observe that the label pair uniquely determines
when and that when . Then,

using (102) and (106), we get

(107)
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Finally, we obtain for the secrecy leakage

(108)

Uniformity: The uniformity of the secret key follows from

(109)

where the last step follows from (104).
Privacy Leakage: Note that from (102), it immediately fol-

lows that

(110)

Conclusion: We now conclude the proof by letting
and and observing that the achievability follows from
(103), (104), (108), (109), and (110).
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