
Visual Comput (2008) 24: 577–585
DOI 10.1007/s00371-008-0238-8 O R I G I N A L A R T I C L E

Rıfat Aras
Barkın Başarankut
Tolga Çapın
Bülent Özgüç

3D Hair sketching for real-time dynamic &
key frame animations

Published online: 5 June 2008
© Springer-Verlag 2008

Electronic supplementary material
The online version of this article
(doi:10.1007/s00371-008-0238-8) contains
supplementary material, which is available
to authorized users.

R. Aras (�) · B. Başarankut · T. Çapın ·
B. Özgüç
Department of Computer Engineering,
Bilkent University, Ankara, Turkey
{arifat, barkin, tcapin,
ozguc}@cs.bilkent.edu.tr

Abstract Physically based simula-
tion of human hair is a well-studied
and well-known problem. But the
“pure” physically based represen-
tation of hair (and other animation
elements) is not the only concern of
the animators, who want to “control”
the creation and animation phases
of the content. This paper describes
a sketch-based tool, with which
a user can both create hair models
with different styling parameters and
produce animations of these created
hair models using physically and key

frame-based techniques. The model
creation and animation production
tasks are all performed with direct
manipulation techniques in real-time.

Keywords Sketching · Direct
manipulation · Key frame · Hair
animation

1 Introduction

As one of the hardest parts of the overall character an-
imation, realistic hair is also one of the most important
elements for producing convincing virtual human/animal
agents. Physically based simulation of hair is a well-
studied and well-known subject, but for animators and
artists that create computer animation content, physical re-
ality is not the only concern. They have to be provided
with intuitive interfaces to create such content. Therefore,
direct manipulation techniques for user interfaces, which
are emerging as a major technique for user interaction, can
be used as a means of 3D content creation.

In this paper, we propose such a sketch-based tool,
with which an artist can create hair models including the
stylistic properties of hair intuitively with direct manipu-
lation. With the proposed tool, it is also possible to create
physical and key frame animations in a short time with
minimum user interference. The key frame and physi-
cally based animations are realized effectively by using
GPU programming, thus enabling the created animations
to be controlled interactively. Another property to be men-

tioned is that the created hair content is subject to no extra
mapping process or database lookups (except the gesture
recognition phase to solve ill-defined problems). With this
property, it is ensured that the created hair model looks
and behaves as closely as possible to the sketched one.

2 Previous work

Different hair modeling techniques have been proposed
to serve for different purposes. Individual particle-based
methods[1, 5, 11], real-timeanimationsolutions [8,10, 16],
representing detailed interactions of the hair with each
other [12] and interactive hairstyling systems [2, 7] have
all addressed different parts of the hair modeling and an-
imation problem. Our proposed tool deals with three dif-
ferent aspects of the problem: (1) modeling the hair along
with its stylistic properties, (2) creating and controlling
the animation of the hair model, and (3) performing these
tasks with a direct manipulation interface. Therefore, it
would be appropriate to examine the previous work rele-
vant to our method, with respect to these different aspects.

578 R. Aras

Hair modeling and animation. Choe et al. [2] present
a wisp-based technique that produces static hairstyles
by employing wisp parameters such as length distribu-
tion, deviation radius function and strand-shape fuzziness
value. On top of this statistical model, a constraint-based
styler is used to model artificial features such as hairpins.
Although the generated styles are realistic, real-time oper-
ation is unavailable due to excessive calculations. Oshita
presents a physically based dynamic wisp model [10] that
supports hair dynamics in a coarse model and then extends
it to a fine model. In the dynamic wisp model, the shape of
a wisp and the shapes of the individual strands are geomet-
rically controlled based on the velocity of the particles in
the coarse model. The model is designed to work on GPUs
with operations performed in real-time.

Controlling animations. Physically based modeling of
hair and other natural phenomena creates very realistic
animations, but controlling these animations to match de-
signers’ unique needs has recently become an important
topic. In Shi and Yu’s work [14], liquids are controlled to
match rapidly changing target shapes that represent regu-
lar non-fluid objects. Two different external force fields
are applied for controlling the liquid: feedback force field
and gradient field of a potential function that is defined
by the shape and skeleton of the target object. Like wa-
ter, controlled smoke animations have also been studied.
Fattal and Lischinski [3] drive the smoke towards a given
sequence of target smoke states. This control is achieved
by two extra terms added to the standard flow equations
that are (1) a driving force term used to carry smoke
towards a target and (2) a smoke gathering term that
prevents the smoke from diffusing too much. Treuille
et al. [15] use a continuous quasi-Newton optimization
to solve for wind-forces to be applied to the underlying
velocity field throughout the simulation to match the user-
defined key frames. Physically based hair animation has
also been a subject of animation control. In Petrovic’s
work [11], hair is represented as a volume of particles. To
control hair, this method employs a simulation force based
on volumetric hair density difference between current and
target hair shapes, which directs a group of connected hair
particles towards a desired shape.

Sketch-based interaction. Creating 3D content in an in-
tuitive way has become an active research area re-
cently. Sketch-based techniques have gained popularity
to achieve this task. A number of researchers have pro-
posed sketch-based techniques for creating hair anima-
tions. Wither et al. [17] present a sketching interface for
physically based hair styling. This approach consists of
extracting geometric and elastic parameters of individual
hair strands. The 3D, physically based strands are inferred
from 2D sketches by first cutting 2D strokes into half
helical segments and then fitting these half helices to seg-
ments. After sketching a certain number of guide strands,

a volume stroke is drawn to set the hair volume and adapt
the hair cut. Finally, other strands are interpolated from
the guide strands and the volume stroke. Because of the
mentioned fitting process, it is not possible to obtain a re-
sultant physically based strand that matches the user’s
input stroke. Another physically based hair creation tech-
nique is proposed by Hernandez et al. [6]. In this work,
the painting interface can only create density and length
maps, therefore hairstyle parameters such as curliness and
fuzziness cannot be created easily with this technique.

In contrast to these physically based sketching tools,
Malik [9] describes a tablet-based hair sketching user in-
terface to create non-physically based hairstyles. In this
approach, hair is represented as wisps, and parameters
such as density, twist, and frizziness of a wisp are used
to define the style of the hair. Additionally, with the help
of gesture recognition algorithms and virtual tools such
as virtual comb or hair-pin, the style of drawn hair can
be changed interactively. Another non-physically based
hairstyle design system is proposed by Fu et al. [4]. Their
design system is equipped with a sketching interface and
a fast vector field solver. The user-drawn strokes are used
to depict the global shape of the hairstyle. The sketch-
ing system employs the following style primitive types:
stream curve, dividing curve and ponytail. In this system,
it is hard to provide local control over hairstyle without
losing real-time property.

2.1 Our contribution

In this paper, we propose an easy-to-use sketch-based sys-
tem for creation and animation of hair models, using both
physically based and key frame-based animation tech-
niques. In contrast to the previous work, our system is
capable of completely preserving the drawn properties of
the hair without any intermediate mapping process. As
a result, all types of hair drawings (e.g., curly, wavy hair)
can be represented. Dynamic and key frame animations
of hair can also be created and edited in real-time with
a sketching interface. Statistical wisp parameters that have
been previously employed in a static context [2] (such as
fuzziness and closeness) are employed in a dynamic wisp
model. Physically based constraints are used in conjunc-
tion with key frame animations to create hybrid anima-
tions. Finally, a wide range of hair animation effects, such
as growing hair, hairstyle changes, etc., are supported by
the key framing interface via the proposed wisp matching
and hair mass sampling techniques.

3 Hairstyle modeling

In our tool, hair is represented as a group of wisps, and
styling of the hair is achieved by manipulating wisp par-
ameters such as fuzziness and closeness [2]. Hand-drawn
2D strokes are used as a means of input. The process

3D Hair sketching for real-time dynamic & key frame animations 579

of converting 2D input values into 3D styling parameters
consists of locating, recording and forming steps. The de-
tails of the steps of the process are explained in the follow-
ing subsections. The flow diagram of the process is given
in Fig. 1.

3.1 Skeleton strand root positioning

First, we define skeleton strands as the master strands in
a wisp, which are responsible for the style and move-
ment of other strands located on that wisp. The goal of
the first step of the hair sketching tool is then locating
the root point of the skeleton strand. To achieve this goal,
we fit a Catmull–Rom patch on the surface of the head
model [7]. The Catmull–Rom patch structure is used to
hold location information on the head. The patch repre-
sentation allows us to decrease the dimension of the loca-
tion problem from 3D to 2D space. The underlying patch
structure also makes it easy to find the neighborhood in-
formation within a wisp, which is used to distribute the
imitator strands around the skeleton strand. When the tool
is in idle state (i.e., a wisp is not being sketched), the user’s
first input point is considered as a root candidate. If the
point is on the patch, the point is registered as a skele-
ton strand root. The 3D coordinates of the root point are
converted to the u–v coordinate system of the patch, in
order to be used at a later stage, during the wisp formation
phase.

3.2 Skeleton strand control point position recording

After the root of the skeleton strand is determined, other
control points of the strand are recorded. Because users
can only interact with the 2D display, these 2D points have
to be converted to 3D coordinates. This is accomplished
by employing OpenGL’s depth buffers and invisible planar
elements [13].

Fig. 1. Flow diagram of the hairstyle capture process

3.3 Style recording

The style of an individual wisp is represented by a number
of style parameters, such as closeness ci, j , fuzziness fi, j ,
number of strands in a wisp ni , and strand thickness dis-
tribution ti, j (where i is the id of a particular wisp and j is
the number of recorded control points on that wisp).

Although these parameters can be recorded by differ-
ent means of input, in our tool, a tablet stylus pen is used
for their recording with a direct manipulation interface.
For example, the pressure information from the stylus pen
is mapped to the closeness parameter ci, j (as the applied
pressure increases, the closeness value increases also), and
the tilt angle information is used to represent the fuzziness
parameter. These parameters, except the number of strands
and the thickness distribution, are recorded for each con-
trol point of the skeleton strand, so that it is possible to
vary them within a single wisp as can be seen in Fig. 2.

3.4 Gesture recognition

The gesture recognition step operates on the drawn hair
wisps and detects if there are any loops. These loops de-
fine curling hairstyles, and are used to create 3D curling
hair. Gesture recognition represents hair strands as a list of
segments: a hair strand is formed by n mass nodes, form-
ing n −1 segments. These segments may intersect with
any other segment drawn on the same wisp. By calculating
the respective positions of each segment on the 2D view-
port, we detect these possible intersections as follows.

The intersections that have a potential to form curly hair
are selected if they satisfy the following two constraints:

1. A hair segment might be intersected by more than one
segment. If such a condition occurs, the segment that is
nearest is chosen and the others are discarded.

2. After the intersecting segment is chosen, if the seg-
ments between the chosen pair do not produce a con-
vex polygon, this means that the loop does not repre-
sent a curling hair and shall be discarded.

Fig. 2a–d. The effect of wisp parameters. a Constant closeness
value. b Increasing closeness value. c Decreasing closeness value.
d The effect of fuzziness value

580 R. Aras

Fig. 3. The segments S3 and S12 are intersecting. Therefore, mass
nodes forming the loop are mapped to a helix via the found axis of
rotation

If all these constraints are satisfied, the drawing is detected
as a loop. The focal point of the loop is found, and a prin-
cipal 3D axis of rotation is established at the focal point.
With this axis, the mass nodes in this loop are mapped to
a helical structure, thus producing a 3D curly hair (Fig. 3).

3.5 Wisp formation

After the recording of the segments is completed, an in-
dividual wisp is formed according to the recorded control
points and wisp style parameters. The captured control
points and parameters are fed into a GPU vertex shader
to create Catmull–Rom splines of the skeleton and imita-
tor strands. The imitator strand root points are distributed
around the skeleton strand root uniformly, using the em-
ployed patch structure and Archimedes’ spiral (Fig. 4).

Archimedes’ spiral is a spiral with polar equation:

r(θ) = αθ, (1)

where α controls the distance between successive turnings
that matches our closeness style parameter. If we adapt
this to our model, the equation becomes:

r(θ) = ci, jθ. (2)

Because a patch structure is employed for locating strands
in a wisp, we can map patch coordinates to polar coordi-
nates as follows:

u = r cos θ

v = r sin θ (3)

Replacing r with Eq. 2, we get the patch parameters as
follows:

u = ci, jθ cos θ

v = ci, jθ sin θ (4)

Fig. 4. The Archimedes spiral on the Catmull–Rom patch u–v
space. The points are obtained with 30 degree increments. The left
hand spiral closeness parameter ci, j is greater than the right hand
spiral closeness parameter

Fig. 5. The blue vector represents the offset distance for that con-
trol point. According to the fuzziness parameter, the corresponding
control point of the imitator strand is perturbed by randomly replac-
ing it in the volumes defined by perturbation spheres

The distances between the skeleton strand root point and
the distributed imitator strand roots define the offset dis-
tances of the remaining control points of the imitator
strands from the control points of the skeleton strand. In
a wisp, in other words, if closeness is kept constant and no
fuzziness is applied to the remaining control points, imita-
tor strands keep these offset distances.

The role of the fuzziness style parameter is to produce
uneven looking wisps. The increased value of fuzziness
parameter results in a more perturbed imitator strand con-
trol point location (Fig. 5).

4 Animation creation

4.1 Dynamic model

Our model separates the dynamical properties of our
skeleton strand structure from the stylistic properties,

3D Hair sketching for real-time dynamic & key frame animations 581

using Choe et al.’s approach [2]. We decompose the mas-
ter strand into two components – outline and detail com-
ponents – in order to separate the intrinsic geometry of the
strand from the deformations applied to it.

4.1.1 Dynamic representation of skeleton strand

When a skeleton strand is drawn, it is processed by the
dynamic model, in order to extract its physical and de-
tail representative components. The component extraction
process consists of a linear regression model as described
below in which physical representative components are
aligned with the axis of regression, and detail represen-
tative components become the vertical distance vector be-
tween the axis of regression and the skeleton strand points
(Fig. 6).

1. After the skeleton strand is drawn, the axis of regres-
sion – vector starting from root ending at last control
point – is found.

2. Each control point of the skeleton strand is projected
onto this axis, thus forming the physical masses of the
strand.

3. Vectors starting from physical masses ending at cor-
responding control points make detail components,
and vectors connecting neighbor physical masses make
physical components.

4. Physical components are used to preserve the distance
between their connected physical masses.

5. Once the above steps are complete, when simulating
the created hair model using physically based tech-
niques, input forces act on the created physical masses.

Fig. 6a–c. Extraction of physical and detail representative compo-
nents from a skeleton strand. a The sketched skeleton strand. b The
extracted components red rods are physical components and yellow
rods are detail components. c The wisp generated

4.1.2 Global simulation force stroke

Our tool, besides providing full control for creating hair-
styles, also aims at providing control while animating the
created hairstyle. We propose two approaches in this paper.
The first method is global simulation force stroke (GSFS).
The second method is the key frame model, which will
be discussed in the next section. GSFS enables the user
to intuitively manipulate the physical environment via the
drawing interface. When the tool is in the physical anima-
tion mode, a drawn stroke on the screen is recognized as
a GSFS, thus creating a virtual force field following the
GFSF’s pattern. Creating a force field requires a grid struc-
ture underneath. Field elements are calculated and stored in
grid nodes, which will be later accessed by physical masses
that are located inside them (Fig. 7).

4.2 Key frame model

We also propose a key frame animation interface for cre-
ating hair simulations. Hair wisps are drawn on the 3D
head model and their positions are recorded as key frames.
After key frame creation is finished, the in-betweening
stage operates.

The in-betweening stage is responsible for calculating
the transition functions and mapping of wisps between
the key frames. It is the most crucial stage of key frame-
based hair animation, since it fills the gaps between the
key frames provided to the interface, with correctly calcu-
lated in-between frames.

The stage consists of three steps: wisp matching be-
tween key frames, wisp mass sampling, and path function
creation.

4.2.1 Wisp matching between key frames

There can be any number of key frames provided to the
tool. Each key frame can also consist of up to hundreds of
individual hair wisps. Hair wisps of each key frame should
be correctly mapped to the hair wisps on the next key

Fig. 7. The intersection points of the GSFS and the walls of the grid
are found and a force vector between these points is formed

582 R. Aras

frame to achieve a realistic simulation. For instance, a hair
wisp located above the right ear in a key frame should be
mapped to a hair wisp again located above the right ear
on the next key frame. Without this constraint, the effect
would be similar to mapping the right leg to left leg in
a walking animation.

To prevent this unwanted effect from occurring, we as-
sume two constraints. The in-betweening stage controls
each two consecutive key frames and all of the wisps cre-
ated during these key frames. The skull is parameterized
as a 6 ×6 3D Catmull–Rom patch. All hair wisps have
their roots on this patch, and their root coordinates are lo-
cated as a 2D point in u, v coordinates on this patch. By
operating on this 2D coordinate system, the most suitable
wisp root is found (the closest one in 2D Euclidian dis-
tance in parametric space). At the end, the wisps having
the closest roots are mapped to each other.

4.2.2 Wisp mass sampling

After the wisp mapping stage is completed, the mass sam-
pling stage begins. Hair wisp lengths can be different than
the mapped hair wisp. For example, a hair strand hav-
ing 17 nodes might be mapped to a hair strand having
25 nodes. To correctly animate each hair strand, the num-
ber of nodes in each key frame should match. Therefore,
between two key frames, we select the hair strand hav-
ing fewer numbers of mass nodes, and resample its mass
nodes to match the second key frame. We achieve this
by creating new mass points between the old mass points
(Fig. 8).

For example, let there be 12 mass nodes in the longer
hair strand and 6 mass nodes in the shorter one (Fig. 8).
We detect that we need 6 extra mass nodes to match the
target number. In the short hair, there are 5 segments con-
necting these 6 mass nodes. We traverse each of these
segments from bottom to top and while traversing, we put
an extra node to each segment. When we reach the top,
if the strand does not have the same number of nodes (in
this example it will not, it will have 11), the operation is
repeated until the number of nodes are equal. After the
traversal, according to the number of extra nodes intro-
duced into each segment, the coordinates of each extra
node are determined (they are positioned in the line con-
necting the original nodes of the strand to avoid shape
changes). So 2, 1, 1, 1, 1 extra nodes are introduced into
segments 1, 2, 3, 4, 5, respectively.

Now the animation between these two hair wisps can
be processed. Extra mass nodes are added to the line con-
necting the older mass nodes uniformly so that their add-
ition does not cause any change in the hair wisp’s shape.

4.2.3 Path function creation

In each key frame, there may be hundreds of hair wisps
and each of these wisps will probably contain tens of mass

Fig. 8. Strand having a smaller number of mass nodes is sampled
to higher dimensions via addition of extra mass nodes. Blue nodes
are original mass nodes and red nodes are newly created. The ori-
ginal and extra mass nodes of the left hand side strand are mapped
to right hand side strand nodes

nodes. Each of these mass nodes should go to the correct
target positions in the amount of time given (i.e., the num-
ber of in-between frames).

After the wisp mapping stage successfully completes,
the two wisps that are matched are known by the tool.
Since the mass sampling stage is also completed, the
matching wisps now have the same number of mass nodes.
The path functions for each of these mass nodes are cre-
ated using linear interpolation. According to the number
of in-between frames and the distance to their locations on
the next frame; their speeds are calculated and reflected to
the animation.

During the animation stage, a real-time air viscous
noise is reflected to the animating hair strip. Its aim is
to give the hair a wavy look while it is being animated.
To further enhance the quality of animation and provide
smooth and realistic transitions, slow-in and slow-out sys-
tems are introduced, defined below.

4.2.4 Slow-in slow-out and viscous air drag noise

The speed of key frame animation can be defined by
changing the number of in-between frames, but the veloci-
ties of hair strands are constant between each key frame,
which sometimes leads to non-natural movements of the
hair strands. We introduce a slow-in/slow-out scheme
for individual nodes for more natural interpolation. Slow-
in/slow-out alters the speeds of the hair nodes according
to the frame index of the in-between frame. The mid-in-
between frame has the highest speed (normal speed×2),
while the beginning and end in-between frames have the

3D Hair sketching for real-time dynamic & key frame animations 583

lowest (near 0):

si = �nf/(nib +1)�−nf/(nib +1) (5)
speednew = speedold × (2− abs(si)), (6)

where si is the speed index of the current in-between
frame, nf is the number of frames so far, and nib is the
number of in-between frames chosen between two key
frames.

To achieve more realistic animations using slow-
in/slow-out, we introduced a direction check constraint in
our tool. The slow-in/slow-out method checks the general
direction of the hair strand’s mass nodes in 3D space (for
x, y and z directions). After finding the direction of each
node, a mean direction value is calculated, which is used
as the general direction of the hair wisp in 3D space. Hav-
ing these values in hand, the interpolator switches to the
next key frame (the target key frame) and performs the
same travel direction check step and compares the general
directions for each wisp. If a direction change is detected
in any of x, y or z directions, the slow-in/slow-out sys-
tem is operated for x, y or z values separately. Thus, if
a hair is swinging to the left and then to the right, its
x direction component is changing its direction leading
to a slow-in/slow-out effect performed on its x direction
speed.

Besides slow-in slow out, to improve the quality of the
animation, a touch of randomness should be introduced
into the system as well. In real life situations, since all of
the elements around encounter a resistive force (friction),
we should also include this into our animation system. The
force is the viscous air resistance force, which in our situ-
ation is the force that gives our hairs a wavy randomly
moving simulation look. To be able to reflect this into our
key frame interface, we introduced an extra randomized
noise value to our path function, which edits the positions
of each mass node during run time. From root to top, this
noise is introduced to the hair wisp but the values are dif-
ferent for different mass nodes. If the node is near to the
surface, the viscous air drag force is not too effective but
once we reach the top parts of the hair, it becomes more
apparent, preventing the stick-like effects during the hair’s
motion by giving the hair a wavy effect.

5 Results and conclusion

In this paper, we proposed a sketching tool to create and
animate hair models intuitively. To our knowledge, al-
though there have been sketching-painting based solutions
proposed for creating hair models, our tool’s contribution
is in the use of sketching as a means to create hair models
and animate the created models by using physically or key
frame-based techniques.

With the hairstyle capture subsystem, the drawn
strokes are converted directly to wisps without a mapping

process, except for the gesture recognition phase, in which
2D drawn loops are converted to 3D helices. This dir-
ect conversion of strokes into wisps makes it possible to
create straight, curly, wavy and other arbitrary hairstyles.
As the drawn strokes are decomposed into physical and
detail representative components, these different types of
hairstyles can all be handled by key frame and physically
based animation subsystems correctly.

Although we currently cannot provide usability test
results, it would be appropriate to perform a usability ana-
lysis to discuss the advantages and the limitations of our
tool.

Rapid hair model creation. Our sketching tool makes it
possible to create hair models with different stylistic prop-
erties in a short amount of time. For example, the results
obtained in Figs. 9 and 10 are created by first-time users in
nearly 3 min. By using direct manipulation techniques to
create different hair styles, users do not need to use other
interfaces and this property decreases the hair model cre-
ation time.

Rapid hair animation prototyping. Our tool provides cre-
ating two types of hair animations: physically based and
key frame-based hair animations. Both of the animation
techniques can be prototyped rapidly. The implemented
GSFS is used for controlling physically based animation
whereas sketching techniques are used for key frame an-
imations.

Limitations. Although our tool enables rapid production
of hair models and animation, it has some limitations.
One limitation with our tool is that it is not possible to
use artistic techniques like hachure and shading. Also,
another problem with the tool is that for defining key

Fig. 9. A hair model created in under 3 min

584 R. Aras

Fig. 10. The model is animated with physical techniques

frames, a user has to re-sketch all of the hair wisps, which
may be cumbersome when defining a large number of key
frames.

Although key frame animation of the hair gives the
capability of creating any type of animation (physically
correct, incorrect, chaotic, etc.) it might become a bit dif-
ficult to imitate a completely real life situation. Slow-in

Fig. 11. A combination of consecutive key frame animation screenshots, showing how the in-between frames gradually transform the hair
strands into the target key frames

Table 1. Flow diagram of the hairstyle capture process

No. of wisps No. of strands fps

50 1250 36
50 5000 24
100 2000 25

slow-out and viscous air drag noise helps to overcome un-
wanted transition effects.

In Figs. 9 and 10, examples of created hair models
and animations by first-time users can be seen. These hair
models were created and prepared for animation in under
3 min. Key frame and/or physically based animation se-
quences were also created by first-time users. The com-
putation intensive physical animation sequences were pro-
duced with a standard laptop PC (Intel Core 2 Duo T7500
2.2 GHz CPU, 2 GB RAM) with a video card NVIDIA
GeForce 8600M GT. Although the physical calculations
are not ported to the GPU, we were able to obtain the
results shown in Table 1, inclusive of the full hair-head
collision detection procedures.

To achieve this objective, however, we did not use
a hair–hair collision detection mechanism, which is con-
sidered as a future work by employing data structures and
GPU computing techniques.

Rapid hair formation gives the capability to form any
type of key frame hair animation rapidly. The results in

3D Hair sketching for real-time dynamic & key frame animations 585

Table 1 also apply to animations created using the key
frame method. In 1 min, a 30 s key frame-based animation,
similar to Fig. 11, can be created.

Also as an extension to our tool, we will implement
a physical-key frame hybrid technique, in which physi-

cally based forces are used to drive hair strands from one
key frame state to another one. Another feature that needs
to be investigated is employing physical constraints to hair
wisps to imitate hair styling products, braids and other
cosmetics.

References
1. Bando, Y., Chen, B.-Y., Nishita, T.:

Animating hair with loosely connected
particles. Comput. Graph. Forum
(Proceedings of Eurographics’03) 22(3),
411–418 (2003)

2. Choe, B., Ko, H.: A statistical wisp model
and pseudophysical approaches for
interactive hairstyle generation. IEEE
Trans. Vis. Comput. Graph. 11(2), 160–170
(2005)

3. Fattal, R., Lischinski, D.: Target-driven
smoke animation. In: Marks, J. (ed.) ACM
SIGGRAPH 2004 Papers, Los Angeles,
8–12 August 2004, pp. 441–448. ACM,
New York (2004)

4. Fu, H., Wei, Y., Tai, C., Quan, L.:
Sketching hairstyles. In: Eurographics
Workshop on Sketch-Based Interfaces and
Modeling (SBIM 2007), 2–3 August 2007,
University of California, Riverside (2007)

5. Hadap, S., Magnenat-Thalmann, N.:
Modeling dynamic hair as a continuum.
Comput. Graph. Forum (Proceedings of
Eurographics’01) 20(3), 329–338 (2001)

6. Hernandez, B., Rudomin, I.: Styling by
painting and real time of hair using
basis-dependent hair strands. In: WSCG
2004 (Poster), pp. 57–60 (2004)

7. Kim, T., Neumann, U.: Interactive
multiresolution hair modeling and editing.
In: Proceedings of the 29th Annual
Conference on Computer Graphics and

interactive Techniques, San Antonio, Texas,
23–26 July 2002, pp. 620–629. ACM, New
York (2002)

8. Koh, C.K., Huang, Z.: A simple physics
model to animate human hair modeled in
2D strips in real time. In: Hansmann, W.,
Purgathofer, W., Sillion, F. (eds.)
Proceedings of the Eurographic Workshop
on Computer Animation and Simulation,
Manchester, UK, 2–3 September 2001,
pp. 127–138. Springer, Berlin Heidelberg
New York (2001)

9. Malik, S.: A sketching interface for
modeling and editing hairstyles. In:
Proceedings of Eurographics Workshop on
Sketch Based Interfaces and Modeling
(EGSBM), pp. 185–194. Dublin, Ireland
(2005)

10. Oshita, M.: Real-time hair simulation on
GPU with a dynamic wisp model. Comput.
Animat. Virtual Worlds 18(4–5), 583–593
(2007)

11. Petrovic, L., Henne, M., Anderson, J.:
Volumetric methods for simulation and
rendering of hair. Pixar Technical Memo
#06-08 (2005)

12. Plante, E., Cani, M., Poulin, P.: A layered
wisp model for simulating interactions
inside long hair. In: Hansmann, W.,
Purgathofer, W., Sillion, F. (eds.)
Proceedings of the Eurographic Workshop
on Computer Animation and Simulation,

Manchester, UK, 2–3 September 2001,
pp. 139–148. Springer, Berlin Heidelberg
New York (2001)

13. Shreiner, D., Woo, M., Neider, J.,
Davis, T.: Opengl(R) Programming Guide:
the Official Guide to Learning Opengl(R),
version 2, 5th edn. (Opengl).
Addison-Wesley Professional, Boston
(2005)

14. Shi, L., Yu, Y.: Taming liquids for rapidly
changing targets. In: Proceedings of the
2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, Los
Angeles, 29–31 July 2005, pp. 229–236.
ACM, New York (2005)

15. Treuille, A., McNamara, A., Popović, Z.,
Stam, J.: Keyframe control of smoke
simulations. In: ACM SIGGRAPH 2003
Papers, San Diego, 27–31 July 2003,
pp. 716–723. ACM, New York (2003)

16. Volino, P., Magnenat-Thalmann, N.:
Real-time animation of complex hairstyles.
IEEE Trans. Vis. Comput. Graph. 12(2),
131–142 (2006)

17. Wither, J., Bertails, F., Cani, M.: Realistic
hair from a sketch. In: Proceedings of the
IEEE international Conference on Shape
Modeling and Applications 2007, 13–15
June 2007, pp. 33–42. IEEE Computer
Society, Washington, DC (2007)

RIFAT ARAS is a M.Sc. student at the Depart-
ment of Computer Engineering, Bilkent Univer-
sity. He obtained his B.S. degree in computer
engineering from Bilkent University in 2005.
His research interests include augmented vir-
tual reality and human-computer interaction. (ar-
ifat@cs.bilkent.edu.tr)

BARKIN BAŞARANKUT is a M.Sc. student
at the Department of Computer Engineering,
Bilkent University. He obtained his B.S. degree
in computer engineering from Bilkent University
in 2005. He has participated in various computer
graphics related projects including virtual real-
ity and physical simulations during his studies

at the university. His research interests include
augmented reality and computer animation.

TOLGA ÇAPIN is an assistant professor at the
Department of Computer Engineering, Bilkent
University. Before joining Bilkent, he worked
at the Nokia Research Center as a Principal
Scientist, where he led various graphics re-
search activities. He has published more than
20 journal papers and book chapters, 30 con-
ference papers, and a book. He has 2 patents
and 10 pending patent applications. His current
research interests include mobile graphics plat-
forms, human-computer interaction, and com-
puter animation.

BÜLENT ÖZGÜÇ received his Ph.D. in com-
puter graphics from the University of Pennsylva-
nia in 1978. He taught at the University of Penn-
sylvania, Philadelphia College of Arts, and the
Middle East Technical University, Turkey, and
worked as a member of the research staff at the
Schlumberger–Fairchild Instrument and Optical
Co research center. He joined Bilkent University,
Department of Computer Engineering in 1986.
His research topics are computer graphics and
animation. His articles appear in journals such as
Computers and Graphics, Computer Aided De-
sign, and The Visual Computer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

