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Abstract

In this thesis, we describe algorithms to build self-assembling robot systems composed of
active modular robots and passive bars. The robotic module is the Shady3D robot and the
passive component is a rigid bar with embedded IR LEDs. We propose algorithms that
demonstrate the cooperative aggregation of modular robotic manipulators with greater ca-
pability and workspace out of these two types of elements. The distributed algorithms are
based on locally optimal matching. We demonstrate how to build an active structure by
the cooperative aggregation and disassembly of modular robotic manipulators. A target
structure is modeled as a dynamic graph. We prove that the same optimality - quadratic
competitive ratio - as for the static graph can be achieved for the algorithms. We demon-
strate how this algorithm can be used to build truss-like structures. We present results from
physical experiments in which two 3DOF Shady3D robots and one rigid bar coordinate to
self-assemble into a 6DOF manipulator. We then demonstrate cooperative algorithms for
forward and inverse kinematics, grasping, and mobility with this arm.
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Chapter 1

Introduction

The goal of the thesis is to develop algorithms for self-assembly of truss climbing robot

Shady3D and passive elements, and to execute manipulation tasks by the assembled struc-

ture. We introduce a system where two robots can be assembled by using a passive strut

between them. We wish that the algorithms are distributed and as optimal as possible. The

thesis approaches the problem by three steps:

* Truss navigation of multi modular robots by locally optimal matching

* Self-assembly by extending the truss navigation algorithm

* Reconfiguration of the self-assembled structure

We consider robot motions for self-assembly as navigation on robot elements as well

as on truss. First we propose distributed algorithms for locally optimal truss navigation

of multi truss climbing robots without self-assembly. Then we extend the algorithms to

self-assembly by considering movement of self-assembly as navigation on the robots. The

proposed algorithms are implemented in simulations and experiments. After self-assembly,

manipulation tasks are executed by reconfiguring the self-assembled structure.

1.1 Truss Navigation of Multi Truss Climbing Robots

We continue the study of truss climbing robots began in [46] and consider coordination

problems when multiple robots are tasked to do work on the truss. Each robot is allocated



a different location on the truss. We wish to develop a distributed algorithm that uses local

information only (e.g. sensing and communicating locally) to plan paths for each robot

from their initial locations to the target locations. We consider a set of identical robots that

are capable to navigate a 3D truss-like structure such as the Shady3d robots in [46]. The

key technical challenge is to plan an optimal set of collision-free paths that minimize the

number of steps (and therefore energy consumption) for each robot. Collisions occur when

one robot unit blocks the way, as these robots can only travel on free truss segments. Since

the robots have information about their own mission only, it is very likely that the robots

may encounter other robots along the way and need to look for alternative paths.

This problem arises within construction and inspection applications. Trusses are en-

countered as part of bridges, scaffoldings, space structures, and underwater platforms such

as oil rigs. Tasks related to trusses are often dangerous and difficult for human workers,

as the bars are narrow. Space construction and maintenance outside a spacecraft require

dangerous extravehicular activity (EVA) missions by astronauts. We wish to create truss-

climbing robots can do significant work to inspect, augment, or repair engineered truss

structures. In the more distant future, these robots might become capable of climbing nat-

ural structures, such as trees, to assist with agricultural applications.

Coordinating a group of robots moving on a truss is easy when all the information

about the environment, the robots, and their goals is available centrally. We can represent

the truss as a graph, whose vertices are attachment places for the robots on the truss and

edges connect adjacent links. Then the problem of moving k robots to their goal location

along optimal collision-free paths reduces to a min-cost disjoint path problem with vertex

capacities (since at one time each vertex can be occupied by only one robot.) This becomes

an evacuation or assignment problem and has been studied extensively, for example optimal

time and cost solutions are presented in [21]. The solution intuition is as follows: the

truss graph can be transformed into a directed graph by connecting a super source to every

starting node, a super sink to every target, and a vertex for each intersection of two paths

from starting to target. Careful expansion of a min-cost max flow algorithm with unit

capacity such as [15] will produce optimal vertex-disjoint paths with the cost of a min-

cost bipartite matching. The running time of one of the best algorithms is O(k(k 2 + n +



m)log(n + k2 )), where m is number of edges in a graph and n is number of vertices.

While simple, the centralized solution to this problem does not capture the reality of

k robots moving autonomously and independently on a 3D truss to perform individual

work at different locations. We wish to develop a distributed algorithm that relies on local

information only, that can be realistically sensed and communicated by the robots. In the

thesis, we describe a distributed planning algorithm for placing k identical robots on a 3D

truss. We assume that the truss geometry is known to each robot and that the robot can

detect and communicate with other robots located at neighboring nodes (e.g. one edge

away). We describe how sensing and communication can be used to guarantee that robots

travel to their goal locations in an optimal number of steps. We analyze the running time

of this algorithm and the competitive ratio. We show that our algorithm has quadratic

competitive ratio and compare the result to a greedy algorithm whose competitive ratio is

exponential. Finally, we present data from extensive simulations and from several physical

experiments with Shady3D Robots.

1.2 Self-assembly by Locally Optimal Matching

Given a framework for truss navigation and truss climbing robots, we wish to provide self

assembling capabilities to such a system. In other word, we would like to have the robot

elements grasp materials such as bars from the world and self-assemble as a truss objects

with desired geometry. We consider this problem when the robot elements are the same

robots we developed for climbing. They work with rigid passive bars that are augmented

with communication capabilities to aid the robots with locating and grasping them.

More specifically, we wish to develop modular robots capable of construction tasks that

integrate robotic elements and raw materials from the environment to create dynamic and

controllable complex objects. In our previous work [7, 42] we describe a mechanism and

supporting algorithm for the self-assembly of linkages that alternate 3 DOF robot modules

called Shady3D with rigid bars. The resulting assemblies are controllable using distributed

inverse kinematics protocols to achieve pick and place tasks. We extend the algorithm for

self-assembling linkages in [42] to the self-assembly of arbitrary truss structures consisting



of rigid bars and Shady3D-like robots with 3 rotational DOFs that are capable of grasping

the bars on both ends. We assume a cache of robots and a cache of rigid bars. The robots

know the goal shape but they do not know about each other. They are only capable of

detecting each other and communicating locally, when they are in close proximity of each

other. We show that this problem can be reduced to a distributed matching problem and

analyze how sensing and communication can be used to guarantee that the robots construct

the goal structure in an optimal number of steps. We then describe an implementation of

this algorithm in simulation. Discussing its performance with a physical system will be

considered in future.

The robot abstraction used by this algorithm is modeled on the Shady3D robot [7]. We

assume that the robot looks like a rigid bar. The robot has grippers at both ends and is

capable of grasping both rigid bars and robot units. The grippers can rotate. An additional

rotational degree of freedom in the middle of the robot allows it to twist. This type of

robot uses its grippers as feet to move in a truss-like environment. The truss provides the

grounding support for each robot and for the truss-like assemblies the robots can create by

grasping rigid bars. Thus, the scope of this work is restricted to truss construction in truss-

like environments. Applications range from self-assembling scaffolds for construction to

underwater bridges and space structures.

1.3 Manipulation Tasks with Self-assembled Arm

Next, we build on the truss self-assembly results to explore the development of low-cost

modular manipulators. Drawing from the theoretical, practical, and existing experience in

manipulation and modular robotics, we propose an approach to synthesize modular ma-

nipulators that match a desired workspace by self-assembly. We envision robot systems

capable of scavenging raw materials from the environment to adaptively create dynamic

programmable structures that integrate robotic elements with passive components. We de-

scribe how a collection of simple robotic modules can grasp rigid bars and coordinate to

self-assembled robotic manipulators with a higher number of degrees of freedom and a

larger workspace than the components. The resulting robot arms are distributed mobile



manipulation systems that can be controlled to accomplish the basic functionality of a

robot arm: inverse kinematics, forward kinematics, grasping, and pick and place. These

arms can move autonomously to different places in the workspace. The specific type of

arm we study alternates robotic elements with rigid bars. The presence of the rigid bars

enhances the structural rigidity of the system and also contributes to the total number of

degrees of freedom of the system. The total number of elements is determined by the re-

quired workspace size. We aim to synthesize the smallest robot structure that meets the

workspace requirements.

The robot arms in this work belong to a class of robots called active linkages, that

were introduced in our previous work [7]. Active linkage robots look like trusses and are

comprised of two types of modules: passive structural modules which may either be fixed

in the environment or free to move individually, and mobile active modules which may

pick up or climb on the passive modules, organize and hold them in a desired shape, and

actively move them for self-assembly, self-reconfiguration, or self-repair purposes. The

passive modules can be passed around by the active modules and coordinated to form the

skeleton of a large class of truss geometries. The active modules can also be thought of as

smart joints in the linkage.

The challenge in building self-assembled modular arms ranges from issues related to

designing simple and robust active modules capable of interacting with other passive and

active modules, to problems of control and planning. Control is challenging because each

active link is a separate robot. The many degrees of freedom of these systems have to be

coordinated using distributed and efficient controllers.

More specifically, we present algorithms for the self-assembly of multi-link robot arms

out of 3DOF robot modules with the structure and capabilities of our robot Shady3d [47]

and rigid bars with embedded LEDs for guiding grasping. We assume to know the location

of the robot modules and of a cache of smart passive bars. Given a desired workspace, we

determine the number of needed links. A distributed self-assembly algorithm constructs

the robot arm as an alternation of robot elements and passive bars. We demonstrate this

algorithm in the context of creating a 6DOF manipulator out of two Shady3D elements

and one passive bar. We also present cooperative algorithms for forward and inverse kine-



matics, grasping, and pick and place and give data from physical experiments. Finally,

we demonstrate that this type of modular arm is mobile and can move autonomously to a

different location in the workspace.

1.4 Summary of Contribution

Contributions of the thesis are summarized. A new framework for self-assembly of truss

climbing robots is introduced. Active and passive modules for assembly are designed and

implemented. Next, fully distributed control laws are developed so that the robot elements

navigate on truss as well as assemble themselves into a given structure. The control al-

gorithms are proven to have the local optimum that has quadratic competitive ratio to the

global optimum. Finally, The algorithms are implemented on the proposed system with

various tasks.

1.5 Organization

This thesis is organized as follows. Chapter 2 shows previous work of truss climbing

robots, self-assembly of modular robots and matching algorithms in a graph. Our system

with active robot elements and passive bars with embedded IR LEDs are introduced in

Chapter 3. Theories and implementation of the truss navigation is described in Chapter 4.

Self-assembly based on the extended locally optimal matching is explained and imple-

mented in Chapter 5. Chapter 6 shows experiments of self-assembly and manipulation

tasks. We conclude the thesis in Chapter 7



Chapter 2

Related Work

The idea of robots which self-assemble (and/or self-replicate) using elements from the

environment is not new, for example see Chirikjian et al's paper on lunar-surface self-

assembly [20] and references therein. In this paper we explore the particular idea of sepa-

rating the system into active modules and passive bars, with an emphasis on the possibility

only producing the latter-much simpler-units from the environment.

Our proposed systems and algorithms are further related to prior work in the fields of

self-reconfiguring robots, hyper-redundant robots, variable-geometry truss robots, and truss

climbing robots.

2.1 Self-Reconfiguring Robots

Of all the self-reconfiguring modular robots which have been previously reported, our cur-

rent work seems most closely allied with systems based on rotary DOF and mechanical

connection mechanisms.

Normally, the robots have a form of lattice or chain. Also, they can be classified by a

number of unit types in a system. A homogeneous system has a single unit, and a heteroge-

neous system has two types of units. A homogeneous unit always comes with an actuator,

whereas a heterogeneous system may include a non-movable unit for a battery or any bulky

material.

Because of nature of modular robots, mostly each system requires a unique controller



for reconfiguration, according to its structure. Distributed controllers are prefered in a sense

that a large number of the modules may need to work together.

Murata, et al's built "3D Fracta" [40] which works like a reconfigurable lattice. The

robot unit has rotatable connectors on each side of a cube so that it can move another unit.

A stochastic algorithm is used to control the units in a distributed way.

Kotay and Rus developed "Molecule"[31, 30, 29] which has male and female connec-

tors to assemble it to another molecule and can lift up the connected molecule in 3D. The

proposed controllers move a group of the molecules in a distributed fashion.

Rus and Vona built "Crystal"[10, 11, 12, 9] which expands and shrinks its body for 2D

reconfiguration. They introduced an algorithm to move a cube from one location to another

in a distributed way.

Unsal, Kiliccote, and Khosla made bi-partite "I-Cubes" [8] system which is heteroge-

neous with a cubic module and a link module. Centralized locomotion algorithms were

used with given combinations of the modules.

Lund, Beck, Dalgaard, St0y et al developed ATRON [22, 27] which is a sphere rather

than a lattice. Each unit has an upper and lower hemisphere and the structure lead to a

complicated controller for 3D reconfigration.

Duff, Yim, et al's PolyBot [13] is a chain-type module, and linked modules can re-

configure themselves to an arbitrary 3D chain. They showed how tens of the modules are

cordinated to change a global structure such as from a four-legged robot to a snake or a

fully connected chain.

A major difference in our present work is that we are proposing modular systems with

only some modules containing active DOF-the rest serve as passive structural elements.

In contrast, all of the above referenced systems are either homogeneous (all modules iden-

tical and actuated) or are heterogeneous but still require actuation in all modules.

2.2 Hyper-Redundant Robots

Research in the field of hyper-redundant robots has mainly explored non-reconfiguring

systems with high DOF and fixed kinematic topology, typically open chains. Both planar



systems and full spatial mechanisms have been explored. The planar systems typically

have one (effective) kinematic DOF per link, and the spatial systems may have two or

more. Sometimes the links are internally parallel mechanisms, an arrangement which has

been called "hybrid serial-parallel" [16, 43, 24].

Burdick and Chirikjian built "snakey" (which is also a variable geometry truss, see

below) [18, 19] that has 10 modules each of which has 3 prismatic joints. Total 30 degree-

of-freedom enables the manipulator to avoid obstacles in their experiments as if it is flexible

continuum.

Greenfield, Rizzi, Choset et al designed a modular snake[3], which can have many

links and climb through a pipe by bracing its body. A controller of the robot works with

ambiguous fiction and dynamics.

Suthakorn and Chirikjian built a binary-actuation manipulator. The manipulator has

four of 3-bit planar VGT modules each of which has 8 possible reachable points. The mod-

ule has discrete rotary joints with three binary actuators. They also proposed a numerical

and analytical ways of inverse kinematics.

Wolf, Choset, et al's "Schmoopie" [2] was built for search and rescue missions. The

robot arm has 14 actuated universal joints in a chain.

Our proposed two-leg tower construction is a hybrid serial-parallel mechanism; and

our single-chain tower is kinematically equivalent to typical hyper-redundant snakes. Thus

far we have applied classical pseudoinverse-derived inverse kinematics methods for these

structures but we are also considering adaptation of methods developed specifically for

hyper-redundant robots, for example Chirikjian's "backbone curve" method [17].

2.3 Variable Geometry Truss and Truss Climbing Robots

Variable geometry trusses (VGTs), can be viewed as a generalization of the serial-chain

hyper-redundant systems to more general kinematic topologies. Both fixed-topology sys-

tems like the NASA/DOE "SERS DM" [39] and manually-reconfigurable systems-notably

Hamlin, Sanderson, et al's TETROBOT [16]-have been considered. Also related are

robotic systems which assemble static trusses, for example, Everest, Shen, et al's SO-



LAR [25], and Howe and Gibson's "Trigon" system [1]. Such self-assembling and self-

reconfiguring truss systems are a promising direction for robotic assembly of large struc-

tures in space-for example, see Doggett's overview of automatic structural assembly for

NASA [44].

Truss climbing robots are also under active investigation, e.g. Amano et al's handrail-

gripping robot for firefighting [23], Ripin et al's pole climbing robot [48], Nechba, Xu,

Brown et al's "mobile space manipulator SM2" [36, 37], and Almonacid et al's paral-

lel mechanism for climbing on pipe-like structures [34]. Truss climbing also has been

acknowledged to have clear applications in inspection and construction of in-space struc-

tures [4].

Several truss climbing robots have been explored by other groups, e.g. Staritz et al's

"Skyworker" [38], Amano et al's handrail-gripping robot for firefighting [23], Ripin et al's

pole climbing robot [48], Nechba, Xu, Brown et al's "mobile space manipulator SM2" [37],

Kotay and Rus' "Inchworm" [28], and Almonacid et al's parallel mechanism for climbing

on pipe-like structures [34].

This paper presents a new mechanical design and novel control using intentional me-

chanical compliances and proprioception, with experimentally confirmed robustness.

Our proposed systems can act as self-reconfiguring/self-assembling modular VGTs,

and our Shady3D robot shows how the same module designs can also be applied to truss-

climbing.

2.4 Matching Algorithm

In truss navigation, we deploy robots to target points on truss by minimum number of total

moves to minimize the energy usage. Collision-free min-cost path planning algorithms[15]

for multi-robots are required since a robot can not move through the other robot. The

problem can be solved by a perfect matching between initial nodes and target nodes, with

selection criteria for distributed controllers. The matching uses the fact that the robots are

identical. This is not an offline matching problem, but closer to the online matching. How-

ever, this problem is different from the online matching in that a robot does not know how



other robots are matched. In the online matching, it is proven that the lower bound of the

competitive ratio of any deterministic algorithm is (2k - 1). The permutation algorithm[26]

achieves this bound.
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Chapter 3

Experimental infrastructure: Shady3D

and rigid bars with LEDs

In this work, we use Shady3D [47] as an active module and a bar with embedded IR LEDs

as a passive one. The resulting arm can be anchored anywhere on truss. The algorithms

presented here depend on the abstract capabilities of Shady3D and can be instantiated on

any other robot module with similar capabilities. We introduce the hardware and how they

build a self-assembled tower.

3.1 Shady3D

Shady3D was originally designed with the goal of climbing 3-dimensional trusses as a first

step toward tree-climbing robots. It has three joints for 3-D motion and two grippers on

each side as shown in Figure 3-1. The number of joints is chosen to be minimal for moving

on the 3-D trusses. Unlike Shady [14] which was designed to climb planar trusses, the

middle joint enables Shady3D to switch from one plane to another. The robot can only

reach specific points, where the trusses are modeled by nodes and edges [47], and every

robot has the identical structure and functions.

The three joints of Shady3D enable a robot to traverse 3D trusses. By connecting two

Shady3Ds (See Figure 3-2(a)) directly we can generate a 5DOF linkage. The DOF is not

six due to the fact that the axes of two gripper joints lie on the same line. A 6DOF linkage



(a) (b)

Figure 3-1: (a) Shady3D robot and its structure: 3-joints and 2 grippers (b) truss structure
and an example of deployment of a single robot: numbers denote nodes on the trusses[45]

4

Figure 3-2: (a) A 5DOF manipulator with directly connected two Shady3Ds (b) A 6DOF
one with inserting a passive bar between two robots[45]

is obtained by using a truss element as a medium of connection as in Figure 3-2(b). Since

the two robots are grasping different points of the passive truss, the reduction of DOFs does

not happen.

We have built two fully working Shady3D robots and 5 Shady3d bodies that do not

include any electronics, but can be used as obstacles during our experiments, to simulate

the presence of up to 7 robots working together on the truss. The placement algorithms are

implemented and tested using this environment.

~,/
..-~~ -



(a) (b)

Figure 3-3: (a) A passive bar with embedded IR LEDs (b) an IR sensor attached beneath

the gripper

3.2 Passive bar

The self-assembly operation requires many grasping steps that need to be robust. We

choose an approach that embeds beacons in the passive object. Solutions that rely on other

sensors such as vision are possible but require more computation. A passive bar emits IR

signals via the IR LEDs embedded in the bar is shown in Figure 3-3(a). Two LEDs are

located at each side of the bar (indicated by yellow dotted circles) and inform a robot about

existence of the bar. Each bar includes two AAA batteries as a power source. Shady3D has

two IR sensors on each gripper bed, as shown in Figure 3-3(b), so that it can check whether

a bar is present just below its gripper or not. In our experiment, it can sense the bar located

about 50(cm) below the gripper. Note that this sensing range matters when a combined

6DOF manipulator also tries to find the bar, because it is capable of moving any direction

while a single module can not.

Witha a map, the robot is able to predict where to find a bar and it can confirm by

sensing the IR signal. Note that it cannot be sure there is a bar even if it knows its location,

because the robots work in a distributed fashion and another robot might have grasped and

moved the bar.
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Chapter 4

Truss Navigation

4.1 Problem Formulation

Consider a truss with k robots on it. Each robot receives a set of goal locations. In this

section we formulate the assumptions in the distributed placement problem we wish to

solve. Local information only will be used to direct each robot to a goal location so that all

targets are guaranteed to be occupied. We make the following assumption and notations:

* We are given a 3D truss with known geometry. The robots can grasp the truss at a

discrete set of points. The truss is modeled as an undirected graph G, whose vertices

are points where a robot can grasp (for example, the joint of the truss is not a vertex)

and whose edges connect adjacent vertices. There is a positive cost on each edge.

* Each robot is modeled as one point that corresponds to an anchor gripper on the

graph G.

* There are k identical robots on the truss.

* The robots can sense if an adjacent vertex is free or occupied by another robot.

* Each robot can communicate with the robots that occupy adjacent nodes.

* When two robots communicate, they can share all information (e.g. state, target

location, etc.)



* The set of initial nodes in the graph is R; robot i is initially located at ri. These

locations are not known to the robots.

* The set of target nodes is T; T = {t,t 2,...,tk}

* The cost of a set of paths is the sum-total of the edge weights of the paths.

* The goal is for all target nodes to be occupied by the robots and for the overall path

cost to be minimal.

4.2 Distributed Algorithm by Locally Optimal Matching

In this section we describe a solution to the distributed placement of k robots on a truss

using distributed locally optimal matching. The intuition behind this solution is that robots

compute the location of the nearest target using as input the truss geometry and the list of

targets. Then they start traveling toward their target in parallel. If the path of a robot is

blocked by a different unit, or the robot finds that its target is already occupied, the robot is

reconfigured by an operation of swapping state. This solution can be described as finding

a matching between R and T.

Each robot runs a local algorithm for planning a path and moving along the path. The

robot algorithm consists of several phases: initialization, path computation, path execution,

and path reconfiguration in case of deadlock. Each robot's state includes the following

data:

* ID: identification number

* Status: what it is doing now.

* Settle Down: true if it has settled down at the target

* Pushing List: a list of the robots pushing it now

* Location: currently occupying nodes

* Initial and Target node



* matching list: a list of the initial and target nodes a robot has learned by the collisions

only with settled-down robots.

* Path to the target: a list of the nodes to the target

The following sections detail the phases of the algorithm.

4.2.1 Initialization

Using the initial state, the truss geometry, and the given set of targets, the robot computes

the nearest target node.

4.2.2 Deployment

Algorithm 1 shows the main path execution loop. Since robots do not know where the other

robots are, they need to be able to detect collisions with other robots.

Algorithm 1 Main Control
1: while true do
2: Status=Planning
3: if not Communicating then
4: Distributed Deployment
5: end if
6: Status = Idle
7: Wait for Communication in a fixed time
8: end while

Algorithm 2 shows the Distributed Deployment procedure. This enables a robot to

advance, to detect collisions, and to handle collisions. First, the algorithm checks if this

robot has arrived at its desired target. If so, it sets the resource Settle Down as true, and

stops. Otherwise, the robot checks for collisions by send a message (note that the system is

set up so that a robot can only communicate with adjacent robots and only when the status

of the robots is Idle.) If the next node is empty, it takes a step and updates the resources. :

it changes the location and makes the Pushing List null. Flushing the pushing list indicates

that the robot is not within a any cycle. In case of a collision the robot determines the

collision type (one of five cases) and takes corresponding action as shown in Section4.2.3.
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Figure 4-1: Exchanging robots; r is a robot and p is a path (a) two crossing paths and (b)

the system state after the exchange

4.2.3 Handling Collisions

Crossing path

When the path of a robot and the blocking robot cross each other, the two robots exchange

their destinations by exchanging all their state (see Figure 4-1.) Upon completing state

exchange by communication, the robots return to their Distributed Deployment algorithm

and eventually diverge as shown in Figure 4-1(b).

Breaking a Deadlock

A deadlock is a status in which some robots can not move even though their paths do not

cross as shown in Figure 4-2. There are four robots {rl, r2, r3, r4}. Their paths {P1, P2,P3,P41,

form a rectangular cycle (see Figure 4-2(a)). The Pushing List (which consists of robots

waiting to advance) is used to eliminate deadlock. Each blocked robot sends its list to the

blocking robots. The blocker merges the list onto its own. When a robot finds itself on its

Pushing List (as shown in Figure 4-2(b)), it is in a cycle. In this case, the robot with lowest

ID forces the blocking robot to execute Exchanging the robots until a robot in the list does

not block it anymore. After this forced exchange, the cycle will be broken as shown in

Figure 4-2(c). The robot with the lowest ID can proceed.

Stepping aside

Stepping Aside is necessary because Shady3D has two grippers and occupies two nodes.

Consider the scenario in Figure 4-3(a). The green robot has settled down at the node occu-

pied by the right gripper (the anchor), and the blue robot is trying to go through the node

occupied by the non-anchor gripper of the green robot. Even though the paths do not cross,
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Figure 4-2: Breaking a deadlock: (a) a deadlock (a cycle) (b) communication protocol for
preventing the deadlock: push (c) the cycle is broken by exchanging identities.
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Figure 4-3: Stepping Aside: (a) the blue robot requests stepping aside of the green robot
(b) after the stepping aside of the green robot

there is no cycle, and the two robots have the distinct targets, the blue robot is stuck. In this

case the blocked robot requests the blocking robot to step aside so it can move as shown in

Figure 4-3(b). If there is no room for the non-anchor gripper to move to, the blocking robot

communicates this failure and Exchanging the robots eliminates the deadlock.

Finding a new target

The last selection criterion explains how to select a new target when two robots that block

each other have the same target node. To solve this conflict, the blocked robot finds another

target node, computes a new path to it, and follows the path as it has done. The new target

is a node in the optimal set of the target nodes matched with the initial nodes of the blocked
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Figure 4-4: Two robots are deploying according to the proposed matching algorithm: (a)

initially, robot #1 and #2 have the same target node by the local optimal matching (b) Robot

#1 arrives earlier than #2, and now it has its matching list [{rl }, {tl }]. (c) Robot #2 finds

out tl has already been occupied upon its arriving at tl. (d) Robot #2 gets a new target t2 by

calculating the locally optimal matching with [{rl, r2}, {tl }]. After arriving t2, it updates

the matching list by [{rl,r2, r2 tl,t21

robot and the Matching lists of both robots.

Algorithm 3 describes the locally optimal matching. When a robot p has found that the

other q occupied its target, they merge their Matching list {Rq, Tq} and {Rp, Tp }. Using the

merged Matching list and its starting node, it calculates the next target which is incident

on the locally optimal matching Mp+q. This is computed efficiently using the Hungarian

algorithm[32] which has O(k3 ) runtime and can be used with any size matrix.

Algorithm 3 Getting a Locally Optimal Matching

1: Merge the matching lists {Rq, Tq} and {Rp, Tp}
2: Find the next target which belongs to Mp+q by Hungarian algorithm

3: Change matching lists of both robots to the merged one

r1

t2

-~



4.2.4 Termination

If at least one robot is moving, the total distance between the robots and the target nodes is

strictly decreasing. If each robot has a distinct target node the perfect matching has been

reached. Since there is no deadlock in the system the actions of the robots will converge

and terminate.

4.3 Analysis

In this section, we analyze the optimality and the computational runtime of the distributed

matching algorithm for placing robots of a truss. We show that the distributed algorithm

has O(k 2) asymptotic competitive ratio to the global optimum and the total runtime of all

robots is bounded by O(k5 + k2 (n + m)logn).

The distributed localized robot placement problem is different from the online matching

problem in that robots do not know how other robots have already been matched to requests.

The lower bound of the competitive ratio of any deterministic on-line matching algorithm

is (2k - 1). The permutation algorithm[26] achieves this bound. Furthermore, our solution

is more efficient than a greedy one.

4.3.1 Online matching: previous work

Our analysis uses several results on minimal weight partial matching from [26]. The min-

imal weight partial matching Mi which is the set of edges that form the minimal weight

partial perfect matching between the subset {rl, r2,..., ri} and subset of T with a minimal

number of edges in Mi - Mi- 1. Let Tj be the subset of T consisting of vertices of T which

are incident on M.

Lemma 1 The cost of the Mis form a monotonically non-decreasing sequence.

Lemma 2 For each i, the set difference Ti - Ti-1 contains exactly one vertex.

Lemma 3 For a union set composed of vertices of Mi-1 and {ri, ti} where ri is chosen to

be a incident vertex on Mi, the cost from ri to ti is bounded by the cost of Mi-1 + Mi



Proofs of Lemma 1- 3 are given in [26]. From now, We also use M as the cost of the set

M.

In this section we extend the partial optimal matching results to our algorithm. Let

Rp E R contain the robots that settled down on their target nodes according to robot p.

Let MRp be the min-cost matching of the sub-group Rp. Note that MR is sequentially

constructed as a new robot collides with it. Therefore, Lemma 1- 3 hold for Rp and MRp.

4.3.2 Running Time

In this section we examine the running time of our algorithm by first showing that the a

match between an initial robot and a target location does not change once a robot settles on

the target, and then examining the size of the merged matching lists.

Suppose each robot has the cost matrix C where Cij is the cost of the shortest path from

ri to tj. The running time required to compute this matrix is O(k(n + m)logn) (k times the

running time of a shortest-path algorithm runtime. We use the partial matrix of C(Rp+q, T)

corresponding to a set of {Rp URq U initialnode} and entire T. After getting the new target,

the matching lists are exchanged with the merged list, and the robot follows a new path to

the target. It is important that the new pair of the initial and the target node not be included

in the merged list, because other collisions may cause a change in the target node.

Lemma 4 The initial node and target node matched by a settled down robot stays fixed.

Proof: Suppose a robot starting at ra has arrived at its target ta and settled down. This

robot will leave the target node, if and only if another robot exchanges the resources with

it, by Algorithm 2. This can only happen for type 3 collisions. In this case, the exchange of

states between the two robots causes the matched pair (ra, ta) to be maintained.

Lemma 5 A merged matching list from the lists of two robots has the exactly same number

of initial nodes and target nodes.

Proof: Suppose that robots A and B have their matching lists {Ra, Ta } and {Rb, Tb } which

have the same number of nodes in both R and T. If A has the same target as B, they collide.

Suppose B is settled. The merged list is obtained as {Ra U Rb, Ta U Tb }. Therefore, the



number of the initial nodes and the target nodes is:

NR = n(Ra) + n(Rb) - n(Ra n Rb) (4.1)

NT n(Ta) + n(Tb) - n(Ta N Tb) (4.2)

,where a funcion n() notifies the number of a set. Since we know that each matching list

has the same number of R and T, the result is true if and only if"

n(Ra nRb) - n(Ta n Tb), (4.3)

where a funcion n() notifies the number of a set. By Lemma 4, Equation 4.3 holds,

because otherwise at least one of the initial nodes in {Ra n Rb } must match more than one

target nodes.

Lemmas4 and 5 imply that it is necessary to add only one target node to { Ta n Tb} in

order to match {Ra nRb, ra} . Figure 4-5 shows how a robot behaves using the algorithm.

In Figure 4-5(a), robot p with matching list {Rp, Tp} collides with robot q with {Rq, Tq} at

the node tq. Then p gets a new target and the merged list {Rp URq, Tp U Tq}. Then p follows

a new path from tq to tp+q. Note that the path to tq from somewhere among Tp belongs to

the previous step. We have O((p + q) 3 ) running time by Hungarian algorithm[32].

4.3.3 Optimality by Competitive Ratio

In this section we investigate optimality by finding the competitive ratio, which is defined

as the cost of the worst case to the globally optimal one.

Lemma 6 When robot p with matching list {Rp, Tp} collides with robot q with matching

list {Rq, Tq } at node tq(See Figure 4-5), the path to the new target tp+q costs up to 4 Mp+q,

where Mp+q is the optimal matching between the set {Rp U Rq, rp} and {Tp U Tq, tp+q}.

Proof: The path is the red line in Figure 4-5(a), from tq to tp+q. By triangular inequality

(Figure 4-5(b)), the cost is bounded by the edges, (tq, rp) and (rp, tp+q).
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cost (tq -* tp+q) epq +- ep,p+q (4.4)

The first edge is due to the previous collision and bounded by Mp- 1 + Mp, which is

the locally optimal matching between {Rp, Tp} and {{Rp, rp}, {Tp,tq}} respectively, by

Lemma 3. The second is also bounded by Mp- l+q + Mp+q, the locally optimal matching of

{Rp U Rq, Tp U Tq } and {{Rp U Rq, rp}, {Tp U Tq, tp+q} }. Therefore, Equation 4.4 becomes:

cost(tq -tp+q) < Mpl+Mp+Mp-l+q+Mp+q

< 4 Mp+q (4.5)

because the cost of the local optimum never decreases by Lemma 1.

Lemma 7 The total cost of the path for the ith robot to the settled down position is bounded

by (4i - 3)MRi.

Proof: We use induction. For convenience, assume that the robots deploy sequentially, one

by one after the previous one's settlement. When the first robot settles down, the lemma

holds. Suppose the bound is true for (i - 1), and then the cost Pi_ 1 is:

Pi-1 < (4(i - 1) - 3)MR, 1  (4.6)

By lemma 6, Pi is bounded by following:

Pi < Pi- I + 4MRi

" (4(i - 1) - 3)MRi_1 + 4 MR

(4i- 3)MR (4.7)

Intuitively, we can consider the result as a function of the number of collisions. The maxi-

mum of i-th robot is (i - 1), since there are (i - 1) robots before it. Every time it collides,

the added cost is bounded by Lemma 6, and it leads to the above inequality.



Lemma 8 The distributed deployment algorithm has O(k 2) asymptotical competitive ratio.

Proof: The total cost of deployment is the sum of all k robots' cost, and it can be written

as follows:

k k

S(4i - 3)MR < (4i- 3)MR
i=l i=1

(2k2 - k)MR (4.8)

where MR is the global optimum.

One added complication is the cost of stepping aside. This cost does not relate with

any optimal cost, it remains as a constant. As R gets bigger, we can Therefore, competitive

ratio is (2k 2 - k), asymptotically.

Lemma 9 The total running time of the distributed placement algorithm is O(k5 + k2 (n +

m)logn).

Proof: Whenever a robot is getting a new target by the proposed algorithm, O(k3) runtime

is required. Therefore, total runtime for Hungarian algorithm is O(k4 ). O(k(n + m)logn)

is to calculate the cost matrix. Total runtime of all robots is obtained to multiply k to the

runtime of each robot O(k4 + k(n + m)logn).

Thus, our proposed distributed matching algorithm has (2k2 - k)competitive ratio, and

O(k2 /logk) times the running time of the central controller.

The quadratic competitive ratio is due to the fact that the robots do not share their

matching lists. If a robot can share the information with the collided robots by any method,

we achieve O(k) competitive ratio, which is the competitive ratio of the online matching

algorithm.

4.3.4 Comparison to The Greedy algorithm

In this section we show that the performance of a distributed greedy algorithm has an

exponential competitive ratio and thus much worse than our algorithm.

Consider an intuitive greedy algorithm where each robot successively finds the nearest

target node. Consider Figure 4-6 where (k - 1) robots have occupied (k - 1) target nodes
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Figure 4-6: A bad situation for the greedy algorithm.

and one robot must find its target by the greedy algorithm. If the left edge of the robot has

(1 + E) cost, where e is a small positive number, the robot will continuously go to the right

node and finally return to tk after visiting all the right nodes. The cost is (2k - 1), while the

optimal cost is only (1 + s). Therefore, in this case, the competitive ratio is (2k - 1) when

e is small.

4.3.5 Discussion

By this reason, we are quite sure that the ratio should be worse than that of the online

matching. However, it seems hard to prove the exact bound while the online matching is

easily proven to have (2k - 1) for any deterministic algorithm[26].

Could randomized algorithm help?

An alternative to improve performance is to consider a randomized version of the algo-

rithm. The best competitive ratio of the randomized algorithm[35] is O(log3k) while a

deterministic is O(k). They use a special graph, HST tree, rather than a generic graph. In

addition, they have shown that a generic graph can be modified into a HST tree. We have

not tried this approach to our problem. However, we conjecture that a randomized algo-

rithm would not work well in our case, because it is much harder to narrow the probability

- the choices. For instance, for a uniform metric graph where nodes are fully connected

and every edge cost is 1, the proposed randomized online matching algorithm - which finds

the nearest one and if there is tie (multi nodes with the same cost), it randomly select one

- gives O(logk) expected competitive ratio while a greedy one does O(k). However, in our

case, the same algorithm also yields O(k), which is the same order as that of a greedy one.

Although one example cannot tell everything, we guess this is a hint that a randomized



algorithm might not work better mainly because there is no central brain, which know the

current state of all robots, and it makes it impossible to avoid the collision.

4.4 Implementation

We implemented the distributed deployment algorithm in simulation and on the physical

platforms described in Section 3.

4.4.1 Simulation

We have implemented the distributed placement algorithm in Java. We simulated each

robot as an independent process (thread) to ensure parallelism. The target nodes and the

initial placement of the left and right grippers of each robot were randomly selected. The

left gripper was initially used as the robot's anchor.

We have tested two kinds of geometries and generated sparse and dense graphs, as

shown in Figure 4-7. For each graph, 2 10 robots are simulated 100 times, respectively.

The parameter of the fixed communication time was set 0.1 second. The number of the

communications and the faster total execution time are inversely proportional to this time.

The total time is defined as the duration from the start of the simulation till the termination

of each robot process.

The statistical results collected from these simulations are shown in Table 4.1. For

both graphs, the average ratio of the cost by the distributed algorithm to the cost of the

centralized globally optimum algorithm are very slowly proportional to the number of the

robots, whereas the analytical worst bound increases in a quadratic fashion. Even with 10

robots, the ratio is only around two. It appears that the graph type does not affect it. The

average number of communication per robot is larger in the sparse graph than in the dense

graph. This makes sense because a robot tends to have more chances to collide on a sparse

graph.
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Figure 4-7: (a) Sparse graph with two robots (b) Dense graph with ten robots

Table 4.1: Result of the simulations

Avg. Ratio Avg. Comm. Worst Cast
# of robots Real/Opt per robot Real/Opt

Sparse Dense Sparse Dense Sparse Dense
2 1.1 1.1 0.7 0.8 1.8 1.7
3 1.2 1.3 1.3 1.8 2.1 2.8
4 1.3 1.4 1.5 2.7 2.4 2.6
5 1.5 1.6 3.0 3.9 2.5 3.3
6 1.6 1.8 4.4 5.1 2.6 3.4
7 1.8 1.7 4.2 3.0 2.9 3.2
8 1.9 1.8 4.9 3.9 3.5 3.1
9 1.9 1.9 5.8 3.9 4.4 4.1
10 2.0 2.1 6.2 5.0 3.3 3.4
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4.4.2 Physical Experiment

The simulation algorithm has been transfered to the hardware system in Section 3. For these

experiments we use two Shady3D robots, two inert Shady3D robot bodies, and a simple

truss structure as shown in Figure 4-8. Shady3D communicates via Bluetooth receivers. Its

range is adjusted to the one-edge distance. The inert robots are introduced to increase the

number of robots and collisions in this setup (at the moment we have only two Shady3D

robots.) They are manually controlled and simulated by the main computer as if they move

and even communicate by themselves. We set 5 seconds as communication rate and 10

seconds as the moving time of the inert robots (the human operator moves them during this

time).

We performed six experiments using different robot placements and target locations.

Snapshots of the experiment are shown in Figure 4-8, where four robots are moving and

orange circles represent the target nodes. Four target nodes {a,b,c,d} are displayed as

orange circles. In the beginning (Figure 4-8(a)), every robot finds its nearest target node.

We see robot #1 is already located at its target a, and it does not move. The other three

robots plan to move to the same target node b which has already been occupied by #1. By

the proposed algorithm, #2 communicates with #1 and requests step aside to free the target.

Consequently, #1 steps away (Figure 4-8(b)). After #2 settles on b, #3 follows its way and

collides with #2 (Figure 4-8(c)). Because they have the same target, #3 calculates the local

optimal matching based on the merged known list, and it heads to the result, target c. Then

it tries to move to c, and finds that #2 is blocking its way. They exchanges the resources.

Successively, #2 also exchanges the resources with #1. In the end, #1-3 robots move to

c, a, and b respectively, and they all settle down (Figure 4-8(f)). Next #4 is moves to b

(Figure 4-8(g)). #4 gets a new target d using locally optimal matching with the merged

known list of #3 and #4. In the same way, each robot moves, shifting to the next target,

which is caused by successive exchanges. Finally each robot reaches at one of the target

nodes (Figure 4-8(h))

The performance summary for the six physical experiments is given in Table 4.2. While

the competitive ratio is almost the same as for the simulation case, the average communi-
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Figure 4-8: snapshots of reconfiguration of four robots



Table 4.2: Result of the Experiments

cation is much higher. Note that the number of communication is highly dependent on the

communication rate.

We have encountered errors in the experiments. The errors are caused by over current

of the motors in case of misalignment of the robot gripper and the truss- while moving. We

are working on improving the robustness of the hardware.

Exp # Optimal Traveled Exchange Avg. Finding
Cost Cost Count Comm. new Opts

1 15 15 9 22 3
2 14 25 4 5 5
3 19 20 3 3 3
4 4 4 0 0 0
5 17 17 2 13 3
6 28 28 14 14 3
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Chapter 5

Self-assembly by Locally Optimal

Matching

5.1 Self-assembled linkage: walking tower

Multiple Shady robots can connect to one another using passive bars to form a larger active

structure. The robots become smart joints in the self-assembled structure: they can actuate

the structure to travel, bend, twist, and self-reconfigure. Figure 5-1 shows snapshots of

the self-assembly of a truss tower. Twelve active modules and eight passive bars are em-

ployed to build a three-dimensional tower that can reconfigure itself by controlling active

parts. Note that the robots are controlled by just a given sequence of motions - designed by

hand. We will implement the same structure in Section 4.4 by the proposed algorithm in a

distributed way.

5.2 Problem Formulation

Our goal is to build an active structure composed of Shady3D-like robots and passive bars.

We extend the algorithms we proposed in [41], where we consider how to optimally place

a group of robots on a truss, to how the robots can create truss-like structures by self-

assembly. Local information only will be used to coordinate robots to reach their desig-

nated good locations.



Figure 5-1: Four snapshots of the tower building simulation. The Shady3D robot modules

are drawn as an elongated U-shapes with light and dark halves; the free bars and the grid

are drawn as straight segments [45].



Figure 5-2: A graph representation of the tower. Only the target nodes are shown. Circles

are nodes, and non-activated and activated edges connect them. The graph has 4 on-truss

and 16 non-truss target nodes. Each color denotes one of four trees.

Let A be a target to be assembled, A can be represented as a graph as shown in Figure 5-

2. The graph has active (solid lines in Figure 5-2) and non-active (dotted lines in Figure 5-2)

edges. The nodes that are reachable to the robots are connected by active edges. The nodes

have two types: a truss node is a part of the existing scaffold while a non-truss node is at

the growing robotic truss. The graph begins as a connected system that marks the initial

truss/scaffold for the assembly. As a robot learns that some of the non-truss nodes are

occupied, its graph is updated by adding edges connected to the nodes. The more it learns,

the more nodes become reachable. Every non-truss node should be linked from a on-truss

node by non-activated edges. We call such a node (on a truss) a root, and the nodes that

rooted at the node form a tree structure. For example, the tower in Figure 5-2 consists of

four trees which is denoted by different colors.

To formulate the problem, we make the following assumptions and notations. We in-

herit many of them from [41].



* We are given a 3D structure with known geometry. The structure is modeled as a

dynamic undirected graph G, whose vertices are points where a robot can grasp if

the connecting edges are active. There is a positive cost on each edge.

* Passive bars are reachable from any root nodes.

* Each robot is modeled as two points that corresponds to an anchor and non-anchor

gripper on the graph G.

* There are k identical robots on the truss.

* All the robots start at on-truss nodes.

* The robots can sense if an adjacent vertex is free or occupied by another robot.

* Each robot can communicate with the robots that occupy adjacent nodes.

* When two robots communicate, they can share all information (e.g. state, target

location, etc.)

* The set of initial pairs of nodes in the graph is R; robot i is initially located at ri.

These locations are not known to the robots.

* The set of target pairs of nodes is T; T = {tl, t2,..., tk}

* The goal structure is feasible; given starting locations, there exist a sequence to build

it.

* The cost of a set of paths is the sum-total of the edge weights of the paths.

* The goal is for all target nodes to be occupied by the robots and for the overall path

cost to be minimal.

The second assumption can be realized when passive bars are supplied at specific loca-

tions around roots by other robots or machine. For more general case, we will consider that

bars are supplied at any position, as future work. Local commnuincation is a reasonable

assumption since wide-range communication may spend large amount of energy which is

not allowed for a modular robot with a limited power source.



5.3 Distributed Algorithm to Build an Active Structure by

Locally Optimal Matching

In this section we propose algorithms for the distributed placement of k robots to build an

active structure using distributed locally optimal matching. Our solution is an extension

and refinement of 4. In this previous work we considered how to allocate a set of robots to

fixed goal locations on a truss in which all the targets are on trusses. Our problem can be

defined as finding a matching between R and T, where T can include non-truss nodes.

Each robot runs local algorithms for single robot's locomotion as well as self assem-

bly and disassembly of multi robots. In particular, we focus on how to resolve collisions

between robots, because they lead to co-operative reconfigurations and self-assembly.

Each robot's state includes the following data:

* ID: identification number

* Mode: Single if alone, Multi if in a tree

* Communicating: true it is communicating with others

* Status: what it is doing now. Idle, Busy, Move, Settled, or Assembling

* Pushing List: a list of the robots pushing it now, to check a cycle

* Location: currently occupying nodes by the anchor and the non-anchor gripper

* Position: only for MULTI mode, ROOT if it is a root of a tree and LEAF otherwise

* Initial and target nodes pair

* Match list: a list of the initial and target nodes pairs it has learned by the collisions

only with settled-down robots.

* Root-sided robot and Leaf-sided list: a list of which robots are connected to me and

how they are connected. There is only one root-sided robot.

* Multi Job: a task for a root robot to do



When a robot is in Multi mode in a tree, a root robot of the tree has a role of a local

brain to communicate with other robots in the tree and decide what the tree should do.

5.3.1 Algorithm overview

Figure 5-3 shows an expected sequence of building two trees (e.g. columns of a bridge).

Each tree is composed of two robots and a passive bar. The following steps are required

computationally to carry out this distributed assembly.

* Locate a robot on a truss by locomotion

* Add a unit to a tree

* Cut a unit from a tree

* Control trees to do above tasks

The following sections detail the phases of the algorithm.

5.3.2 Initialization

Using the initial state(mode=Single, status=Idle), the truss geometry, and the given set of

targets, the robot computes the nearest target node, as in the opening part of Algorithm 4.

5.3.3 Deployment

Algorithm4 shows the main control loop. After initialization, each robot executes the dis-

tributed deployment algorithm (Algorithm 5 or 6) according to its mode, unless the robot

is communicating. Otherwise, it handles messages from the communicating robot. After-

ward, it updates its mode and position based on its state (Algorithm 7).

Algorithms 5 and 6 are the procedures that enable a given robot with a target construc-

tion tree to move, detect collisions and handle them. The first algorithm checks if this

robot has arrived at its desired target. If so, it sets Status=Settled, and stops. Otherwise,

the robot checks for collisions by communication. If the next node is empty, it takes a
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Figure 5-3: Building two trees by four Shady3D-like robots. (a)Robots are in a reservoir

with a given design of the columns. The goal structure is denoted by gray dotted lines.

In the beginning, every robots goes to the root of the first tree since it is the nearest target.

(b)rl occupies the root of the first tree. r2 collides rl, and finds the next optimal target. (c)r2

is being added to ri. (d)r3 also collides rl, and finds the next target (the root of the second

tree). (e)r2 goes to the second root instead of r3, and is being cut from rl. (f)Sequentially,

all the target nodes are occupied by four robots.

Algorithm 4 Main Control
1: Initialize state
2: Find the nearest target
3: loop
4: if Communicating =false then
5: Distributed Deployment (Algorithm 5, 6)

6: else
7: Message handler
8: end if
9: Update mode (Algorithm 7)

10: Wait for Communication in a fixed time

11: end loop
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step and updates the resources. In case of a collision the robot calls the collision handler

(Algorithm 8).

For multi-mode robots, only the root robot checks a given job and executes it. Currently,

we have only one case for cutting a leaf of the tree, but other behaviors can be added (e.g.

locomotion of a tree).

Algorithm 5 Distributed Deployment for Single mode
1: if reached my targets then
2: Status=Settled
3: Add (my start, my target) to match list
4: else if reached one of the target nodes then
5: target = pair of the current target
6: Get a new path
7: else
8: Communicate with adjacent robots
9: if Next node empty then

10: Status=Moving
11: Move to the next node
12: Update my Location
13: Swap the anchor
14: Clear my Pushing list
15: Status=Idle
16: else
17: Status=Busy
18: Collision handler(collided ID's state) (Algorithm 8)
19: Status=Idle
20: end if
21: end if

Algorithm 6 Distributed Deployment for Multi mode
1: switch multi job
2: case CUTLEAF
3: cut the leaf (Algorithm 13)
4: end switch

Algorithm 7 changes the mode of a robot from Single to Multi when at least one of its

gripping nodes is not on a truss and the not-on-truss gripper is on a non-truss node. (r2 in

Figure 5-3(d)) The algorithm decides its position between Root and Leaf. Mode changes

from Multi to Single, if both the grippers are on trusses, or one is on a truss and other is



not on a truss nor a non-truss node. (r2 in Figure 5-3(e))) The latter condition is necessary

when it is cut from the tree as we will see in Section 5.3.5.

Algorithm 7 Update my mode
1: if opposite-anchor gripper is on non-truss node then
2: mode=Multi
3: if NO root-sided robot & one of my nodes is on truss then
4: position=Root
5: else
6: position=Leaf
7: end if
8: else if both my nodes are on truss or (one is on truss & other not on truss nor non-truss

node) then
9: mode=Single

10: clear root-sided and leaf-sided robot lists
11: end if

5.3.4 Handling Collisions

The collision handler inherited that in Chapter 4. We introduce new features for self-

assembly. Algorithm 8 starts with trying communication to a blocking robot, ID of which

is noted as clD. SEND(ID, message) is a command to transmit the message to a robot that

has the ID. This command works only with neighborhood robots. If the collided robot

allows communication by sending the message, the handler calls the detailed collision han-

dler. After the detailed handler ends, the algorithm finishes communication by sending the

message ENDCOMM, if the robot is still communicating. Note that adding a leaf to a tree

may relocate the leaf far away from the root, and the leaf should have ended communication

before the addition ends.

Algorithm 9 is the detailed handler. We have found out that the algorithm for Single

mode (developed in [41],) can be applied for a tree by considering a leaf of the tree as a

Single mode robot. There are some special cases only for Multi mode such as adding and

cutting a leaf, which will be explained in Section 5.3.5.



Algorithm 8 Collision Handler(cID)
1: SEND(cID,' STARTCOMM')
2: if RecievedMessage 'LINKED' then
3: return
4: else
5: Communicating = true
6: call handlers(my mode, cID's mode)
7: if Communicating = true then
8: SEND(clD,'ENDCOMM')
9: Communicating = false

10: end if
11: end if

(Algorithm 9)

Algorithm 9 Detailed Collision Handler
1: if The paths are crossing then
2: Exchange(my leaf, clD's leaf)
3: else if cID's status -settled then
4: Add Pushlist(my PushList + my leaf's ID)
5: if my leaf's ID E PushList & my leaf's ID = min(PushList) then
6: Exchange(my leaf, cID's leaf)
7: else
8: return
9: end if

10: else if cID's status=settled & my leaf's target cID's tree then
11: if my path crosses cID's tree then
12: SEND(cID,'CUTLEAF')
13: Exchange(my leaf, ciD's leaf)
14: else if my path goes over cID then
15: Add me to cID's tree (Algorithm 12)
16: else
17: Exchange(my leaf, cID's leaf)
18: end if
19: else if cID's status=settled & my leaf's targete cID's tree then
20: my target +- a new local optimum
21: end if



5.3.5 Multi-robot movement for self-assembly: adding and cutting a

leaf

When a robot collides with a settled tree, a leaf of the tree should move instead of the

root, and the tree should execute adding and cutting the leaf. We have seen a sequence of

handling collision between a robot and a tree in Figure 5-3. When the target of a robot

is on the next empty nodes of the tree(Figure 5-3(b),) line 14 of Algorithm 9 is called to

add the robot to the tree. The robot is added to the tree, connected by the red passive bar

(Figure 5-3(c)). When the path of a robot is crossing the tree (Figure 5-3(d)). The robot

requests to cut a leaf from the tree according to line 11 of Algorithm 9, and it exchanges its

identity with the leaf. At the next turn of the main control loop, it has the target of the leaf,

while the leaf is being cut (Figure 5-3(e)).

To implement these behaviors, communication along a tree is required. We call it

SENDTREE as in Algorithm 10, where a simple depth-first search algorithm is used with

the state of leaf-sided robot list and root-sided robot. A robot in the tree propagates a re-

ceived message from its root-sided robot to leaf-sided ones, waits for the answer of the

leaf-sided, and finish communication with the root-sided.

Algorithm 10 SENDTREE: communication in tree
1: for leaf-sided robot list do
2: SENDTREE(received message)
3: do my job
4: WAIT('DONE')
5: end for
6: SEND(root-sided robot, 'ENDCOMM')

Add a leaf

When a tree adds a leaf, the robot uses Algorithm 11, while the new leaf works with Algo-

rithm 12 in parallel. When the new leaf sends the message 'ADDLEAF', the root checks

if a bar is connected to the new leaf's target node. If the bar does not exist, the tree makes

a path to a new bar by inverse kinematics , which will be explained in Section 5.4. The

path consists of new locations of the nodes in the tree, from the root to a side of the bar.
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Figure 5-4: A sequence of collision handling between a robot and a tree. (a)rl is crossing a

tree rooted by r2. (b)The tree finds the nearest leaf r3 to cut and exchange it with rl. (c)The
root is cutting rl from the tree. (d)The tree returns to the original location. (e)r 3 is being
added to r2. (f)The tree is re-constructed with the same robots, while rl has crossed the
tree.
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The root robot sends the path to the others in the tree, and robots that are on the path move

with the given locations. The root commands to grasp the bar, and calculates another path

to the anchor node of the new leaf. Afterward, the root sends the corresponding locations

to the new leaf, while the tree moves with the new path. They exchange some messages

to synchronize grasping and releasing, and end communication. Note that communication

finishes before the addition is completed. Otherwise the leaf may move far away from

the communication range. Finally, the tree returns to its original locations and updates the

match list and the graph.

Algorithm 11 Add a new leaf to my tree
1: Status=Assembling
2: Check a bar at new leaf's target (SENDTREE)
3: if bar not exists then
4: Get path to bar by the inverse kinematics
5: Move my tree (SENDTREE)
6: Grasp the bar (SENDTREE)
7: end if
8: Get path to new leaf's target by inverse kinematics
9: Move my tree (SENDTREE)

10: SEND(new leaf's ID,'COORDINATE')
11: WAIT(new leaf's ID,'READYASSEMBLE')
12: SEND(new leaf's ID,'ASSEMBLE')
13: end communication with new leaf
14: Return to original locations (SENDTREE)
15: Update match lists and map (SENDTREE)

Algorithm 12 Add myself to tree
1: Status=Assembling
2: SEND(clD,'ADDLEAF')
3: move to Received Message's new Location
4: SEND(cID,' READYASSEMBLE')
5: Grasp a bar
6: SEND(clD,' ASSEMBLED')
7: Merge match lists
8: Status=Settled



Cut a leaf

Adding a leaf happens between colliding robots. Cutting a leaf is a procedure between

robots in a tree, and is designed as an independent process. Cutting a leaf is called when a

root robot has state MultiJob=CUTLEAF (Algorithm 6), which is triggered by the colliding

robot (Algorithm 9). Algorithm 13 shows how cutting a leaf is implemented at the root.

The root begins to cut a leaf as it finds a next node on a truss where the leaf should be

located. If the node is empty, the root gets a path to it by inverse kinematics, reconfigures

the tree, grasps the node, and release the leaf from the tree. Otherwise the collision handler

is called.

Algorithm 13 Cut leaf
1: Find next node for the leaf
2: Communicate with adjacent robots
3: if next node is empty then
4: Get path to the next node
5: Move my tree (SENDTREE)
6: Grasp the next node (SENDTREE)
7: Cut leaf from tree and update map (SENDTREE)
8: Return to original locations (SENDTREE)
9: Multi Job = false

10: else
11: Collision handler
12: end if

5.4 Controlling linkages by inverse kinematics

In this section, we introduce inverse kinematics for a tree with multi-robots. This con-

trols the partial linkages to execute the necessary movements for adding or cutting a leaf.

The solution works in near-singular regions as well as is specially designed for our active

structure.

5.4.1 Approximated solution for multi-robots

Reaching an arbitrary point in space by linked robots requires robot coordination. Unfortu-

nately, the structure of Shady3D does not allow a closed-form inverse kinematics solution



even for the simplest 6DOF linkages from two robots. Instead of using an explicit solu-

tion, we use an approximation algorithm based on the manipulator jacobian. We select a

Damped Least Square (DLS) method because it has good robustness and performance [5].

The equations for joint angles are:

AO - jT (jjT + 2 1)-lAp,

where J is the manipulator jacobian and k is a constant that we have to tune. Our imple-

mentation for Shady3D has the following procedure:

* Get a target displacement from the current configuration

* Clamping: divide the displacement into small pieces enough that the jacobian ap-

proximation is valid.

* For each divided displacement, get angle displacements by the DLS

* Update the current configuration by adding the joint displacements

These procedures work well with almost no error, when the target posture is away from

any singularities. For the self-assembled 6DOF arm, singularities occur when two robots

are fully stretched out, or when all four gripper points are located in the same plane. With a

general DLS, lifting up the end-effector along the vertical(Z) axis gives arise of unwanted

deviation along Y-axis and Z-axis. Unfortunately, it is theoretically impossible to extract

an exact solution from jacobian at singularities. However, we can establish a trade-off:

usually position error is more critical than orientation error. To compensate for the big

position error, we propose a modified clamping method: DLS with Variable Clamping

Constant in which we clamp position and orientation separately as follows:

Ax for |Ax l<cx

c x for Ax > cx

SAq for A( < cp

cy for A(| > c(
(p JJ



where Ax and Ap are the clamped position and orientation, and cx and cq are clamping

constants, respectively. We also use a larger clamping constant nearby singularities so that

we get less errors. The final clamping constants are:

f Cmax det(J) > Jo
Cmi ± det(J) 2 lAp det(J) <
Cmin + 2 T (Cmax - Cmin) +k AP det (J) < Jo

where J and k are tunable constants, and Ap is the clamped displacement. The last term of

the lower c is added to accelerate the convergence.

We have observed that the proposed method yields only 2mm position error in a case

of lifting up(100mm) of 6DOF linkages from the singular posture while the original DLS

gives 23mm error, by compromising with a larger orientation error (0.5 to 3.5 degree).

5.4.2 Node-based inverse kinematics

Another difficulty lies in that our Shady3Ds with various configurations can result in the

same tree structure; it is hard to directly get the right joint angles as well as to configure a

tree with input joint angles. We use the node-based inverse kinematics so that its outputs

are new locations of the input nodes rather than joint angles. Since we have a closed-

form inverse kinematics solution to connect two nodes by a robot (a robot is using this

whenever it locomotes on a truss), we do not need to consider combinations of each robot's

configuration. The following procedures are implemented:

* Get a path - composed of nodes - to the leaf to move.

* Assume the simplest joint configuration to match the path. We can use the inverse

kinematics for a single robot for every two nodes.

* Calculate new joint angles by the inverse kinematics in 5.4.1.

* Get new locations of the nodes from the forward kinematics of the tree.

The output path includes indexes and new locations of the nodes in a tree. When a

root wants to move a tree, it sends the path to its leaves by the SENDTREE protocol. The



receiving robots can have the corresponding new location, and they solve the single-robot

inverse kinematics to reconfigure themselves.

5.5 Analysis

In this section, we briefly review the previous analysis of the optimality for distributed

matching [41]; the distributed algorithm was shown to have O(k2) asymptotic competitive

ratio to the global optimum, wheares a greeday algorithm which seeks the nearest next

target has an exponential competitive ratio. We prove that the same bound still holds for

our dynamic graph.

5.5.1 Optimality of the distributed matching for a static graph

Our analysis inherited all the results on minimal weight partial matching in Chapter 4.

5.5.2 Optimality for the dynamic graph

The key idea for proving the competitive ratio of the distributed matching for dynamic

graphs is that a non-truss node should have its root on the truss. This implies that there

must exist a closer root node from a robot than any non-truss nodes.

Lemma 10 The locally optimal matching only includes connected target nodes in a given

dynamic graph. i.e. it never has target nodes that do not have any activated edges.

Proof: We use induction. When a robot starts, the proof is trivial. Suppose the lemma

holds for k - 1 robots and it finds a new target tk, not connected in its graph, with the

locally optimal matching Mk. Let us say rk is matched to tk in Mk. Note that we can

always find a connected target node tk, in a tree that includes tk, which are closer to a

truss than tk, because tk should be connected to a truss by a tree with tk. Now we have the

better matching AIk by coupling rk to tk with maintaining the other matching in Mk. It is

contradiction. Therefore the lemma holds for k robots.



Lemma 11 The distributed matching algorithm for our dynamic graph has the same com-

petitive ratio O(k 2) as that for a static graph.

Proof: By Lemma 10, the locally optimal matching will find a new target that should be

connected in the given graph, no matter the algorithm uses a fully connected graph or the

given one. Therefore, the algorithm has the same competitive ratio as that uses a static

graph as in [41].

5.6 Implementation

We have implemented the distributed placement algorithm to build an active structure in

Java. We simulated each robot as an independent process (thread) to ensure parallelism.

Figure 5-5 shows snapshots of building a hand on H-structured trusses. 18 robots are

deployed and passive bars are around the root nodes. Yellow and green circles denote

each gripper of a robot, and pink bars are passive bar. Small red circles are target nodes

which compose five trees. Robots start from side trusses and gather into the center as they

perform successive add-leaf and cut-leaf operations. For a better view, passive bars appear

only when they are grasped. 13 bars are used to connect the robots.

Figure 5-6 is implementation of building a tower we suggested in 5.1. The tower con-

sists of four trees, each of which has 3 robots and 2 bars. Note that the implementation of

the tower in 5.1 was done by a central controller that knows the exact sequence of motions

generated by hands.

The brief statistical summary of the simulations is in Table 5.1. Collision among trees

is ignored, and will be considered in our future work.
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Figure 5-5: Snapshot of building a hand-like active structure. Thick gray lines are trusses,

while thin ones are edges to connect non-truss nodes. 18 robots and 13 passive bars are

connected. Yellow circles are the left grippers and greens are the right ones. The bars are
pink.
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Figure 5-6: Snapshot of building a tower we proposed in 5.1. 12 robots and 8 passive bars
are used.
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Table 5.1: Count of the operations
Count of operations / Structure Hand Tower

Total move/Optimum 297/262 84/66
Average communication 40 8.3

Exchange 70 6
Getting a new optimum 36 18

Adding a leaf 34 10
Cutting a leaf 22 2



Chapter 6

Manipulation Tasks with Self-assembled

Arm

6.1 Self-assembly of two Shady3Ds

The proposed algorithms are implemented in experiments with two Shady3D robots and

one bar. Figure 6-1 shows snapshots from the experiment. Firstly, given a specified position

for the passive bar within the Shady3D experimental environment, each Shady3D module

optimally positions itself so as to be able to reach the bar. Details of the optimal deploying

algorithm are addressed in [41]. In the first step of the algorithm each Shady3D module

moves independently and in parallel to reach and grasp the bar. The bar is detected using the

LED sensors within the Shady3D grippers. Upon grasping the bar, the Shady3D modules

signal to each other using Bluetooth to coordinate the completion of the grasping step and

the self-assembly of a 6DOF manipulator. We tested the self-assembly, and a sequence

of 10 executions resulted in no error. Each self-assembly experiment took 1 minute (See

Table 4.2).

6.2 Task Execution

We have developed algorithms for four kinds of tasks with the manipulator. The algorithms

were implemented on our physical prototype 6DOF modular manipulator. In each case,
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Figure 6-1: Implementation of self-assembly of 6DOF modular arm (a) Two robots have

moved to the approachable nodes. (b) They are swinging their body to find the bar. (c)

They have grasped each side of the bar.



task information is given to the robots in the form of a command stack. The robots decide

which role to play based on the task specification and its location.

6.3 Distributed control algorithm for task execution

Each task is a stack of command sets for the two robots, and how a robot execute the task

is shown in Algorithm 14. Parameters of the command set are:

* RootNode (#): the root location to anchor the arm

* Displacement (x,y,z,roll,pitch,yaw / 01 ... 06): 6 joint movements and end-effector

displacement

* Grasp (G/R): grasp/release of the end-effector

Each robot starts by finding out if it is a root. The root robot calculates the joint displace-

ment of two robots directly or indirectly by inverse kinematics. The leaf robot waits for a

command. The root sends the corresponding joint displacements to the leaf robot. Then

they both execute their next command in parallel. The root checks the command comple-

tion, and then pops the next command set until the stack is empty.

6.4 XYZ-directional movement

In this task, the distributed inverse kinematics protocol is used to implement the positioning

of the arm's end effector at a desired location (x,y,z). The arm's initial configuration is

shown in Figure 6-2(a). The left gripper of the arm is the anchor and the right gripper is the

end-effector. We have tested different (x, y, z) locations for the 6DOF manipulator built in

Section 6.1 as shown in Figure 6-2(b-c). Each experiment was done 10 times without error

and it took 20 seconds(See Table 6.1.) In this case, the task stack has only one command

set with a single end-effector displacement.

One challenge is coping with the position error along the vertical axis - in this case, Z-

directional - because of tilting of the arm due to gravity. About 20mm error was measured



Algorithm 14 Task execution
1: while Task Stack not empty do
2: Pop the next queue
3: if Anchor = Root then
4: Get the commands from the queue
5: Send the command for the leaf
6: State = Moving
7: Execute my command
8: while The leaf's State = Moving do
9: Delay

10: end while
11: State = Assembled
12: else
13: Wait for the command from the root
14: State = Moving
15: Execute my command
16: State = Assembled
17: end if
18: end while

regardless of the Z-directional displacement. The error mainly comes from mechanical

weakness of a robot (e.g. backlash, tolerances, and plastic material).

6.5 Reaching nodes unreachable by one robot

Consider an inspection task which requires reaching every point on the truss. As pointed

out in [45], some points on the truss are unreachable by one robot due to its fixed length

and 3DOF. When we model the truss environment as a graph where nodes are points of

interest and edges correspond to reachability among the nodes, such unreachable points are

nodes without an edge. Upon self-assembly, many unreachable points become reachable

by the 6DOF linkage because of enhanced workspace and additional DOFs.

Figure 6-3 shows the self-assembled robot built in Section 6.1. reaching the unreachable

nodes(denoted by the arrows). The task stack has one command set with a single end

effector displacement according to 3-D locations of the nodes. Three unreachable nodes

were tested ten times each without error. Each task took 40 seconds(See Table 6.1.) The

position error along the vertical axis due to the mechanical weakness of the arm persists
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Figure 6-2: Uni-directional movement of a 6DOF manipulator composed of self-assembled
Shady3Ds. (a) A self-assembled manipulator with two Shady3Ds. The left gripper is
anchored at the truss and the right one is free to move. (b) X-directional movement
with 150mm displacement (c) Y-directional movement with 150mm displacement (d) Z-
directional movement with 150mm displacement
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Figure 6-3: A 6DOF manipulator with two Shady3Ds reaches some nodes which are un-
reachable by one robot. The robot can be anchored anywhere in the environment.

for the task as well with an observed maximum 60mm tilting. In our environment, the self

assembled 6DOF can reach all the nodes.

6.6 Pick and drop by forward kinematic control

In this task, the arm collects an object(a bar), moves to a different location where it drops

the object. This task requires a 6DOF manipulator. The locations of pick and drop are

given by joint angles. The robot moves by distributed forward kinematic control.

The task stack is composed of 7 command sets each of which has one joint displace-

ment or grasping/release. As the task starts, one of the modules releases its grasp of the

environment. Figures 6-4(a, b, c) shows two modules controlled independently and in par-

allel to demonstrate the movement of the arm. An additional bar is manually presented to

the free gripper of the 6DOF manipulator. The bar is grasped, transported, and dropped at a

specified location (see Figure 6-4 (d, e, f).) We have performed this experiment 10 times in

a row during the course of one hour. Each experiment consisted of 9 joint movements and 5

grasping/release operations, and it took about 140 seconds. All the control steps succeeded

for all the experiments. However, due to a hardware failure at the end of the 7th experiment

one of the gripper motors had to be replaced(See Table 6.1.)



6.7 Locomotion

In this task we demonstrate that the modular arm is mobile. The previous tasks have a fixed

anchor point. Locomotion of the arm allows arbitrary anchor points.

Figure 6-5 shows snapshots of locomotion on truss segment. The arm moves by alter-

nating the left and right anchors and inching along. The task stack has 3 command sets. The

gripper located in opposite to the direction of locomotion(left) is set as the anchor. After

the right gripper moves, the robot swaps the anchor gripper, and the left gripper moves.

6.8 Discussion

A summary of our experiments is shown in Table 6.1. The biggest problem is caused by

the structure's tilting error due to gravity. This is a problem with the experimental device

not the algorithm. Within a unit alone, this problem is small and can be compensated [45].

However, the self-assembled robot is three times longer than an individual module, which

causes a big moment and tilting. In the near term, we will reduce the error by better

hardware as well as a compensating algorithm.

Table 6.1: Result of the Experiments

experiment number of number of number of success operation remark

execution joint displacement grasping/release ratio time(sec) (error)

Self assembly 10 6 4 10/10 60

Pick and drop 10 5 3 9/10 140 motor failure

XYZ move 30 6 0 30/30 20 tilting error

Reaching 30 6 0 30/30 40 tilting error
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Figure 6-4: Implementation of moving a bar. (a) A 6DOF manipulator combined by two

modules and the base module pulls the other upward. (b) The base module has fully moved
the other module up. (c) The manipulator is stretched to the maximum height. (d) The end
effector is given a bar to be moved. (e) The bar is moved to the dropping position. (f) The
manipulator has dropped the bar.



Figure 6-5: Locomotion of a self-assembled manipulator (a) After self-assembly, a 6DOF

manipulator releases the right gripper. (b) The right gripper moves to the next right node.

(c) It exchanges the anchor and the left gripper moves to the right node.
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Chapter 7

Conclusion and Future work

This thesis describes algorithms and implementation of building a self-assembled robot

composed of passive components and modular manipulators. Reconfiguration of the self-

assembled structure is also introduced. We developed this work in the context of a modular

mobile manipulator Shady3D. We designed a module with the minimal number of joints

for 3D movement and building a 6DOF manipulator. By combining two modules and one

passive bar, we can generate a more capable robot. We see self-assembly as an extension

of truss navigation of the truss climbing robots. We aimed a distributed and an optimal

solution.

For truss navigation, we proposed a distributed localized algorithm for placing multiple

identical robots at desired locations on a truss in a path-optimal way. The algorithm is based

on successive locally optimal matching , and results in a perfect min-cost bipartite match-

ing between the initial nodes and the target nodes. The robots discover the target nodes

incrementally through collisions and self-organize as the solution. Collisions are handled

according to five different cases. Our solution is feasible, and has a quadratic competitive

ratio O(k2) which is much more efficient than the greedy solution which exhibits exponen-

tial competitive ratio. We have also analyzed that running time as O(k 5 + k2 (n + m)logn)

as compared to the centralized offline algorithm with O(k(k 2 + n + m)log(n + k2 )) runtime.

In the simulations, we have found out the algorithm works very efficiently in a view of the

cost and the communication. Finally, we applied it to the real system with Shady3Ds and

additional inert robot modules.



Extending the truss navigation, we developed a unified approach to implement build-

ing an active structure by self-assembly using a dynamic graph and distributed matching.

We developed this work in the context of a modular mobile manipulator Shady3D. The

algorithm works in a distributed way so that robots depend on only local information. A

target structure is modeled as a dynamic graph with edges that are not activated until one of

the incident nodes is occupied by a robot. The robots discover their locations in the struc-

ture incrementally through collisions, and update their graph. Self-assembly of the robots

makes a tree with robots and bars, and a root of the tree becomes a local brain to control the

leaves with the node-based inverse kinematics. Adding and cutting a leaf are implemented

by communication between a robot to be added or cut and the root of the tree. The robots

build the structure in a locally optimal way, and we have proved that the same competitive

ratio for a static graph holds for our dynamic graph.

Finally, we described a suite of algorithms and experiments for reconfiguring the self-

assembled structure. Hardware implementation of building a 6DOF manipulator and sev-

eral tasks show how the proposed self-assembly works in the real world. The coordinated

manipulation algorithms perform well. They are generally robust and the response time is

adequate for the tasks we considered. However, the materials used in the prototype cause a

structured tilting error which has to be eliminated in future versions.

7.1 Lesson learned

Since we use a new self-assembling system, we have experienced many difficulties and

also learned plenty of lessons. The belows are the lessons we have obtained.

Algorithm The distributed matching algorithm works perfectly with the selection crite-

ria. We proved a quadratic competitive ratio to the global optimum, however, we could not

prove the tight bound for the distributed matching. We believe the actual competitive ratio

of our algorithm is linear since we do not have any counter examples.

We have not focused on the optimal resource altough amount of the resource via com-

munication is important in reality. Our assumption is that a robot see all the resource of



the communicating robot, however, that may cause a serious lag in communication when

many robots gather. What is the best set of infomation for self-assembly has not revealed

yet, and we need to think over.

Hardware The passive bar we designed works fine in a very short range as in the experi-

ments of two Shady3Ds. If we extend the experiments to more robots in 3D space, finding

a location of the bar may become a serious problem because it requires calibration of 6-

DOE Also, currently communication between the robot and the bar is simply transmitting

on/off information. For more objects for the robot to handle, the bar should be smarter. For

example, the bar need to talk to the robot about its infomation and current state, etc.

Implementation The most difficult point of the experimental implementation was tilting

from gravity. Even with two Shady3Ds, we had big tilt that caused most of failures in the

locomotion experiments.

Besides, now Shady3D can lift up only one modules and a 3 link manipulator with 3

Shady3Ds is not implementable on earth. We may need to introduce a parallel mechanism

to support a longer structure.
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Appendix A

Passive Bar specifications

Figure A-i shows a CAD model of the passive bar. The size of the bar was chosen to fit the

size of the gripper of Shady3D. The distance between the two holes for the IR LED is the

same as gripper to gripper distance of Shady3D.

The Schematic for the IR LEDs is shown in Figure A-2.



Figure A-1i: CAD model of the passive bar. The IR LEDs are located in the holes.
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Figure A-2: Schematic for the passive bar. A LED is for checking the power on/off. Two
IR LEDs turn on/off by the switch.
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