

 “© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing this

material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

For Review
 O

nly

Private Cell Retrieval from Data Warehouse

Journal: Transactions on Information Forensics & Security

Manuscript ID: T-IFS-05412-2015

Manuscript Type: Regular Paper

Date Submitted by the Author: 05-Jul-2015

Complete List of Authors: Yi, Xun; RMIT University, Computer Science and IT
Paulet, Russell; Victoria University, Engineering and Science
Bertino, Elisa; Purdue University, Computer Science
Xu, Guandong; University of Technology Sydney, Advanced Analytics
Institute

EDICS:

ADP-PPRO-Privacy protection < ADP-ANONYMIZATION AND DATA
PRIVACY, ADP-PATT-Privacy attacks < ADP-ANONYMIZATION AND DATA
PRIVACY, ADP-PMOD-Privacy modeling and analysis < ADP-
ANONYMIZATION AND DATA PRIVACY

For Review
 O

nly

Page 1 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2

One privacy issue is the client’s privacy. In order to query

the data warehouse, a user usually requests the server to perform

OLAP operations and send back a cell. An important issue in this

simple process is represented by the privacy of the user query

as the user query may reveal to the server business sensitive

information. For example, for a stock exchange data warehouse,

the user may be an investor, who queries the data warehouse for

the trend of a certain stock. He may wish to keep private the

identity of the stock he is interested in. For a pharmaceutical data

warehouse, the user may be a laboratory, which would like to

keep private the active principles it wants to use. To protect his

privacy, the user accessing a data warehouse may therefore want

to perform OLAP operations and retrieve a cell without revealing

any information about which cell he is interested in.

A trivial solution to the above private data warehouse query

problem is for the user to download the entire data warehouse

and then locally perform OLAP operations and retrieve the cell

of interest. This solution is not suitable if the owner of the data

warehouse wishes to make profit through data warehouse services

(for example, a health care data warehouse). Usually, the user is

interested in only a part of the data warehouse. Purchasing the

entire data warehouse may not be an economically viable.

Private Information Retrieval (PIR) protocols, such as [11],

[25], do not fully address the private data warehouse query

problem. A PIR protocol allows a user to retrieve a record from

a database without the owner of that database being able to

determine which record was selected with communication cost

less than the database size. By using PIR, a user can retrieve a cell

(a record) from a data warehouse (a database) without revealing

any information about which cell is retrieved. However, the user

cannot hide his OLAP operations to the server when he requests

the server to perform the operations. These operations may reveal

the user’s interest. For example, when the user requests the server

to perform a slice operation with respect to a location, the server

can learn the user’s interest in the location. It is a challenge to

assure the user’s privacy when performing OLAP operations.

Another privacy issue with data warehouse queries is the

server’s privacy. Usually, data warehouse is built for certain busi-

ness purposes and the owner of data warehouse (server) wishes to

make profit by offering data warehouse query services, such as one

query per pay. The server has to disclose some data to the client

when the client queries the data warehouse, but the server wants to

keep the rest of the data private. The service’s privacy was called

the server’s security in [41]. Security of a databased server usually

refers to securing network against hackers. To avoid confusion, it

is better to use the server’s privacy term.

In our previous work [41], we gave a solution for private

data warehouse queries on the basis of Boneh-Goh-Nissim (BGN)

[7] cryptosystem. Our basic idea is to allow the data warehouse

owner to encrypt its data warehouse and distribute the encrypted

data warehouse to the user who wishes to perform private data

warehouse queries. The user can perform any OLAP operations

on the encrypted data warehouse locally without revealing his

interest. When the user wishes to decrypt a cell of the encrypted

data warehouse, the user and the server run a Private Cell Retrieval

(PCR) protocol jointly to decrypt the cell without revealing to the

server which cell is retrieved.

Unlike operational databases, a data warehouse is non-volatile.

The data in the data warehouse is never over-written or deleted

- once committed; the data is static, read-only, and retained for

future reporting. It is feasible to allow the data warehouse owner

to distribute the encrypted data warehouse to potential users only

once and let the users download new added data online if any.

Assume that the server charges the client per query, our

solution based on the BGN cryptosystem [41] allows the user to

perform some statistical analysis, such as regression and variance

analysis, on the encrypted data warehouse with the lowest cost.

The reason is that the BGN cryptosystem allows one to evaluate

multi-variate polynomials of total degree 2 on encrypted values.

However, it needs relatively long time to decrypt a ciphertext,

which is an encryption of a large plaintext.

To overcome this problem, we give a solution for private cell

retrieval from data warehouse on the basis of the Paillier public

key cryptosystem [35] in this paper. This solution is faster than

our solution based on BGN cryptosystem.

To enhance our solutions for private data warehouse queries,

we also give an approach for private block download (PBD) on the

basis of the Paillier cryptosystem [35]. Our PBD protocol allows

a client to download a block from the encrypted data warehouse

without revealing which block is downloaded. If the client cannot

get the entire encrypted data warehouse and he is interested in only

one block of the data warehouse, he can download the block from

the server with our PBD protocol and then retrieve cells from the

block with our PCR protocol. In this way, our PBD protocol can

improve the feasibility of our private data warehouse queries. Our

PBD protocol can be used to perform dice or slice operation on

the encrypted data warehouse in the server side without revealing

to the server which block of the data warehouse is retrieved.

Our solutions ensures both the server’s privacy in the sense

that the server, for billing purpose, releases to the user data paid

by the user, and the client’s privacy in the sense that the client does

not reveal any information about his queries to the server. We have

implemented our solution on an example of data warehouse and

experiments have shown that our solution is practical for private

data warehouse queries.

This paper extends our previous paper [41] by including a new

PCR protocol based on the Paillier cryptosystem to improve the

performance and a new PBD protocol to reduce the size of the

encrypted data warehouse that the client has to download. This is

a significant extension that enhances the flexibility and efficiency

of our approach. In this paper we also analyze the security and

complexity of such protocols. A combination of our PBD and

PCR protocol has comparable performance against existing PIR

protocols. Furthermore, we model multiple queries with both our

PCR and PBD protocols and analyze the client’s privacy with

multiple queries.

Our solutions for private data warehouse queries can be

adapted to the cloud computing environment, where the data

warehouse owner outsources the encrypted data cube to the

cloud and the outsourced cloud server provides the private block

download service to the client. The cloud server does not know the

decryption key of the data warehouse owner and thus the privacy

of the data warehouse can be preserved. The data warehouse owner

is needed only when the client wants to decrypt a ciphertext

through our private cell retrieval. As shown in our performance

analysis, our private cell retrieval can be done efficiently.

The rest of the paper is organized as follows. Related work

is surveyed in Section 2. We define our model and described

our solution from Sections 3 to 4. The security and performance

analysis is carried out in Sections 5 and 6. Experimental results

are shown in Section 7. Conclusions are drawn in the last section.

Page 2 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

3

2 RELATED WORK

A closely related work is Private Information Retrieval (PIR),

which was firstly introduced by Chor, Goldreich, Kushilevitz, and

Sudan in 1995 [11]. In their paper, they proposed a set of schemes

to implement PIR through replicated databases, which provide

users with information - theoretic security as long as some of

the database replicas do not collude against the user. Since then,

a lot of research on PIR has been done. We classify the results as

follows [3], [34].

Information-Theoretic Private Information Retrieval

“Information-theoretic” stands for the fact that the user privacy

is assumed to be unbreakable independently from the computa-

tional power of a cheater. Chor et al. proved, that any information-

theoretic PIR solution has a communication cost with a lower

bound equal to the database size [11]. Then they relaxed the

problem setting and assumed that there are several (instead of

one) database servers, which do not communicate among each

other, storing with the same data. This assumption makes the non-

trivial information-theoretic PIR feasible. The basic idea is to send

several queries to several databases. The queries are constructed in

such a way, that they give no information to the servers about the

record that the user is interested in. But using the answers from

the queries, the user can construct the desired record. Chor et al.

also considered the case when up to t of the servers are allowed

to collude against the user.

Ambainis [1] improved the results of Chor et al. [11], which

led to two non-trivial information-theoretic PIR solutions: (1) a k
database scheme (i.e., a scheme with k identical databases non-

communicating to each other), for any constant k ≥ 2, with

communication complexity O(N1/(2k−1)); and (2) a Θ(logN)
database scheme with communication complexity O(log2 N ·
log logN), where N is the size of the database. Further research

on information-theoretic PIR appeared in [5], [22], [22], [23], [24].

Computational Private Information Retrieval

In order to get better communication complexity, the compu-

tational assumption was weakened by Chor and Gilboa in [10].

“Computational” means that the database servers are presumed to

be computationally bounded, i.e., under an appropriate intractabil-

ity assumption, the database cannot gain information about which

data element was selected by the user. For every ǫ > 0, Chor and

Gilboa presented two computational PIR schemes with complexity

O(N ǫ).
In the first paper on PIR [11] it was proven that the

information-theoretic PIR problem has no non-trivial solutions

for the case of a single database. Surprisingly, the substitution of

an information-theoretic security with an intractability assumption

achieves a non-trivial PIR protocol for single database scheme

[25]. Its communication complexity is O(N ǫ) for any ǫ > 0.

They use an intractability assumption described in [19]. The

basic approach is to encrypt a query in such a way that the

server still can process it using special algorithms. However,

the server recognizes neither the clear-text query nor the result.

The result can be decrypted only by the user. This was the first

single-database protocol that considers database privacy. Using

another intractability assumption, Cachin et al. [8] demonstrated

a single database computational PIR protocol that has poly-

logarithmic communication. This is an improvement compared

with the polynomial communication complexity in [25]. This

result looks particularly effective, because the user has to send

a minimum logN bits just to address the bit he wants to retrieve

in the database. Protocols with better results appeared in [9], [15],

[27], [28]. Recently, Yi et al. [40] proposed a single-database PIR

with computational efficiency on the basis of the state of the art

fully homomorphic encryption technique [13], [16], [38].

Symmetrical Private Information Retrieval

Symmetrical PIR is a PIR problem, where the privacy of the

database is considered, i.e., a symmetrical PIR protocol must pre-

vent the user from learning more than one database record of the

database during a session. Clearly, symmetrical privacy (database

privacy) is a very important property for practical applications,

since an efficient billing is only then possible. A symmetrical PIR

protocol for single server was first proposed in [26], and for several

servers it was considered in [17]. Other symmetrical PIR were

proposed in [30], [31], [32].

In addition, Private Block Retrieval (PBR) is a natural ex-

tension of PIR in which, instead of retrieving only a single bit,

the user retrieves a d-bit block that begins at an index i. PBR

techniques are important for making PIR practical. Information-

theoretic PBR was introduced in [10]. A practical PBR protocol

for a single database was given by Gentry and Ramzan [15]. The

security of this scheme is based on a simple variant of the Φ-

hiding number-theoretic assumption by Cachin, Micali and Stadler

[8]. This scheme has communication complexity O(k + d) only,

where k ≥ logN is a security parameter that depends on the

database size N and d is the bit-length of the retrieved database

block.

With PIR or PBR, a user can retrieve a cell from a data

warehouse without revealing any information about which cell is

retrieved. However, the user cannot hide his OLAP operations to

the server when he requests the server to perform the operations.

These operations may reveal the user’s interest. In fact, the server

can predict the most likely next queries by formulating OLAP

queries of the user [4].

3 MODELS FOR PRIVATE DATA WAREHOUSE

QUERIES

In this section, we construct two models for private data warehouse

queries. One model is for private cell retrieval and another model

is for private block download.

3.1 Model for Private Cell Retrieval

In this model, we consider a data cube D with d dimensions

y1, y2, · · · yd and t measures x1, x2, · · · , xt, denoted as

D = (x1, x2, · · · , xt)y1,y2,··· ,yd
,

where the data cube dimension domain DD = DD1 ×DD2 ×
· · ·DDd and DDi is the domain of dimension yi, 1 ≤ i ≤ d.

We assume that the data cube is managed by a server S
and used by clients. The server S wishes to make a profit by

providing data warehouse services to clients. The clients wish to

learn some knowledge from D through OLAP operations on D
without revealing their interests to S .

First of all, on input of a security parameter κ, the server

S generates its public/private key pair {PK,SK} and encrypts

the data cube D into E(D) with the public key PK , where the

values of all measure attributes are encrypted, but the values of

all dimension attributes are in plaintexts. The encrypted data cube

E(D) can be then released to clients.

Page 3 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Page 4 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Page 5 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6

obtain (Qb,j , sb,j) = QG(Ab,j , PK) (in the case of

PCR) or (Qb,j , skb,j) = QG(b, CRj , nj , PK) (in the

case of PBR), where j = 1, 2, · · · , ℓ and sb,j and

skb,j are the secrets of the challenger C, and then sends

Qb,1, Qb,2, · · · , Qb,ℓ back to the adversary A.

(3) The adversary A can experiment with the code of Qb,1,
Qb,2, · · · , Qb,ℓ in an arbitrary non-black-box way, and

finally outputs b′ ∈ {0, 1}.

The adversary wins the game if b′ = b and loses otherwise. We

define the adversary A’s advantage in this game to be AdvA(k) =
|Pr(b′ = b)− 1/2|, where k is the security parameter.

Definition 3 (Client’s Privacy Definition for Multiple Queries)

In multiple queries with PCR/PBD protocols, the client has (se-

mantic) query privacy if for any probabilistic polynomial time

(PPT) adversary A, we have that AdvA(k) in the above game is a

negligible function, where the probability is taken over coin-tosses

of the challenger and the adversary.

4 PRIVATE DATA WAREHOUSE QUERIES

In this section, we construct a private cell retrieval (PCR) protocol

according to our PCR model and a private block download (PBD)

protocol according to our PBD model. Then we describe how

to perform private OLAP operations over the encrypted data

warehouse.

4.1 Paillier-Based Private Cell Retrieval Protocol

Based on our PCR model, we gave a construction of PCR protocol

based on the BNG cryptosystem [7] in [41], which allows the

client to retrieve a measure value in a cell without revealing the

measure and cell attributes to the server. Now we give a new

construction of PCR protocol based on the Paillier cryptosystem

[35]. We consider a data cube D with d dimensions y1, y2, · · · yd
and t measures x1, x2, · · · , xt, denoted as

D = (x1, x2, · · · , xt)y1,y2,··· ,yd
.

Our PCR protocol based on the Paillier homomorphic encryp-

tion scheme [35] assumes that the server S randomly chooses

two large primes p, q on the basis of a security parameter κ, lets

SK = {p, q} and PK = {g,N}, where g is chosen from ZN2

and its order is a nonzero multiple of N . Before releasing the data

cube to clients, the server S runs the Initialisation algorithm to

encrypt the data cube D to E(D), as described in Algorithm 1.

Algorithm 1 Initialisation (Server)

Input: D = (x1, x2, · · · , xt)y1,y2,··· ,yd
, PK

Output: E(D) = (E(x1), E(x2), · · · , E(xt))y1,y2,··· ,yd

1: Let E(D) = D
2: For each measure value x = (xi)y1,y2,··· ,yd

in E(D), where

1 ≤ i ≤ t and (y1, y2, · · · , yd) ∈ DD, where DD is the

dimension domain.

3: { Pick a random integer r from {1, 2, · · · , N}
4: Encrypt x by computing

z = Encrypt(x, PK) = gxrN (mod N2)

and replace (xi)y1,y2,··· ,yd
with z, denoted as

(E(xi))y1,y2,··· ,yd
, where the encryption algorithm is

based on the Paillier cryptosystem [35].

5: } //End of For

6: return E(D)

Given the encrypted data cube E(D), if a client C wishes to

retrieve a measure value in a cell, in other words, to decrypt a

ciphertext C in a cell, the client C and the server S run our Private

Cell Retrieval protocol, composed of three algorithms, Query Gen-

eration (QG), Response Generation (RG), and Response Retrieval

(RR), as in Algorithms 2-4.

Algorithm 2 PCR Query Generation QG (Client)

Input: C,PK
Output: Q, s

1: Pick a random integer s from {1, 2, · · · , N}
2: Compute Q = Cs(mod N2)
3: return (Q, s)

Algorithm 3 PCR Response Generation RG (Server)

Input: Q,SK = {p, q}
Output: R

1: Let λ = lcm(p− 1, q − 1)
2: Compute

R = Decrypt(Q,SK) =
(Qλ(mod N2)− 1)/N

(gλ(mod N2)− 1)/N
(modN),

where the decryption algorithm is based on the Paillier cryp-

tosystem [35].

3: return R

Algorithm 4 PCR Response Retrieval RR (Client)

Input: R,PK, s
Output: m

1: Compute m = R · s−1(mod N)
2: return m

Theorem 1 (Correctness) Our Paillier-based PCR protocol is

correct. In other words, for any security parameter κ, for any

ciphertext C ,

Decrypt(C, SK) = RR(R,PK, s)

holds, where (Q, s) = QG(C,PK) and R = RG(Q,SK).

Proof We assume that C = gm
′

rN (mod N2). With reference to

[35], we have Decrypt(C, SK) = m′. In addition,

Q = Cs = (gm
′

rN)s = gm
′s(rs)N (mod N2).

Therefore, R = Decrypt(Q,SK) = m′s(mod N) and we have

RR(R,PK, s) = R · s−1 = m′s · s−1 = m′(mod N), i.e.,

Decrypt(C, SK) = RR(R,PK, s). The theorem is proved. △

Our Paillier-based PCR protocol does not require the client to

compute the discrete logarithm and thus is more efficient than our

BGN-based PCR protocol.

4.2 Private Block Download Protocol

Based on our PBD model, we give a construction of the PBD

protocol which allows the client to download a block from the

encrypted data warehouse without revealing to the server which

block is downloaded.

Our PBD protocol is built on the Paillier homomorphic en-

cryption scheme [35]. It is needed only when the encrypted data

warehouse is huge and it is hard for the client to download and

store the entire encrypted data warehouse.

Page 6 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

7

Before the client and the server run our PBD protocol, the

client may request the server to perform certain OLAP operations,

such as roll-up or drill-down, without revealing the real query of

the client. Suppose that the client wants to download a block B
from the encrypted data warehouse E(D). He randomly chooses

n − 1 blocks with the same dimensions as B and the n blocks

B1, B2, · · · , Bn (where Bi = B and 1 ≤ i ≤ n) form a cloaking

region CR.

Without loss of generality, we assume that each block Bi

contains m ciphertexts Ci1, Ci2, · · · , Cim in a order.

Algorithm 5 PBD Query Generation (Client)

Input: i, CR, n, PK (the public key of the server S)

Output: Q, sk
1: Randomly choose two large primes p, q on the basis of a

security parameter κ and PK , such that the size of N = pq
is more than the size of the ciphertext in E(D).

2: Let sk = {p, q} and pk = {g,N}, where g is chosen from

ZN2 and its order is a nonzero multiple of N .

3: For each j ∈ {1, 2, · · · , n}
4: { Pick a random integer rj ∈ Z

∗
N2 , compute

zj =

{

Encrypt(1, pk) = g1rNj (mod N2) if j = i
Encrypt(0, pk) = g0rNj (mod N2) otherwise

where the encryption algorithm is based on the Paillier cryp-

tosystem [35].

5: } //End of For

6: Let Q = {CR, n, z1, z2, · · · , zn, pk}, sk = {p, q}.

7: return Q, sk

Algorithm 6 PBD Response Generation RG (Server)

Input: Q = {CR, n, z1, z2, · · · , zn, pk = (g,N)}, PK
Output: R = {C1, C2, · · · , Cm}

1: Based on CR and n in Q, extract the n blocks

B1, B2, · · · , Bn with the same dimensions, where Bj =
{Cj1, Cj2, · · · , Cjm} (j = 1, 2, · · · , n)

2: For j = 1, 2, · · · , n, compute

Sj = {z
Cj1

j (modN2), z
Cj2

j (modN2), · · · , z
Cjm

j (modN2)}

3: Compute R = {C1, C2, · · · , Cm} =
∏n

j=1 Sj , where

Si · Sj , {zCi1

i z
Cj1

j , zCi2

i z
Cj2

j , · · · , zCim

i z
Cjm

j }(mod N2)

where the modular arithmetic mod N2 is applied to each

component.

4: return R

Algorithm 7 PBD Response Retrieval RR (Client)

Input: R = {C1, C2, · · · , Cm}, sk = {p, q}
Output: B

1: Let λ = lcm(p− 1, q − 1)
2: Compute B = {Decrypt(C1, sk), Decrypt(C2, sk), · · · ,

Decrypt(Cm, sk)}, where

Decrypt(Ci, sk) =
(Cλ

i (mod N2)− 1)/N

(gλ(mod N2)− 1)/N
(mod N)

for i=1, 2, · · · ,m, the decryption algorithm is based on the

Paillier cryptosystem [35].

3: return B

To download the block Bi from the n blocks, the client C
runs our PBD protocol with the server S , composed of three

algorithms, Query Generation (QG), Response Generation (RG),

and Response Retrieval (RR), as described in Algorithms 5-7.

Note that p, q, g,N, sk, pk in Algorithms 5-7 are different

from those in Algorithms 1-4.

Theorem 2 (Correctness) Our PBD protocol is correct. In other

words, for any cloaking region CR, the number n of blocks,

the index i (1 ≤ i ≤ n), and the public key PK , we

have Bi = RR(R, sk) holds, where (Q, sk) = QG(i, CR, n,
PK), R = RG(Q,PK), CR = {B1, B2, · · · , Bn} and

Bj = {Cj1, Cj2, · · · , Cjm} for j = 1, 2, · · · , n.

Proof According to Algorithm 7, we have

RR(R, sk) = {Decrypt(C1, sk), · · · , Decrypt(Cm, sk)}.

To prove the theorem, we only need to prove that Ci1 =
Decrypt(C1, sk). According to Algorithms 5-7, we can obtain

C1 =
n
∏

j=1

z
Cj1

j

= (g0rN1)C11(g0rN2)C21 · · · (g1rNn)Ci1 · · · (g0rNn)Cn1

= gCi1(
n
∏

j=1

r
Cj1

j)N (mod N2),

Because a Paillier encryption of m is gmrN (mod N2), we can

see that C1 is an encryption of Ci1, i.e.,

Ci1 = Decrypt(C1, sk).

In the same way, we can prove that Cij = Decrypt(Cj , sk)
for j = 2, 3, · · · ,m and then Bi = RR(R, sk). Therefore, the

theorem is proved. △

In our PBD protocol, the server S can charge the client C
according to the size of CR and n. The cost for the client to

download the block is linear in the size of CR/n.

Our construction is similar to that of [9], [26]. The work of [26]

is based upon the cryptosystem of [19], which is homomorphic

over the group Z2, having ciphertext group ZN for a large

composite N . The approach by [9] is also based upon the Paillier

cryptosystem [35]. The difference is that our construction aims to

download a block while their construction aims to retrieve a single

data element only.

Like [9], the client may partition CR into n blocks according to

the dimensions of the data warehouse, such that n = n1n2 · · ·nd,

where ni is the total number of values of the ith dimension and

d is the total number of the dimensions of CR. For the dimension

with ni different values, the client runs Algorithm 1 to generate

a sub-query Qi = {zi1, zi2, · · · , zini
, Ni}, where only the

ciphertext corresponding to the interested block is the encryption

of 1 and N2
i < Ni+1 for i = 1, 2, · · · , d − 1. Then the client

sends a query Q = {CR, (n1, Q1), (n2, Q2), · · · , (nd, Qd)} to

the server, which runs Algorithm 2 for all sub-queries in series to

generate a response. In the end, the client decrypts the response

to obtain the block of interest from the encrypted data warehouse.

For details, please refer to [9].

4.3 Private OLAP Operations

Typical OLAP operations include roll-up (performing aggregation

by climbing up a concept hierarchy), drill-down (the reverse of

Page 7 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

8

roll-up), slice (performing a selection on one dimension, resulting

in a sub-cube), dice (performing a selection on two or more

dimensions, resulting in a sub-cube), and pivot (rotating the data

axes in view in order to provide an alternative presentation of the

data).

For private OLAP operations, we consider two cases as fol-

lows: Case 1 - the client C has not been provided the encrypted

data warehouse E(D); Case 2 - the client C has been provided the

encrypted data warehouse E(D) or has downloaded an encrypted

block Bi from the server S .

In Case 1, the client C may request the server S to perform

some OLAP operations which are not sensitive to the privacy

of queries. For example, roll-up from months to quarters along

the time dimension, drill-down from states to cities along to the

location dimension, and pivot the time and the location dimen-

sions. For slice and dice operations which are most sensitive to

the privacy of queries, the client C may run our PBD protocol to

download a slice or a dice of the encrypted data warehouse E(D)
from the server S .

In Case 2, when the client C has been provided E(D), it can

perform slice, dice or pivot operation on E(D) as he does on the

original data cube D because the dimension values in E(D) are

in plaintext. It is obvious that the sub-cube obtained by slice, dice

or pivot operation on the encrypted data cube E(D) takes a form

of encryption of the sub-cube obtained by the same operation on

the original data cube D.

For a roll-up operation on E(D), without loss of gener-

ality, we consider summarising a measure xi along the jth
dimension from a concept yj ∈ {a11, a12, ...} to a higher

concept Yj ∈ {A1, A2, · · · , Aρ}, where Ai = {ai1, ai2, · · · ,
aiℓ}. For example, roll-up from months ={Jan., Feb.,Mar.,
Apr.,May, Jun., Jul., Aug., Sep., Oct., Nov., Dec.} to

quarters ={Q1, Q2, Q3, Q4}, where Q1 = {Jan., Feb.,
Mar.}, Q2 = {Apr.,May, Jun}, Q3 = {Jul., Aug., Sep.}
and Q4 = {Oct.,Nov.,Dec.}.

Our roll-up operation on E(D) climbing the jth dimen-

sion from a concept {a11, a12, · · · } to a higher concept {A1,
A2, · · · , Aρ} can be described in Algorithm 8.

Algorithm 8 Roll-Up (Client)

Input: E(D) = (E(x1), E(x2), · · · , E(xt))y1,··· ,yj ,··· ,yd
, PK,

j, yj , {a11, a12, · · · }, Yj , {A1, A2, · · · , Aρ} where for

i = 1, 2, · · · , t, Ai = {ai1, ai2, · · · , aiℓ}
Output: E(D)∗ = (E(X1), E(X2), · · · , E(Xt))y1,··· ,Yj ,··· ,yd

1: For i = 1 to ρ
2: { Compute

(E(X1), E(X2), · · · , E(Xt))y1,··· ,Ai,··· ,yd

=
ℓ
∏

k=1

(E(x1), E(x2), · · · , E(xt))y1,··· ,aik,··· ,yd

3: } //End of For

4: return (E(X1), E(X2), · · · , E(Xt))y1,··· ,Ai,··· ,yd
(i =

1, 2, · · · , ρ)

Theorem 3 In Algorithm 4, given 1 ≤ i ≤ t, let XAk
=

E(Xi)(y1,··· ,Ak,··· ,yn) and xaik
= (xi)(y1,··· ,aik,··· ,yn), then

Decrypt(XAk
, SK) =

∑ℓ
k=1 xaik

.

Proof According to Algorithm 8, we have XAk
=

∏ℓ
k=1 E(xaik

). Due to the additionally homomorphic prop-

erty of the BGN and Paillier cryptosystems, we have

XAk
= E(

∑ℓ
k=1 xaik

). Therefore, we Decrypt(XAk
, SK) =

∑ℓ
k=1 xaik

. The theorem is proved. △

Theorem 3 ensures that our roll-up operation on the encrypted

data cube is correct.

If the client runs our PCR protocol to decrypt the roll-up

results, he may randomly add some fake queries to hide the real

dimension of his interested data.

When the client C has downloaded an encrypted block (or sub-

cube) Bi of E(D), it can perform the roll-up operation on Bi in

the same way as described in Algorithm 8. We only need to change

E(D) to Bi.

At last, drill-down is reverse to roll-up. It can be implemented

by roll-up from the base of the encrypted data warehouse E(D)
to any footprint.

5 PRIVACY ANALYSIS

5.1 Privacy Analysis of PCR

In this section, we analyse the security of our Private Cell Retrieval

protocol (PCR) in terms of the server’s privacy and the client’s

privacy defined in Section 3.3.

The Paillier cryptosystem provides semantic security against

chosen-plaintext attacks (IND-CPA). The ability to successfully

distinguish the challenge ciphertext essentially amounts to the

ability to decide composite residuosity. The decisional composite

residuosity (DCR) problem can be described as: given a composite

integer N and an integer y, decide whether y is N -residue modulo

N2 or not, i.e., whether there exists an integer x such that

y = xN (mod N2).
When N = pq where p, q are distinct large primes, Paillier

[35] has shown that the DCR problem is as hard as the integer

factorisation problem. Therefore, the DCR problem is believed to

be intractable.

Since the definition for the server’s privacy is the same as the

semantic security of the Paillier scheme and thus we have

Theorem 4 Under the decisional composite residuosity (DCR)

assumption (i.e., the DCR problem is hard), the server in our

Paillier-based PCR protocol has (semantic) data privacy.

Based on the definition of client’s privacy, we consider the

following game:

(1) Given the public/private key pair (PK,SK) of the Pail-

lier cryptosystem, the adversary A chooses two different

ciphertexts C1 and C2, and then sends them to the

challenger C.

(2) The challenger C chooses a random bit b ∈ {0, 1},

and executes the Query Generation (QG) to obtain

(Qb, sb) = QG(Cb, PK). According to Algorithm 6,

we have Qb = Csb
b (mod N2), where sb is randomly

chosen from {1, 2, · · · , N} and known to the challenger

C. Then Qb is sent back to A.

(3) The adversary A can experiment with the code of Qb

in an arbitrary non-black-box way, and finally outputs

b′ ∈ {0, 1}.

Due to the randomness of sb chosen by the client in Step 2 of

the game, we have

Theorem 5 In our Paillier-based PCR protocol, the client has

(semantic) query privacy.

Page 8 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

9

5.2 Privacy Analysis of PBD

In this section, we analyse the security of our Private Block

Download protocol (PBD). Because our PBD protocol operates

on the encrypted data only and does not involve any decryption

by the server, it is obvious that our PBD protocol has server’s

privacy. Thus we only need to analyse client’s privacy for our

PBD protocol.

Based on the definition of client’s privacy in Section 3.3, after

the challenger C specifies a cloaking region CR in the encrypted

data warehouse E(D) and the total number n of blocks in CR

and provides the adversary A with CR and n, we consider the

following game:

(1) The adversary A selects n blocks with the same di-

mensions from E(D) according to CR and chooses two

different blocks B0 and B1 of the n blocks and then

sends B0, B1 to the challenger C.

(2) The challenger C chooses a random b ∈ {0, 1},

and executes the Query Generation (QG) to ob-

tain (Qb, sk) = QG(b, CR, n, PK), where Qb =
{CR, n, z1, z2, · · · , zn, (g,N)} and sk = {p, q} as

described in Algorithm 5. Then C sends Qb back to A.

(3) The adversary A can experiment with the code of Qb

in an arbitrary non-black-box way, and finally outputs

b′ ∈ {0, 1}.

In Step 2, z1, z2, · · · , zn are encryptions of either 0 or 1

by the Paillier cryptosystem with the public key pk = (g,N)
generated by C. If the adversary A can win the game with non-

negligible advantage, we can use the adversary A to break the

Paillier cryptosystem.

Theorem 6 Under the decisional composite residuosity (DCR)

assumption (i.e., the DCR problem is hard), the client in our

Private Block Download (PBR) protocol has (semantic) query

privacy.

Proof Assume that the adversary A can win the game with non-

negligible advantage ǫ. Now we use the adversary A to break the

Paillier cryptosystem.

Suppose that we are given the public key pk = (g,N) of the

Paillier cryptosystem, we challenge two plaintexts 0 and 1 and

we are randomly given the encryption of either 0 or 1, denoted

as β. Given CR and n, we construct the query Qb by letting

zi = β and zj = Encrypt(0, pk) for j 6= i. When β is

the encryption of 1, Qb stands for a real query. In this case,

the probability of the adversary A in guessing b correctly is

1/2 + ǫ, where ǫ is non-negligible. When β is the encryption

of 0, Qb contains encryptions of 0s only and is independent of

b. In this case, the adversary A can only guess randomly and

the probability of the adversary A in guessing b correctly is 1/2.

When the adversary A guesses b correctly, we conclude that β is

the encryption of 1 and 0 otherwise. In this way, our probability

to break the semantic security of the Paillier cryptosystem is

1/2 · 1/2 + 1/2 · (1/2 + ǫ) = 1/2 + ǫ/2. In other words, we

break the semantic security of the Paillier cryptosystem with a

non-negligible advantage.

However, under the decisional composite residuosity

(DCR) assumption, the Paillier cryptosystem has semantic security

against IND-CPA. Therefore, there does not exist an adversary A
who can win the game with non-negligible advantage and PBD

protocol has the (semantic) query privacy. △

5.3 Privacy Analysis of Multiple Queries with PBD/PCR

In this section, we analyse the client’s privacy when both PBD and

PCR are run in succession.

Based on the definition of client’s privacy for multiple queries

in Section 3.3, we consider the following game between an

adversary (the server) A and a challenger C as follows.

(1) Give an encrypted data cube E(D) and the pub-

lic/private key pair (PK,SK) of the server, the ad-

versary A chooses two different sequences of cipher-

texts or blocks of ciphertexts, A0,1, A0,2, · · · , A0,ℓ and

A1,1, A1,2, · · · , A1,ℓ, where Ai,j is either a ciphertext or

a block of ciphertexts. When Ai,j is a block of cipher-

texts, A0,j and A1,j are two of nj blocks of ciphertexts

with the same dimensions. Then A sends them to the

challenger C.

(2) The challenger C chooses a random bit b ∈ {0, 1},

and executes the Query Generation (QG) on Ab,j to

obtain (Qb,j , sb,j) = QG(Ab,j , PK) (in the case of

PCR) or (Qb,j , skb,j) = QG(b, CRj , nj , PK) (in the

case of PBD), where j = 1, 2, · · · , ℓ and sb,j and

skb,j are the secrets of the challenger C. and then sends

Qb,1, Qb,2, · · · , Qb,ℓ back to the adversary A.

In the case of the BGN-based PCR protocol, Qb,j =
e(Ab,j , g)e(g, g)

sb,je(g, h)rb,j if Cb,j ∈ G or Qb,j =
Cb,je(g, g)

sb,je(g, h)rb,j if Cb,j ∈ G1, where sb,j , rb,j
are randomly chosen from {1, 2, · · · , N} and known to

the challenger C.

In the case of the Paillier-based PCR, Qb,j = C
sb,j
b,j

where sb,j is randomly chosen from {1, 2, · · · , N} and

known to the challenger C.

In the case of PBD, Qb,j =
{CRj , nj , zb,1,j , · · · , zb,n,j , (g,N)} where

zb,k,j = Encrypt(1, pk) = g1rNb,k,j if k is the

index of the block Ab,j or zb,k,j = Encrypt(0, pk)
= g0rNb,k,j(mod N2) if k is not the index of the block

Ab,j , and rb,k,j is randomly chosen for Z∗
N2 . We assume

that skb,j = {p, q} for all b and j.

(3) The adversary A can experiment with the code of Qb,1,
Qb,2, · · · , Qb,ℓ in an arbitrary non-black-box way, and

finally outputs b′ ∈ {0, 1}.

In Step 3, all queries Qb,1, Qb,2, · · · , Qb,ℓ look independent

to the adversary A because sb,j , rb,j (in the case of PCR) and

rb,k,j (in the case of PBD) are randomly chosen by the challenger

C.

Theorem 7 Under the decisional composite residuosity (DCR) as-

sumption (i.e., the DCR problem is hard), the client has (semantic)

query privacy for multiple queries based on Definition 3.

Proof Assume that the adversary A can win the above game with

a probability p and the multiple queries are composed of ℓ1 PCR

queries and ℓ2 PBD queries. Since all queries look independent to

the adversary, the adversary wins the game in two cases - winning

the game by querying ℓ1 PCR or winning the game by querying

ℓ2 PBD. Assume that the probability of the adversary winning the

game by querying a single PCR is p1 and the probability of the

adversary winning the game by querying a single PBD is p2, then

p ≤ p1ℓ1/ℓ + p2ℓ2/ℓ, i.e., p− 1/2 ≤ (p1 − 1/2)ℓ1/ℓ + (p2 −
1/2)ℓ1/ℓ. If the adversary A can win the above game with a non-

negligible advantage ǫ = p−1/2, then either p1−1/2 or p2−1/2
is non-negligible, which is in contradiction with either Theorem

Page 9 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

10

5 or 6. Therefore, the advantage of the adversary in winning the

above game is negligible and the theorem is proved. △

6 PERFORMANCE ANALYSIS

6.1 Performance Analysis of Paillier-Based PCR

Our Private Cell Retrieval (PCR) protocol is composed of Query

Generation, Response Generation and Response Retrieval. Before

the client and the server can run the PCR protocol, the server

needs to encrypt the entire data warehouse D in Algorithm 1

and distribute it to the client. This initialisation costs O(|D|)
computation complexity and O(|D|) communication complexity

in the server, and O(|D|) communication complexity in the client.

This initialisation happens only once. Then the client and the

server can run our PCR protocol repeatedly.

In the query generation (Algorithm 2), the client generates a

query (Q, s) with one exponentiation Cs(mod N2) and sends the

result to the server.

In the response generation (Algorithm 3), the server receives Q
and generates a response R with one modular exponentiation and

then returns the result to the client. Note that gλ in the decryption

can be pre-computed.

In the response retrieval (Algorithm 4), after receiving R, the

client retrieves m with modular multiplications only.

6.2 Performance Analysis of PBD

To make our PCR protocol feasible, our PBD protocol allows the

client to download a part of the encrypted data warehouse without

revealing to the server which part is downloaded.

In the query generation (Algorithm 5) of our PBD protocol,

the client needs to generate a public and private key pair for

the Paillier cryptosystem once. The public and private keys can

be used repeatedly. Therefore, the public and private key pair

can be pre-generated. In addition, the client needs to compute n
ciphertexts z1, z2, · · · , zn under the Paillier cryptosystem for the

query Q, where n is the number of blocks in the cloaking region

CR. With reference to Algorithm 5, the client needs to compute

O(n) modular exponentiations.

In the response generation (Algorithm 6), the server needs

to compute O(nm) modular exponentiations, where m is the

number of the ciphertexts in each block . Note the computation

of modular multiplications can be omitted in comparison to the

computation of modular exponentiations.

In the response retrieval (Algorithm 7), the client needs to

decrypt m ciphertexts C1, C2, · · · , Cm under the Paillier cryp-

tosystem, which amounts to O(m) modular exponentiations.

In addition, the client sends O(n) ciphertexts to the server

while the server sends back O(m) ciphertexts to the client.

Therefore, the total communication complexity is O(n) +O(m),
which is much less than O(nm) ciphertexts (the size of the

cloaking region).

Our PBD protocol is particularly efficient in communication.

It needs only (O(n) + O(m))/O(nm) ≈ 1/n communica-

tion of the entire CR download. In the case where n = 100,

m = 100, 000 and the ciphertext size is 2,402 bits, our PBD

protocol needs 240.44M bits of communications, while the entire

CR download needs 24.02G bits of communications. In addition,

the client’s computation complexity O(n) + O(m) is much less

than the server’s computation complexity O(nm). In practice,

the server has more powerful computation capability than the

client. Our PBD protocol reflects this feature. To improve the

computational efficiency, the server may run our PBD protocol

in parallel on multiple computers because our PBD protocol can

support parallel computing. In the case where there are ℓ comput-

ers running in parallel in the server, the computation complexity

of each computer in the server is O(nm/ℓ) only.

6.3 Performance Analysis of Private OLAP

With our PBD protocol, the client can perform private slice and

dice in the server side. The computation and communication

complexities for our PBD protocol are analyzed in the last section.

The computational complexity for the client to perform slice,

dice or pivot operation on the local encrypted data cube is the same

as that of the operation on the original data cube. The computa-

tional complexity of the roll-up operation on the local encrypted

data cube in Algorithm 8 is O(|E(D)|) group multiplications,

where |E(D)| is the number of ciphertexts in E(D). The drill-

down operation can be implemented with the roll-up operation

and thus its performance depends on the performance of the roll-

up operation.

6.4 Comparison

Private Information Retrieval (PIR) requires that the communi-

cation complexity is less than the size of the database. We can

achieve this by combining our PBD and PCR protocols, i.e., the

client runs our PBD protocol to download a block of the encrypted

data warehouse from the server at first and then runs our PCR

protocol with the server to decrypt a cell of the block.

Assume that the cloaking region CR is the entire data ware-

house and has n = n1n2 · · ·nd blocks according to d dimen-

sions of the data warehouse, the performance comparison of our

PBD+PCR protocols with existing single database PIR protocols,

such as [8], [9], [15], [25], [31], [32] is shown in Table 1. In

Table 1, m in our protocol is the number of ciphertexts in a

block. In other protocols, m is 1. From Table 1, we can see that

the performance of our PBD + PCR protocols are comparable to

the performance of other PIR protocols. In particular, our PBD

+ PCR protocols offers both the server’s privacy and the client’s

privacy, while other PIR protocols have the client’s privacy only.

In addition, the existing PIR solutions cannot keep the privacy of

OLAP operations for the client.

In Table 1, we also compare the performance of our PCR

protocols with existing single database SPIR protocols (also

known as oblivious transfer (OT) protocols), such as Naor-Pinkas

protocols [31], [32]. In these protocols, the server encrypts the data

(x1, x2, · · · , xn) using keys (k1, k2, · · · , kn) to get ciphertexts

(C1, C2, · · · , Cn), and sends the ciphertexts to the client. The

client and server then engage in a OT protocol, where the client

learns a key. The client uses this key to decrypt the data.

Our PCR protocols can supports homomorphic additions or

one homomorphic multiplication over the encrypted data. But NP

protocols [31], [32] do not have the homomorphic property for

their encrypted data.

When the client has no constraint in communication and

storage, he can download from the server the whole cloaking

region CR with n encrypted blocks, one of which is what the

client wants to use. Whenever the client wishes to retrieve a cell

from the block, he runs the Paillier-based PCR with the server.

This is the most efficient solution and privacy of this solution is

the same as our PBD and Paillier-based PCR protocols.

Page 10 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Page 11 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Page 12 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Page 13 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Summary of Changes from Conference Version

A preliminary version of this paper has been published in 18th ACM Symposium on Access
Control Models and Technologies (SACMAT), Amsterdam, The Nethertands, June 12-14, 2013.

The conference version is attached to this submission. The additional content compared to the
conference version includes:

1) A new model for private block download (PBD) in Section 3.2.
2) Security definitions for PBD in Section 3.3.
3) Client’s privacy definition for multiple queries in Section 3.3.
4) A new private cell retrieval (PCR) protocol based on the Paillier cryptosystem

(Algorithms 1-4) in Section 4.1.
5) A new PBD protocol (Algorithms 5-7) in Section 4.2.
6) Privacy analysis on our Paillier-based PCR protocol in Section 5.1.
7) Privacy analysis on our PBD protocol in Section 5.2.
8) Privacy analysis on multiple queries with PBD/PCR in Section 5.3.
9) Performance analysis on our Paillier-based PCR protocol in Section 6.1.
10) Performance analysis on our PBD protocol in Section 6.2.
11) Performance comparison in Section 6.4.
12) Experiment evaluation on our solutions in Section 7.

Page 14 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Private Data Warehouse Queries

Xun Yi
School of Engineering and

Science
Victoria University

Melbourne, VIC 8001,
Australia

xun.yi@vu.edu.au

Russell Paulet
School of Engineering and

Science
Victoria University

Melbourne, VIC 8001,
Australia

russell.paulet@vu.edu.au

Elisa Bertino
Department of Computer

Science
Purdue University

West Lafayette, IN 47907,
USA

bertino@purdue.edu

Guandong Xu
Advanced Analytics Institute

University of Technology,
Sydney

Broadway NSW 2007,
Australia

guandong.xu@uts.edu.au

ABSTRACT

Publicly accessible data warehouses are an indispensable resource
for data analysis. But they also pose a significant risk to the pri-
vacy of the clients, since a data warehouse operator may follow the
client’s queries and infer what the client is interested in. Private In-
formation Retrieval (PIR) techniques allow the client to retrieve a
cell from a data warehouse without revealing to the operator which
cell is retrieved. However, PIR cannot be used to hide OLAP op-
erations performed by the client, which may disclose the client’s
interest. This paper presents a solution for private data warehouse
queries on the basis of the Boneh-Goh-Nissim cryptosystem which
allows one to evaluate any multi-variate polynomial of total degree
2 on ciphertexts. By our solution, the client can perform OLAP
operations on the data warehouse and retrieve one (or more) cell
without revealing any information about which cell is selected. Fur-
thermore, our solution supports some types of statistical analysis
on data warehouse, such as regression and variance analysis, with-
out revealing the client’s interest. Our solution ensures both the
server’s security and the client’s security.

Categories and Subject Descriptors

H.2 [Database Management]: Security, integrity, and protection;
H.2.7 [Database Administration]: Data warehouse and repository

General Terms

Security

Keywords

Data warehouse, OLAP, privacy, homomorphic encryption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’13, June 12–14, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1950-8/13/06 ...$15.00.

1. INTRODUCTION
Data warehousing provides tools for business executives to sys-

tematically organise, understand, and use their data to make strate-
gic decisions. A large number of organizations have found that
data warehouses are valuable in today’s competitive, fast-evolving
world. In the last several years, many firms have spent millions of
dollars in building enterprise-wide data warehouse. Many people
feel that with competition mounting in every industry, data ware-
house is the latest must-have marketing weapon - a way to keep
customers by learning more about their needs [16].

A data warehouse is a subject - oriented, integrated, time -

variant and non - volatile collection of data in support of manage-
ment’s decision making process [17]. Data warehouses are built
on a multidimensional data model. This model views data in the
form of a data cube. A data cube, defined by dimensions and mea-
sures, allows data to be viewed in multiple dimensions. In general,
dimensions are the entities with respect to which we want to keep
records. For example, a sales data warehouse may keep records
of the store’s sales with respect to dimensions - time, location and
product. Measures are the quantities by which we want to anal-
yse relationships between dimensions. Examples of measures for a
sales data warehouse include the sales amount, the number of units
sold, and the average sales amount.

In the multidimensional model, data is organised into multiple
dimensions, where each dimension has multiple-levels of abstrac-
tion defined by a concept hierarchy. A concept hierarchy defines
a sequence of mapping from a set of low-level concepts to high-
level, more general concepts. The concept hierarchy for locations
could be street, city, state, and country. This organisation provides
clients with the flexibility to view data from different perspectives.
A number of online analytical processing (OLAP) operations exist
to materialise these different views, supporting interactive querying
and analysis of the data at hand. Typical OLAP operations include:
roll-up (aggregation by climbing up a concept hierarchy); drill-

down (the reverse of roll-up); slice (a selection on one dimension,
resulting in a sub-cube); dice (a selection on two or more dimen-
sions, resulting in a sub-cube); pivot (rotating the data axes in view
in order to provide an alternative presentation of the data).

Queries to the data warehouse are based on a star-net model,
which consists of radial lines emanating from a central point, where
each line represents a concept hierarchy of a dimension. These

Page 15 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

represent the granularities available for use by OLAP operations
such as drill-down and roll-up.

In order to query the data warehouse, a user usually first requests
the server to perform OLAP operations and then sends back a cell.
An important issue in this simple process is represented by the pri-
vacy of the user query as a user query may reveal to the server
business sensitive information about the user. For example, for a
stock exchange data warehouse, the user may be an investor, who
queries the data warehouse for the trend of a certain stock. He may
wish to keep private the identity of the stock he is interested in.
For a pharmaceutical data warehouse, the user may be a laboratory,
which would like to keep private the active principles it wants to
use. To protect his privacy, the user accessing a data warehouse
may therefore want to perform OLAP operations and retrieve a cell
without revealing any information about which cell he is interested
in.

A trivial solution to the above private data warehouse query prob-
lem is for the user to download the entire data warehouse and then
locally perform OLAP operations and retrieve the cell of interest.
This solution is not suitable if the owner of the data warehouse
wishes to make profit through data warehouse services (for exam-
ple, a health care data warehouse). Usually, the user is interested
in only a part of the data warehouse. Purchasing the entire data
warehouse may not be an economic way to the user.

Private Information Retrieval (PIR) protocols, such as [8], do not
fully address the private data warehouse query problem. A PIR pro-
tocol allows a user to retrieve a record from a database without the
owner of that database being able to determine which record was
selected with communication cost less than the database size. By
using PIR, a user can retrieve a cell (a record) from a data ware-
house (a database) without revealing any information about which
cell is retrieved. However, the user cannot hide his OLAP opera-
tions to the server when he requests the server to perform the opera-
tions. These operations may reveal the user’s interest. For example,
when the user requests the server to perform a slice operation with
respect to a location, the server can learn the user’s interest in the
location. It is a challenge to assure the user’s privacy when per-
forming OLAP operations.

In this paper, we give a solution for private data warehouse queries
on the basis of the Boneh-Goh-Nissim cryptosystem [4]. Our basic
idea is to allow the data warehouse owner to encrypt its data ware-
house and distribute the encrypted data warehouse to the user who
wishes to perform private data warehouse queries. The user can
perform any OLAP operations on the encrypted data warehouse
locally without revealing his interest. When the user wishes to de-
crypt a cell of the encrypted data warehouse, the user and the server
run a Private Cell Retrieval (PCR) protocol jointly to decrypt the
cell without revealing to the server which cell is retrieved. Assume
that the serve charges the client per query, our solution allows the
user to perform some statistical analysis, such as regression and
variance analysis, on the encrypted data warehouse with the lowest
cost.

Unlike operational databases, data warehouse is non-volatile. The
data in the data warehouse is never over-written or deleted - once
committed; the data is static, read-only, and retained for future re-
porting. It is feasible to allow the data warehouse owner to dis-
tribute the encrypted data warehouse to potential users only once
and later let the users download new added data online if any.

Our solution ensures both the server’s security in the sense that
the server, for billing purpose, releases to the user only a data per
query, and the client’s security in the sense that the client does not
reveal any information about his queries to the server. We have
implemented our solution on an example of data warehouse and

experiments have shown that our solution is practical for private
data warehouse queries.

The rest of the paper is organized as follows. Related work is
surveyed in Section 2. We define our model and described our
solution in Section 3. The security and performance analysis is
carried out in Section 4. Experiment results are shown in Section
5. Conclusions are drawn in the last section.

2. RELATED WORK
Private Information Retrieval (PIR) was firstly introduced by Chor,

Goldreich, Kushilevitz, and Sudan in 1995 [8]. In their paper, they
proposed a set of schemes to implement PIR through replicated
databases, which provide users with information-theoretic security
as long as some of the database relicas do not collude against the
user. Since then, a lot of research on PIR has been done. We clas-
sify the results as follows [2, 29].

• Theoretical Private Information Retrieval

“Theoretical” stands for the fact, that the user privacy is as-
sumed to be unbreakable independently from the compu-
tational power of a cheater. Chor et al. proved, that any
theoretical PIR solution has a communication with a lower
bound equal to the database size [8]. Thus they relax the
problem setting. They assume that there are several (instead
of one) database servers, which do not communicate among
each other, with the same data. This assumption makes the
non-trivial theoretical PIR feasible. The basic idea is to send
several queries to several databases. The queries are con-
structed in such a way, that they give no information to the
servers about the record that user is interested in. But using
the answers from the queries, the user can construct the de-
sired record. There is also a case considered, when up to t of
the servers are allowed to cooperate against the user.

Ambainis [1] improved the results of Chor et al. [8], which
led to the following non-trivial theoretical PIR solutions: (1)
A k database scheme (i.e., a scheme with k identical databases
non-communicating to each other), for any constant k ≥
2, with communication complexity O(N1/(2k−1)); (2) A
Θ(logN) database scheme with communication complexity
O(log2N · loglogN), where N is the size of the database.
Further research on theoretical PIR appears in [18, 19, 20,
3].

• Computational Private Information Retrieval

In order to get better communication complexity, another as-
sumption was weakened by Chor and Gilboa [7]. “Compu-
tational” means that the database servers are presumed to
be computationally bounded, i.e., under an appropriate in-
tractability assumption, the database cannot gain information
about which data element was selected by the user. For every
ǫ > 0, Chor and Gilboa [7] presented two computational PIR
schemes with complexity O(N ǫ).

In the first paper on PIR [8] it was proven, that the theoretical
PIR problem has no non-trivial solutions for the case of sin-
gle database. Surprisingly, the substitution of an information-
theoretic security with an intractability assumption achieves
a non-trivial PIR protocol for single database schema [22].
Its communication complexity is O(N ǫ) for any ǫ > 0. They
use an intractability assumption, described in [15]. The basic
approach is to encrypt a query in such a way, that the server
still can process it using special algorithms. However, the
server recognizes neither the clear-text query nor the result.

Page 16 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

The result can be decrypted only by the user. This was the
first single-database protocol, where designer considers and
provides database privacy. Using another intractability as-
sumption, Cachin et al. [5] demonstrated a single database
computational PIR protocol that has poly-logarithmic com-
munication. This is an improvement in comparing to poly-
nomial communication complexity in [22]. This result looks
particular effective, because the user has to send a minimum
logN bits just to address the bit he wants to retrieve in the
database. A scheme with better result appears in [6, 23, 24,
12].

• Symmetrical Private Information Retrieval

Symmetrical PIR is a PIR problem, where the privacy of
the database is considered, i.e., a symmetrical PIR protocol
must prevent the user from learning more than one record of
the database during a session. Clearly, symmetrical privacy
(database privacy) is a very important property for practical
applications, since an efficient billing is only then possible.
A symmetrical PIR protocol for single server was first pro-
posed in [21], and for several servers it was considered in
[14]. Other symmetrical PIR were later proposed in [27, 26].

In addition, Private Block Retrieval (PBR) is a natural extension
of PIR in which, instead of retrieving only a single bit, the user
retrieves a d-bit block that begins at an index i. PBR techniques are
important for making PIR practical. Theoretic PBR was introduced
in [8]. A practical PBR scheme for a single database was given by
Gentry and Ramzan [12]. The security of this scheme is based on
a simple variant of the Φ-hiding number-theoretic assumption by
Cachin, Micali and Stadler [5]. This scheme has communication
complexity O(k+d) only, where k ≥ logN is a security parameter
that depends on the database size N and d is the bit-length of the
retrieved database block.

Current PIR or PBR protocols can be only used for Private Cell
Retrieval (PCR) in private data warehouse queries. They are unable
to support private OLAP operations.

3. PRIVATE DATA WAREHOUSE QUERIES

3.1 Our Model
We consider a data cube D with n dimensions y1, y2, · · · yn and

m measures x1, x2, · · · , xm, denoted as

D = (x1, x2, · · · , xm)y1,y2,··· ,yn .

We assume that the data cube is provided by a server S and used
by clients. The server S wishes to make a profit by providing
data warehouse services to clients. The clients wish to learn some
knowledge from D through OLAP operations on D without reveal-
ing their interests to S.

First of all, on input a security parameter k, the server S gener-
ates its public/private key pair {PK,SK}, encrypts the data cube
D into E(D) with the public key PK, where the values of all
measure attributes are encrypted, but the values of all dimension
attributes are in plaintexts. The encrypted data cube E(D) can be
then released to clients.

A client C can either download the encrypted data cube E(D)
from the server’s Web site or request the server to send a CD of
the encrypted data cube by post. It happens only once because the
data warehouse is non-volatile. For new data added into the data
cube, we allow the users to download it online. The client can then
perform any OLAP operation on the encrypted data cube E(D)
locally.

Remark In many cases, the “client” is actually an organization that
then has no problem in downloading and storing the encrypted data
warehouse E(D) and performing OLAP operations on E(D).

In order to retrieve a cell from the data cube D after several
OLAP operations on E(D) (i.e., to decrypt a ciphertext C from
the encrypted data cube E(D) after several OLAP operations on
E(D)), the server S and the client C runs a Private Cell Retrieval
(PCR) protocol, composed of three algorithms as follows.

(1) Query Generation (QG): Takes as input the public key PK
of the server S, the ciphertext C, which is an encryption of
either a measure value or a function of several measure val-
ues, (the client) outputs a query Q and a secret s, denoted as
(Q, s) = QG(C,PK).

(2) Response Generation (RG): Takes as input the query Q and
the private key SK of the server S, (the server) outputs a
response R, denoted as R = RG(Q,SK).

(3) Response Retrieval (RR): Takes as input the public key PK
of the server S, the response R and the secret s of the client,
(the client) outputs a plaintext x, denoted as x = RR(R,PK,
s).

A PCR protocol can be illustrated as in Fig. 1 and is correct if, for
any security parameter k, for any ciphertext C, Decrypt(C, SK) =
RR(R,PK, s) holds, where (Q, s) = QG(C,PK) and R = RG(Q,
SK).

Server (SK)

Client (C,PK)

1. (Q,s) = QG(C,PK)

Q

2. R= RG(Q,SK)

R

3. m = RR(R,PK,s)

Figure 1: Private Cell Retrieval

The security of the PCR protocol involves the server’s security
and the client’s security. Intuitively, the serve S wishes to release
only one measure value to the client C each time when the client
sends a query. Meanwhile, the client C does not wish to reveal to
the server which cell is retrieved.

Formally, the server’s security can be can be defined with a game
as follows.

Given a data cube D and the public key PK of the server, con-
sider the following game between an adversary (the client) A, and
a challenger C. The game consists of the following steps:

(1) Given the public key PK of the server, the adversary A
chooses two different values m1,m2 of two measure attributes
and sends them to C.

(2) The challenger C chooses a random bit b ∈ {0, 1}, and en-
crypts mb to obtain Cb = Encrypt(mb, PK), and then
sends Cb back to A.

Page 17 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

(3) The adversary A can experiment with the code of Cb in an
arbitrary non-black-box way, and finally outputs b′ ∈ {0, 1}.

The adversary wins the game if b′ = b and loses otherwise. We
define the adversary A’s advantage in this game to be

AdvA(k) = |Pr(b′ = b)− 1/2|.

Definition 1 (Server’s Security Definition). In a PCR protocol,
the data warehouse server has semantic security if for any proba-
bilistic polynomial time (PPT) adversary A, we have that AdvA(k)
is a negligible function, where the probability is taken over coin-
tosses of the challenger and the adversary.

Remark. Server’s security ensures that the client cannot decrypt
any ciphertext in the encrypted data cube E(D) without the help of
the server.

Next, we formally define the client’s security with a game as
follows.

Give an encrypted data cube E(D) and the public/private key
pair (PK,SK) of the server, consider the following game between
an adversary (the server) A, and a challenger C. The game consists
of the following steps:

(1) Given the public/private key pair (PK,SK) of the server,
the adversary A chooses two different ciphertexts C1 and
C2, and then sends them to the challenger C.

(2) The challenger C chooses a random bit b ∈ {0, 1}, and
executes the Query Generation (QG) to obtain (Qb, sb) =
QG(Cb, PK), where sb is the secret of the challenger C, and
then sends Qb back to A.

(3) The adversary A can experiment with the code of Qb in an
arbitrary non-black-box way, and finally outputs b′ ∈ {0, 1}.

The adversary wins the game if b′ = b and loses otherwise. We
define the adversary A’s advantage in this game to be

AdvA(k) = |Pr(b′ = b)− 1/2|.

Definition 2 (Client’s Security Definition). In a PCR protocol, the
client has semantic security if for any probabilistic polynomial time
(PPT) adversary A, we have that AdvA(k) is a negligible function,
where the probability is taken over coin-tosses of the challenger
and the adversary.

Remark. Client’s security ensures that the server cannot tell what
information the client has retrieved from the data cube E(D).

3.2 Private Cell Retrieval
Based on our model, we give a construction of a PCR protocol

which allows the client to retrieve a measure value in a cell without
revealing the measure and cell attributes to the server.

Our protocol is built on the BGN homomorphic encryption scheme
[4] (please refer to Appendix). The data server S generates and
publishes its public key PK = {N,G,G1, e, g, h1, e(g, g)

q1},
and keeps its private key SK = {q1} secret.

Remark: Slightly different from the BGN scheme, we replace h
with h1 in the public key (please refer to Appendix) and include
e(g, g)q1 as a public parameter. It does not affect the security of
the BGN scheme because the discrete logarithm problem of deter-
mining the private key q1 from e(g, g)q1 is hard, where q1 is large
prime. We publish e(g, g)q1 so that the client C can obtain the de-
cryption privately (please refer to Algorithm 4).

Before releasing the data cube to clients, the data warehouse
server S runs the Initialisation algorithm to encrypt the data cube
D to E(D), as described in Algorithm 1.

After obtaining the encrypted data cube E(D), if a client C wishes
to retrieve a measure value in a cell, in other words, to decrypt a ci-
phertext C in a cell, the client C and the server S run our Private
Cell Retrieval protocol, composed of three algorithms, Query Gen-
eration (QG), Response Generation (RG), and Response Retrieval
(RR), as described in Algorithms 2-4.

Algorithm 1 Initialisation (Server)

Input: D = (x1, x2, · · · , xm)y1,y2,··· ,yn , PK
Output: E(D) = (E(x1), E(x2), · · · , E(xm))y1,y2,··· ,yn
1: Let E(D) = D
2: For each measure value x = (xi)y1,y2,··· ,ym , where 1 ≤ i ≤

m and (y1, y2, · · · , ym) ∈ DD (dimension domain) .
3: Pick a random integer r from {1, 2, · · · , N}
4: Compute z = Encrypt(x, PK) = gxhr and replace

(xi)y1,y2,··· ,yn with z, denoted as (E(xi))y1,y2,··· ,yn .
5: return E(D)

Algorithm 2 Query Generation QG (Client)

Input: C,PK
Output: Q, s
1: Pick two random integers s, r from {1, 2, · · · , N}
2: If C ∈ G, compute Q = e(C, g)e(g, g)shr

1

3: If C ∈ G1, compute Q = Ce(g, g)shr
1

4: return (Q, s)

Algorithm 3 Response Generation RG (Server)

Input: Q ∈ G1, SK = q1
Output: R
1: Compute R = QSK

2: return R

Algorithm 4 Response Retrieval RR (Client)

Input: R,PK, s
Output: m
1: Compute R′ = R/(e(g, g)q1)s

2: Compute m = loge(g,g)q1 R′ with Porland’s lambda method
[25].

3: return m

Theorem 1 (Correctness) Our PCR protocol is correct. In other
words, for any security parameter k, for any ciphertext C,

Decrypt(C, SK) = RR(R,PK, s)

holds, where (Q, s) = QG(C,PK) and R = RG(Q,SK).

Proof In case of the ciphertext C ∈ G, we assume that C =

gm
′

hr′ . With reference to Appendix, we have Decrypt(C, SK) =

Page 18 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

m′. In addition,

R = RG(Q,SK) = QSK

= (e(C, g)e(g, g)shr
1)

q1

= e(gm
′

hr′ , g)q1e(g, g)q1shq1r
1

= e(gq1m
′

hq1r
′

, g)e(g, g)q1shq1r
1

= (e(g, g)q1)m
′

e(g, g)q1s

In case of the ciphertext C ∈ G1, we assume that C = e(g, g)m
′

hr′

1 .
With reference to Appendix, we have Decrypt(C, SK) = m′. In
addition,

R = RG(Q,SK) = QSK

= (Ce(g, g)shr
1)

q1

= (e(g, g)q1)m
′

e(g, g)q1sh
q1(r+r′)
1

= (e(g, g)q1)m
′

e(g, g)q1s

Therefore, R′ = R/e(g, g)q1s = (e(g, g)q1)m
′

and we have
m = loge(g,g)q1 R′ = m′, i.e., Decrypt(C, SK) = RR(R,PK, s).
The theorem is proved. △

3.3 Private OLAP Operations
Typical OLAP operations include roll-up (performing aggrega-

tion by climbing up a concept hierarchy), drill-down (the reverse of
roll-up), slice (performing a selection on one dimension, resulting
in a sub-cube), dice (performing a selection on two or more dimen-
sions, resulting in a sub-cube), and pivot (rotating the data axes in
view in order to provide an alternative presentation of the data).

After obtaining the encrypted data cube E(D), a client C can
perform drill-down, slice, dice or pivot operation on E(D) as he
does on the original data cube D because the dimension values in
E(D) are in plain. It is obvious that the sub-cube obtained by slice,
dice or pivot operation on the encrypted data cube E(D) takes a
form of encryption of the sub-cube obtained by the same operation
on the original data cube D.

For a roll-up operation on E(D), without loss of generality, we
consider summarising a measure xi along the j-th dimension from
a concept yj ∈ {a1, a2, ...} to a higher concept Yj ∈ {A1, A2, ...},
where for any as, there is At such that as ∈ At. Our roll-up
operation on E(D) is described in Algorithm 5.

Algorithm 5 Roll-Up (Client)

Input: E(D) = (E(x1), E(x2), · · · , E(xm))y1,··· ,yj ,··· ,yn , PK,
{A1, A2, ...}

Output: E(D)∗ = (E(x1), E(x2), · · · , E(xm))y1,··· ,Yj ,··· ,yn

1: Let E(D)∗ = (E(0), E(0), · · · , E(0))y1,··· ,Yj ,··· ,yn

2: For each encrypted measure value x = (E(xi))y1,··· ,yj ,··· ,ym
in E(D), where 1 ≤ i ≤ m and yj ∈ {a1, a2, · · · }

3: If yj = as ∈ At and X = (E(xi))y1,··· ,Yj ,··· ,yn in E(D)∗

where Yj = At, let Z = xX and replace X with Z in the cell
(y1, · · · , Yj , · · · , yn) of E(D)∗.

4: return E(D)∗

Theorem 2 In Algorithm 5, given 1 ≤ i ≤ m, let

XAt = E(xi)(y1,··· ,Yj ,··· ,yn)

where Yj = At and xas = (xi)(y1,··· ,yj ,··· ,yn) where yj = as,
then Decrypt(XAt , SK) =

∑
as∈At

xas .

Proof According to Algorithm 5, we have

XAt =
∏

as∈At

E(xas).

Due to the homomorphic property of the BGN cryptosystem, we
obtain

XAt = E(
∑

as∈At

xas).

Therefore,

Decrypt(XAt , SK) =
∑

as∈At

xas

The theorem is proved. △
Theorem 2 ensures that our roll-up operation on the encrypted

data cube is correct.

3.4 Private Statistical Analysis
Our data cube is encrypted by the BGN cryptosystem. As shown

in Appendix, the BGN cryptosystem has an additive homomor-
phism. In addition, the bilinear map allows for one multiplication
on encrypted values. As a result, the BGN cryptosystem supports
arbitrary additions and one multiplication (followed by arbitrary
additions) on encrypted data. This property in turn allows the eval-
uation of multi-variate polynomials of total degree 2 on encrypted
values.

In view of this, we are able to perform those statistical analy-
ses on the data cube in private, which involves the evaluation of
multi-variate polynomials of total degree 2 on encrypted values,
e.g., regression and variance analysis.

Remark. Most practical homomorphic cryptosystems, such as RSA
[32], ElGamal [11], Goldwasser-Micali [15], Damgard-Jurik [9]
and Paillier [30] schemes, provide only one homomorphism, either
addition, multiplication, or XOR. They cannot be used to evaluate
multi-variate polynomials of total degree 2 on encrypted values.
Some statistical analysis requires to compute multi-variate poly-
nomials of total degree 2. Although fully homomorphic encryp-
tion techniques [13, 33, 10] can be used to evaluate multi-variate
polynomials of any degree, the state-of-the-art is still impractical in
applications because the ciphertext size and computation time in-
crease sharply as one increases the security level. So far, the BGN
cryptosystem [4] is the only practical encryption scheme which can
evaluate multi-variate polynomials of total degree 2 on encrypted
values.This is why we choose the BGN cryptosystem as our under-
lying encryption scheme.

Let f(x1, x2, · · · , xℓ) be a ℓ-variate polynomial of total degree
2. For a purpose of statistical analysis, a user wishes to com-
pute f(a1, a2, · · · , aℓ) in private, where a1, a2, · · · , aℓ are mea-
sure values in the data cube D. Given the encrypted data cube
E(D), the user obtains the encryptions of a1, a2, · · · , aℓ, denoted
as E(a1), E(a2), · · · , E(aℓ) and runs Algorithm 6.

Algorithm 6 Private Evaluation (Client, Server)

Input: f,E(a1), E(a2), · · · , E(aℓ), PK
Output: f(a1, a2, · · · , aℓ)
1: Client computes C = f(E(a1), E(a2), · · · , E(aℓ))
2: Client and Server run Algorithms 2-4
3: Client obtains m = RR(R,PK, s)
4: return m

Theorem 3 In Algorithm 6, m = f(a1, a2, · · · , aℓ).

Page 19 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Proof Because the BGN cryptosystem allows the evaluation of multi-
variate polynomials of total degree 2 on encrypted values and the
degree of the function f is less than 2, we have that

C = f(E(a1), E(a2), · · · , E(aℓ)) = E(f(a1, a2, · · · , aℓ)).

Based on Theorem 1, we have that

m = Decrypt(C, SK) = f(a1, a2, · · · , aℓ).

The theorem is proved. △
Theorem 3 ensures that our private evaluation is correct.

4. SECURITY AND PERFORMANCE ANAL-

YSIS

4.1 Security Analysis
In this section, we analyse the security of our Private Cell Re-

trieval protocol (PCR) in terms of the server’s security and the
client’s security defined in Section IV. We consider the server’s se-
curity at first.

In our scenario, the server wishes to make profit through data
warehouse services. The business model is most likely that the
server charges the client per query. In other word, the server reveals
one measure value only in each client query. In order to prevent the
client from knowing all data in the data warehouse without paying
queries, the server encrypts the data warehouse with the BGN cryp-
tosystem [4], where the decryption key is known the server only.

The security of the BGN cryptosystem is built on the subgroup
decision problem: With reference to Appendix, let k ∈ Z

+ and
let (q1, q2,G,G1, e) be a tuple produced by KeyGen(k) where
N = q1q2. Given (N,G,G1, e) and an element x ∈ G, output 1 if
the order of x is q1 and output 0 otherwise; that is, without knowing
the factorization of the group order N , decide if an element x is in
a subgroup of G.

We say that KeyGen(k) satisfies the subgroup decision assump-
tion if for any polynomial time algorithm A, the advantage of A in
solving the subgroup decision problem,

|Pr(A(N,G,G1, e, x) = 0)− Pr(A(N,G,G1, e, x) = 1)|,
is a negligible function in k.

In [4], it has been shown that the BGN scheme is semantically
secure if KeyGen(k) satisfies the subgroup decision assumption.

Theorem 4 If KeyGen(k) satisfies the subgroup decision assump-
tion in the BGN scheme, the server in our Private Cell Retrieval
(PCR) protocol has the semantic security.

Proof Please refer to [4] for the proof that the BGN scheme is se-
mantic security if KeyGen(k) satisfies the subgroup decision as-
sumption.

Slightly different from the BGN scheme, we replace h with h1

in the public key and include e(g, g)q1 as a public parameter. Be-
cause h1 = e(g, h), the replacement does not affect the security
of the BGN scheme. In addition, it is hard to determine q1 from
e(g, g)q1 because the discrete logarithm is hard, and e(g, g)q1 does
not help to solve the subgroup decision problem at all, i.e., to de-
cide if xq1 = 1 given an element x. Therefore, the definition for the
server’s security is the same as the semantic security of the BGN
scheme and the theorem is proved. △

Next, we analyse the client’s security. Based on the definition of
client’s security, we consider the following game:

(1) Given the public/private key pair (PK,SK) of the BGN
cryptosystem, the adversary A chooses two different cipher-
texts C1 and C2, and then sends them to the challenger C.

(2) The challenger C chooses a random bit b ∈ {0, 1}, and
executes the Query Generation (QG) to obtain (Qb, sb) =
QG(Cb, PK). According to Algorithm 2, if C ∈ G,

Qb = e(Cb, g)e(g, g)
sbh

rb
1 ;

if C ∈ G1,

Qb = Cbe(g, g)
sbh

rb
1 ,

where sb, rb are randomly chosen from {1, 2, · · · , N − 1}
and known to the challenger C. Then Qb is sent back to A.

(3) The adversary A can experiment with the code of Qb in an
arbitrary non-black-box way, and finally outputs b′ ∈ {0, 1}.

Theorem 5 The client in our Private Cell Retrieval (PCR) protocol
has the semantic security.

Proof In Step 2 of the above game, the ciphertext Cb is blinded
by random e(g, g))sbh

rb
1 . Without knowledge of random sb, rb,

the adversary A cannot tell which ciphertext is blinded even if
A can apply the decryption key SK on Cb in Step 3 to obtain
Rb = e(g, g)q1mbe(g, g)q1sb where mb = Decrypt(Cb, SK). In
view of this, the adversary A’s advantage in this game (AdvA(k) =
|Pr(b′ = b)−1/2|) is negligible. Therefore, the theorem is proved.
△
Remark. In Algorithm 2, if C ∈ G, the client generates the query
Q in G by letting Q = Cgshr where s, r are randomly chosen
from {1, 2, · · · , N − 1} and sends the query Q to the server. But
this may leak to the server the client’s intention, such that retrieving
a cell or performing statistical analysis. Therefore, in order to keep
the client’s intention private, the client has to generate the query Q
in G1 no matter whether C ∈ G or C ∈ G1 as in Algorithm 2.

4.2 Performance Analysis
The core of our solution is our Private Cell Retrieval (PCR) pro-

tocol, composed of Query Generation, Response Generation and
Response Retrieval. Before the client and the server can run the
PCR protocol, the server is required to encrypt the whole data ware-
house D in Algorithm 1 and distribute it to the client. This initiali-
sation costs O(|D|) computation complexity and O(|D|) commu-
nication complexity in the server, and O(|D|) communication com-
plexity in the client. This initialisation happens only once. Then
the client and the server can run our PCR protocol any number of
times.

In the query generation (Algorithm 2) of our PCR protocol, the
client generates a query (Q, s) with at most two exponentiations in
G1 and one pairing, and sends a group element of G1 to the server.

In the response generation (Algorithm 3), the server receives a
group member of G1 and generates a response R with one expo-
nentiation in G1 and then replies a group element of G1 to the
client.

In the response retrieval (Algorithm 4), after receiving a group
element of G1, the main time of the client is spent on determining
the discrete logarithm m = loge(g,g)q1 R′ with Porland’s lambda
method [25]. The computation complexity of Porland’s lambda
method is

√
T where T is the upbound of m.

Computation of exponentiations and pairings and communica-
tions of group elements of G1 can be very fast. Thus, the main
running time of our PCR protocol is O(

√
T). If T is around 232,

the computation complexity is around 216 = 65536.
Next, we analyse the performance of private OLAP operations.

The computation complexity for the client to perform drill-down,
slice, dice, drill-down or pivot operation on the encrypted data cube

Page 20 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

is the same as that of the same operation on the original data cube.
In Algorithm 5, assume that the domain for the dimension yj in-
cludes λ different values, then the computation complexity of the
roll-up operation is O(λ) group multiplications, which can be done
very quickly.

At last, we analyse the performance of our private statistical anal-
ysis. In Algorithm 6, to evaluate a ℓ-variate polynomial f(x1, x2,
· · · , xℓ) of total degree 2 at a point (a1, a2, · · · , aℓ), the client and
the server need jointly to run our PCR protocol once. For this eval-
uation, the client and the server can also run our PCR protocol ℓ
times to retrieve a1, a2, · · · , aℓ at first and then the client com-
putes f(a1, a2, · · · , aℓ) locally. Assume that the upbound of xi

(where 1 ≤ i ≤ ℓ) is T , then the upbound of f(x1, x2, · · · , xℓ)
is about T 2. In this case, the main running time of Algorithm 6
is about O(T) while the main running time of ℓ PCR protocols is
about O(ℓ

√
T), usually less than O(T). However, the client in Al-

gorithm 6 needs to pay once while running ℓ PCR protocols needs
to pay ℓ times. Therefore, our private statistical analysis Algorithm
6 has the lowest cost.

To balance the cost and the running time for private statistical
analysis, the client may retrieve a part of (a1, a2, · · · , aℓ) and then
run Algorithm 6. The cost and running time are inversely propor-
tional. We can see that if the client wishes to perform statistical
analysis on the data warehouse with less cost, he has to spend more
time to get the result. If the client wishes to perform statistical anal-
ysis on the data warehouse with less time, he has to pay more to get
the result.

To the best of our knowledge, our solution is only one to provide
private OLAP operations. In our solution, our private cell retrieval
(PCR) protocol is essentially a private information retrieval (PIR)
protocol. Unlike existing PIR protocols, such as [21, 5, 12], our
PCR protocol needs to communicate the encrypted data warehouse
in the initialisation to enable private OLAP operations. This hap-
pens only once. Without considering the initialisation, the perfor-
mance comparison of our PCR protocol with some single database
PIR protocols are listed in TABLE 1.

Table 1: Performance Comparison

Protocols Comm. Comp.
Complexity Complexity

KO[21] O(|D|ǫ) client O(|D|ǫ)
any ǫ > 0 server O(|D|/2)

CMS[5] O(log8 |D|) client O(log |D|)
server O(|D|/2)

GR[12] O(log2 |D|) client
(N =

∏
i pi

ei) O(
∑

i ei(logN +
√
pi)[31])

server O(|D|/2)

Our PCR O(1) client O(
√
T)

server O(1)

From TABLE 1, we can see that our PCR protocol is more effi-
cient than other single database PIR protocols in terms of commu-
nication if we do not consider the initialisation. In addition, only
our solution supports private OLAP operations.

Compared with a centralised data warehouse which supports OLAP
operations, our solution has two advantages as follows:

• A centralised data warehouse cannot protect the privacy of
OLAP operations required by the client even if PIR may be
used to prevent the server from knowing the final cell re-
trieved by the client. Our solution can protect the privacy of

both OLAP operations performed by the client and the final
cell retrieved by the client.

• A centralised data warehouse is inefficient when multiple
clients concurrently perform OLAP operations in the server
and run PIR with the server. Our solution is distributed and
the client can perform OLAP operations in his local com-
puter and only run our efficient PCR with the server.

Remark. We should point out that our solution may not be suit-
able for operational databases which need to update their data fre-
quently. This will require our solution to run initialisation many
times and leads the performance of our solution worse than oth-
ers. Our solution is in particular suitable for data warehouse where
the data is non-volatile. In this scenario, our solution needs to run
initialisation only once.

5. EXPERIMENTAL EVALUATION
In order to evaluate the practice of our solution, we have done

some experiments on the Oracle global data warehouse example1,
which has four dimensions, Channel, ShipTo, Product and Time,
and a units fact table storing three measures, units, sales and cost.
The date cube keeps 9 years sale history data and contains about
300,000 cells. Our experiment is executed on a desktop machine
with a Intel Core i7-2600 processor, which has a clock speed of
3.40GHz, and 16GB of RAM, and we use SQL and C programming
language.

First of all, we implemented the BGN cryptosystem [4], in which
the elliptic curve structures G,G1 and associated bilinear pairing
e are provided by the Pairing Based Cryptography (PBC) library2.
For the public/private key pair (PK,SK) where PK = {N,G,G1,
e, g, h1, e(g, g)

q1}, N = q1q2, h1 = e(g, uq2) and SK = {q1},
we use the values in Table 2.

In our setting, we choose the two primes q1 and q2, each has
roughly 512 bits in length, so that it is impossible to factorize N
according to the current computing technology.

Based on the BGN cryptosystem, we encrypt all measure values
in the units fact table. This initialisation takes about 5 hours. The
size of the original data cube is 45 Mbytes while the size of the
encrypted data cube becomes 850 Mbytes.

Remark In practice, a data warehouse is a very sparse multi- di-
mensional data set. In this case, the size of the encrypted data cube
can be significantly reduced because only the measures with values
need to be encrypted.

Based on the encrypted data cube E(D), we have done four ex-
periments described in what follows. The goal of these experiments
is to determine the actual times required by various OLAP oper-
ations, from the most simple, that is, retrieving a single cell, to
the most complex ones, such as performing regression analysis and
variance analysis.

Experiment 1 (Private Cell Retrieval) Consider the ciphertext C in
Table 3 which is the encrypted value of a cell the user wants to re-
trieve. To do so, the client generates a query (Q, s) = QG(C,PK)
with values of Q and s shown in Table 3, and sends Q to the server.
The server generates a response R = RG(Q,SK) as shown in
Table 3 and turns R to the client.

The client computes m = RR(R,PK, s) with Porland’s lambda
method, where m =3346.

1http://www.oracle.com/technetwork/database/options/olap/global-
11g-readme-082667.html
2http://crypto.stanford.edu/pbc/

Page 21 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly
Table 2: Setting

Para. Values
q1 210754186407604102310925188159859071072187549

727704467965310206936564933603873461196303262
642786480951780132666506364093582465543068449
71313514949562360857

q2 127707578650528883113295334590981718968728937
878725402284946055541062874329871667476514811
389292826651236287717409754447822015620351794
49188842497114643083

N 269149068365773261841824041671333984122651229
207631208954991210415522316622671277634208088
843014413860367743186861524577200017371584463
927286387273029973442850457450263045480185806
500527854730802543879971807379459036648210795
717878207455901709230864575970688020145718885
793966526448525040987835358478405002131

g [38541583386952104107838945807346922321315262
760669641124899551348857051123127875141089007
714527824427443188616396621912530181137147121
870447696068628604002854494442009563963141580
756926191397532999397829406565934259561055970
554703419949372001563073197258958319877077753
2167417021560418316558441418907804321571267,9
480911976241807747934632097048398180200105998
822744599035552243464272721936069407066922848
681186534355607954535020561134603030182187722
681209428254633017341515467050549483142767178
688953392003318854120308972805480677016226334
643239789167325213173963299635951154235542201
237755220067092164079566743266180947221]

u [90355113191707349033650321671064819233411791
554488948056631073957107032184057077540247156
969053761302738958171477136366680144692611719
400895154756559355801930222886350399605246802
012080359890355376422384293752890166573180008
042710290122021244649546918197580253304536519
279950176817945174866553861242002236175118,91
234402775643178015535429018890332467573384174
078776314525487458132229222432297506474819321
295819916644881701149670224771561523459777244
699718715893247838335015592417414766946680054
568360496527404452082429881562821921617122620
787126291583946026460700670166393134322784351
346342103872802765111089380627867938185]

Table 3: Experiment 1

Para. Values
C [21522238738461525457804247592603098239082392

038785063750325433774364005380080152889464771
046093100420206695664478201112198250352239173
376948379934274411021748381200445180102603667
502868789777076704050793816507371488678285357
974126104931073455246768043976272808520171912
9484930828071390483942201208650398954140751,3
803401062802803611669710650042637313843290526
205704651819069769663874847208344009914491314
498017794637941714616376720513725601967496618
671574197331105775429251809783142282868934923
403194455486949263780893751731609669875213865
342483211597115040375577714048719922339756050
15043546259541151224494560361774794503290]

Q [13724215451079649073033016471841055766946184
455864722510205774752889594028721018584041778
968542667134181195335136107613784925093970189
671595118693407286662937609153435259508435516
120051646035966939254144117626700470282727608
621000507342875403371028321077317865134553805
221483458454854197574101488933997181617089,36
789190810624682660133959786033453519971380335
040480398414400575822156629834206450594065923
235201468469214716537177903387409527279919477
906928896600272638643968376015906361250408092
092671451402556606180306493098211303244025485
500508011733225235070033030481564959308782835
8526837137059231442270972333540099866782]

s 188857674807555849528532796096897013926314903
570009472779352231629993166112778876777630402
393044880461058951359315772953414254388265799
018043444401815792645824517581283228316321701
047479133908428806317280841136455777666483401
759509633043124148231096623706520495844956120
643045136913607186633855095825607139394

R [33324365871965840806598200562956850561308599
602140306018341714961813900816384117482223946
335082780484339957711954583092246571786099078
383822644273391553757106540887649473021231157
533482944211035652605376724676507874759043352
212103371943683688353291709453168918442266250
8658836382194377646000106718592465709295906,6
793981002937657883003772968985115860421274050
707946258490137107897735879402078461477528407
917014419131282645454009201265043911194356556
804859002976782405306798948607938220165139491
772181244832765171489970171197466768678129027
664013605467300628414621290211719800812523241
4818929111055147860068703813613600036252]

Page 22 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

The total running time of this cell retrieval operation performed
using our PCR protocol is about 1.14 seconds.

Experiment 2 (Private OLAP operations) Given the encrypted data
warehouse, the client performs a slice operation implemented by
the following SQL query:

CREATE VIEW Catalogues AS
SELECT ShipTo, Product, Time, units, sales, cost
FROM units_fact_table
WHERE Channel=“CAT"

where “CAT" stands for Catalogues. The resulting Catalogues view
is a 3-dimension subcube, from which the client further performs a
slice operation implemented by the following SQL query,

CREATE VIEW Mouse AS
SELECT ShipTo, Time, units, sales, cost
FROM Catalogues
WHERE Product=“MOUSE”

The resulting Mouse view is a 2-dimension subcube, from which
the client further performs a roll-up operation along the ShipTo
dimension from customer to all (i.e., aggregating three measures
units, sales and cost for all customers), and then a roll-up opera-
tion along the time dimension from month to year (i.e., aggregating
three measures units, sales and cost from months into years), with
Algorithm 5 implemented by the C programming language.

At last, the client obtains a subcube with only the Time dimen-
sion Time, which takes values in the set {0, 1, · · · , 9}.

The total running time for the above sequential OLAP operations
is less than 3 minutes.

Remark We can speed up our roll-up operation by parallel compu-
tation. For example, if we allocate the task for the roll-up operation
to multiple computers and run 5 computers in parallel, the total run-
ning time for the above experiment can be reduced from 3 minutes
to 36 seconds.

Experiment 3 (Private Regression Analysis) The sequence of the
OLAP operations in Experiment 2 restricts and shapes the data
warehouse so that it is ready for a regression analysis, by which the
client would like to investigate the relationship between the number
of sold mouse units and the time.

Consider the 1-dimension subcube that resulted from the sequen-
tial OLAP operations in Experiment 2, and assume that the units
measure takes values E(Y1), E(Y2), · · · , E(Yn) in years X1, X2,
· · · , Xn, respectively.

A simple regression analysis is to determine b0 and b1 in the
linear equation Yi = b0 + b1Xi, where the formulas for the least
squares estimates are

b1 =

∑n
i=1(Xi −X)(Yi − Y)
∑n

i=1(Xi −X)2

b0 = Y − b1X

where X =
∑n

i=1
Xi

n
and Y =

∑n
i=1

Yi

n
.

Given X1, X2, · · · , Xn and E(Y1), E(Y2), · · · , E(Yn), to com-
pute b0, b1, the client gets

∏n
i=1 E(Yi) = E(

∑n
i=1 Yi) decrypted

by our PCR protocol and then computes X and Y . Next, let [X], [Y]
be the round results of X,Y (note that the number of sold units is
positive integer), and let

Z =

n∏

i=1

(E(Yi)/E([Y]))Xi−[X].

Based on the homomorphic property of the BGN cryptosystem, we
have that

Z =

n∏

i=1

(E(Yi − [Y])Xi−[X]

=

n∏

i=1

E((Xi − [X])(Yi − [Y]))

= E(

n∑

i=1

(Xi − [X])(Yi − [Y]))

= E(b1

n∑

i=1

(Xi − [X])2)

Then the client gets Z decrypted by our PCR protocol and then
computes b1 = Decrypt(Z, SK)/

∑n
i=1(Xi − [X])2 and b0 =

Y − b1X .
By the above private regression analysis, we obtain the linear

equation

Y = 9407.33− 658.08X.

This result is very close to the actual linear equation Y = 9407.67
−658.08X obtained by performing the regression analysis on the
plain data warehouse. In addition, our private regression analysis
needs two decryptions only.

Remark. The difference between two linear equations is due to the
round operation.

Experiment 4 (Private Variance Analysis) Consider the 1-dimension
subcube that resulted from the sequential OLAP operations in Ex-
periment 2, i.e., X1, X2, · · · , Xn (years) and E(Y1), E(Y2), · · · ,
E(Yn) (encrypted units), and suppose that the client would like to
compute the variance for units measure in private.

The variance v2 can be computed as follows:

v2 =

∑n
i=1(Yi − Y)2

n

=

∑n
i=1(nYi − nY)2

n3

=

∑n
i=1(nYi −

∑n
j=1 Yj)

2

n3

From E(Y1), E(Y2), · · · , E(Yn), the client can obtain E(nYi−∑n
j=1 Yj) = E(Yi)

n/
∏n

j=1 E(Yj). Let

Z = e(E(nYi −
n∑

j=1

Yj), E(nYi −
n∑

j=1

Yj)),

where e denotes the pairing operation (please refer to Appendix).
Based on the homomorphic property of the BGN cryptosystem, we
have

Z =

n∏

i=1

e(E(nYi −
n∑

j=1

Yj), E(nYi −
n∑

j=1

Yj))

=

n∏

i=1

E((nYi −
n∑

j=1

Yj)
2)

= E(
n∑

i=1

(nYi −
n∑

j=1

Yj)
2)

where E denotes the BGN encryption over G1 (please refer to Ap-
pendix).

Page 23 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Next, the client gets Z decrypted by our PCR protocol and com-
putes v2 = Decrypt(Z, SK)/n3.

By the above private variance computation, the client obtains the
variance v2 = 3212337.56 for units measure with only one decryp-
tion. This result is the same as the actual variance by performing
the variance analysis on the plain data warehouse.

Remark. If our underlying encryption scheme were the ElGamal
scheme [11] or Paillier scheme [30] instead of the BGN scheme [4],
the private variance analysis in Experiment 4 would have needed 9
decryptions instead of 1 decryption.

6. CONCLUSION
In this paper, we have presented a solution for private data ware-

house queries. Our solution allows the client to perform OLAP
operations, such as roll-up, drill-down, dice, slice, pivot, and then
retrieve a cell from the resulted data warehouse without revealing to
the server what operations are performed and what cell is retrieved.
In particular, our solution allows the client to perform some statisti-
cal analysis on the data warehouse with the lowest cost if the server
charges the client per query.

Our solution provides not only the client’s security but also the
server’s security. Performance analysis and experiments have shown
that our solution is practical for private data warehouse queries.

So far, our solution only allows the client to privately perform
statistical analyses which can be algebraically expressed as a poly-
nomial of degree at most 2 on the data warehouse, such as regres-
sion and variance analysis. Our future work will extend our so-
lution so that the client can privately perform statistical analyses
which cannot be algebraically expressed as a polynomial, such as
min, max and count.

7. REFERENCES

[1] A. Ambainis. Upper bound on the communication complexity
of private information retrieval. In Proc. 24th International

Colloquium on Automata, Languages and Programming, pp.
401-407, 1997.

[2] D. Asonov. Private information retrieval - an overview and
current trends. In Proc. ECDPvA Workshop, Informatik’01,
2001.

[3] A. Beimel and Y. Ishai. Information-theoretic private
information retrieval: a unified construction. In Proc. 28th

International Colloquium on Automata, Languages and

Programming, pp. 912-926, 2001.
[4] D. Boneh, E. Goh and K. Nissim. Evaluating 2-DNF formulas

on ciphertexts. In Proc. TCC’05, pp. 325-341, 2005.
[5] C. Cachin, S. Micali and M. Stadler. Computational private

information retrieval with polylogarithm communication. In
Proc. EUROCRYPT’99, pp. 402-414, 1999.

[6] Y. Chang. Single database private information retrieval with
logarithmic communication. In Proc. 9th Australasian

Conference on Information Security and Privacy, pp. 50-61,
2004.

[7] B. Chor and N. Gilboa. Computational private information
retrieval. In Proc. 29th ACM Symposium on the Theory of

Computing, pp. 304-313,1997.
[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private

information retrieval. In Proc. 36th IEEE Symposium on

Foundations of Computer Science, pp.41-51, 1995.
[9] I. Damgard and M. Jurik. A Generalisation, a simplification

and some applications of Paillier’s probabilistic public-key
system. In Proc. PKC’01, pages 119-136, 2001.

[10] M. Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. In Proc.

EUROCRYPT’10, pages 24-43, 2010.
[11] T. ElGamal. A public-key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Transactions on

Information Theory, 31 (4): 469ÃŘ472, 1985.
[12] C. Gentry and Z. Ramzan. Single-database private

information retrieval with constant communication rate. In
Proc. 31th International Colloquium on Automata, Languages

and Programming, pp. 803-815, 2005.
[13] C. Gentry. Fully homomorphic encryption using ideal

lattices. In Proc. STOC’09, pages 169-178, 2009.
[14] Y. Gentner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting

data privacy in private information retrieval schemes. In Proc.

30th ACM Symposium on Theory of Computing, pp. 151-160,
1998.

[15] S. Goldwasser S. and Micali (1984) Probabilistic encryption,
Journal of Computer and System Science, 28(2), pp. 270-299.

[16] J. Han and M. Kamber, Data Mining: Concepts and

Techniques. 2nd Edition. Morgan Kaufmann Publishers, 2006.
[17] W. H. Inmon, Building the Data Warehouse. John Wiley &

Sons, 1996.
[18] Y. Ishai and E. Kushilevitz. Improved upper bounds on

information theoretic private information retrieval. In Proc. 31st

ACM Symposium on the Theory of Computing, pp. 79-88,
1999.

[19] T. Itoh. Efficient private information retrieval. IEICE Trans.

Fund. Electron. Communi. Comput. Sci. E. 82-A(1), pp. 11-20,
1999.

[20] T. Itoh. On lower bounds for the communication complexity
of private information retrieval. IEICE Trans. Fund. Electron.

Communi. Comput. Sci. E. 84-A(1), pp. 157-164, 2001.
[21] E. Kushilevitz and R. Ostrovsky. Replication is not needed:

single database, computational private information retrieval. In
Proc. 38th IEEE Symposium on Foundations of Computer

Science, pp. 364-373, 1997.
[22] E. Kushilevitz and R. Ostrovsky. One-way trapdoor

permutations are sufficient for non-trivial single-server private
information retrieval. In Proc. EUROCRYPT’00, pp. 104-121,
2000.

[23] H. Lipmaa. An oblivious transfer protocol with log-squared
communication. In Proc. 8th International Conference on

Information Security, pp. 314-328, 2005.
[24] H. Lipmaa. First CPIR protocol with data-dependent

computation. In Proc. ICISC’09, pages 193-210, 2009.
[25] A. Menezes, P. van Oorchot and S. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1997.
[26] S. K. Mishra and P. Sarkar. Symmetrically private

information retrieval. In Proc. INDOCRYPT’00, pp. 225-236,
2000.

[27] M. Naor and B. Pinkas. Oblivious transfer and polynomial
evaluation. In Proc. 31th ACM Symposium on Theory of

Computing, pp. 245-254, 1999.
[28] T. Okamoto and S. Uchiyama. A new public-key

cryptosystem as secure as factoring. In Proc. EUROCRYPT’98,
1998.

[29] R. Ostovsky and W. E. Skeith III. A survey of
single-database PIR: techniques and applications. In Proc.

PKC’07, pages 393-411, 2007.
[30] P. Paillier. Public key cryptosystems based on composite

Page 24 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

degree residue classes. In Proc. EUROCRYPT’99, pages
223-238, 1999.

[31] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF(p) and its cryptographic
significance. IEEE Transactions on Information Theory, 24(1):
106-110, 1978.

[32] R. Rivest, A. Shamir and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21 (2): 120ÃŘ126, 1978.

[33] N. Smart and F. Vercauteren. Fully homomorphic encryption
with relatively small key and ciphertext sizes. In Proc. PKC’10,
pages 420-443, 2010.

APPENDIX

A. BONEH-GOH-NISSIM CRYPTOSYSTEM
We introduce the Boneh-Goh-Nissim cryptosystem [4] in this

section.

A.1 Bilinear Group
We use the following notations:

1. G and G1 are two (multiplicative) cyclic groups of finite order
n.

2. g is a generator of G.

3. e is a bilinear map e : G × G → G1. In other words, for all
u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. We
also require that e(g, g) is a generator of G1.

We sat that G is a bilinear group if a group G1 and a bilinear map
as above exist.

A.2 Boneh-Goh-Nissim Encryption Scheme
Boneh-Goh-Nissim encryption scheme, BGN scheme by brevity,

resembles the Paillier [30] and the Okamoto-Uchiyama [28] en-
cryption schemes. The three algorithms making up the scheme are
described as follows:

A.2.1 Key Generation KeyGen(k)

Given a secure parameter k ∈ Z
+, run KeyGen(k) to obtain

a tuple (q1, q2,G,G1, e). Let N = q1q2. Pick up two random
generators g, u from G and set h = uq2 . Then h is a random
generator of the subgroup of G of order q1. The public key is
PK = {N,G,G1, e, g, h}. The private key SK = q1.

A.2.2 Encryption Encrypt(m,PK)

Assume the message space consists of integers in the set {0, 1, · · · ,
T} with T < q2. We encrypt bits in which case T = 1. To en-
crypt a message m using the public key PK, pick a random r from
{1, 2, · · · , N} and compute

C = gmhr ∈ G (1)

Output C as the ciphertext.

A.2.3 Decryption Decrypt(C, SK)

To decrypt a ciphertext C using the private key SK = q1, ob-
serve that

Cq1 = (gmhr)q1 = (gq1)m

To recover the message m, it suffices to compute the discrete log-
arithm of Cq1 to the base gq1 . Since 0 ≤ m ≤ T , this takes
expected time O(

√
T) using Polland’s lambda method [25].

A.3 Homomorphic Properties
The BGN scheme is clearly additively homomorphic. Let PK =

{N,G,G1, e, g, h} be a public key. Given two ciphertexts C1, C2 ∈
G of messages m1,m2 ∈ {0, 1, · · · , T} respectively, anyone can
create a uniformly distributed encryption of m1 +m2(mod N) by
computing the product C = C1C2h

r for a random r in {1, 2, · · · ,
N − 1}.

More importantly, anyone can multiply two encrypted messages
once using the bilinear map. Let g1 = e(g, g) and h1 = e(g, h),
then g1 is of order N and h1 is of order q1. There is some (un-
known) α ∈ Z such that h = gαq2 . Suppose that we are given two
ciphertexts C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G. To build
an encryption of the product m1m2(mod N), (1) pick a random
r ∈ ZN , and (2) let C = e(C1, C2)h

r
1 ∈ G1. Then

C = e(C1, C2)h
r
1

= e(gm1hr1 , gm2hr2)hr
1

= e(gm1+αq2r1 , gm2+αq2r2)hr
1

= e(g, g)(m1+αq2r1)(m2+αq2r2)hr
1

= e(g, g)m1m2+αq2(m1r2+m2r1+αq2r1r2)hr
1

= e(g, g)m1m2hr+m1r2+m2r1+αq2r1r2
1

where r+m1r2+m2r1+αq2r1r2 is distributed uniformly in ZN .
Thus C is a uniformly distributed encryption of m1m2(mod N),
but in G1 rather than G. We note that the BGN scheme is still
additively homomorphic in G1.

Page 25 of 25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

