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Abstract

We study the correct estimation of the true variance of the predic-
tor in stochastic Kriging (SK). First, we obtain macroreplications for
a SK metamodel that approximates a single-server simulation model;
these macroreplications give independently and identically distributed
predictions. This simulation may use common random numbers (CRN).
From these macroreplications we conclude that the usual plug-in estima-
tor of the variance significantly underestimates the true variance. Be-
cause macroreplications of practical simulation models are computation-
ally expensive, we next formulate two bootstrap methods that use a single
macroreplication: (i) a distribution-free method that resamples simula-
tion replications (within the single macroreplication), and (ii) a paramet-
ric method that assumes a Gaussian distribution for the SK predictor,
and estimates the (hyper)parameters of that distribution from the single
macroreplication. Altogether we recommend distribution-free bootstrap-
ping for the estimation of the SK predictor variance in practical simulation
experiments.

Keywords: Kriging, Gaussian process, predictor variance, plug-in, boot-
strap

JEL: C0, C1, C9, C15, C44

1 Introduction

In practice, the final goal of simulation is often sensitivity analysis and optimiza-
tion of the simulated real system. For this goal, the simulation analysts often
use a metamodel—also called an emulator or a surrogate—which is a model
of the underlying simulation model; i.e., it is an explicit simple approximation
of the input/output (I/O) function that is implicitly defined by the simulation
model. There are many types of metamodels; see Kleijnen (2015, p. 10). We,
however, focus on Kriging—also called Gaussian process (GP)—metamodels.
These metamodels have already acquired a track record in deterministic simu-
lation, and are becoming popular in random (stochastic) simulation—including
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discrete-event simulation—which transforms a stream of pseudo-random num-
bers (PRN) into an output. Kriging in stochastic simulation is called stochastic
Kriging (SK); see the classic article Ankenman et al. (2010), recent articles
such as Barton et al. (2014), Bekki et al. (2014), Chen and Kim (2014), Plumlee
and Tuo (2014), Qu and Fu (2014), and Sun et al. (2014), and the many more
references in Kleijnen (2015, pp. 206–211).

Common random numbers (CRN) are a popular variance-reduction tech-
nique that may improve the statistical analysis of the simulation I/O data in
sensitivity analysis and optimization; see Law (2015, pp. 586–604). However,
CRN also complicate this analysis when using SK; see Chen et al. (2012).

In practice, the (hyper)parameters of the GP are unknown, so they are es-
timated. We focus on the problem of correctly estimating the true variance of
the predictor that uses SK with estimated Kriging parameters. This problem
has already been investigated for Kriging in deterministic simulation; see the
recent survey in Thiart et al. (2014). In our paper we investigate the following
three methods for estimating the variance of the SK predictor: (i) macroreplica-
tions, (ii) distribution-free bootstrapping (DB), and (iii) parametric bootstrap-
ping (PB). We illustrate and evaluate these three methods through experiments
with the a waiting-time simulation model; namely, a single-server discrete-event
simulation model with independent exponential interarrival and service times,
known as the M/M/1 model. For details on the simulation of this model we
refer to Law (2015, pp. 73–77, 102–108).

We organize and summarize the rest of this paper as follows. In Section 2 we
summarize SK. In Section 3 we first describe an M/M/1 simulation experiment,
and then explain how macroreplications provide an unbiased estimator of the
predictor variance; we find that this estimator is significantly higher than the
plug-in estimator—without or with CRN. In Section 4 we detail DB, and find
that DB is a relatively quick and easy method for estimating the true variance
when CRN are applied. In Section 5 we detail PB, and find that PB gives
a higher estimate than DB does. In Section 6 we summarize our conclusions;
namely, DB gives a fast and correct estimator of the predictor variance in prac-
tical simulation experiments.

2 Stochastic Kriging

SK assumes that the simulation output (say) w is stochastic. Notice that unlike
most authors on SK, we do distinguish between w (simulation output) and y
(metamodel output). Furthermore, we use Greek letters to denote unknown
parameters, and bold upper-case letters for matrixes and bold lower-case letters
for vectors. The simplest type of SK assumes the following metamodel:

yr(x) = µ+M(x) + εr(x) with x ∈ Rk and r = 1, . . . ,mi, (1)

where we use the following symbols. We let µ denote the constant mean E[y(x)]
where x is an input combinations or ‘point’ in the given k-dimensional exper-
imental area Rk. The extrinsic noise M(x) is the additive noise that forms
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a Gaussian (multivariate normal) stationary process with zero mean and co-
variance matrix ΣM (by definition, a stationary process has a constant mean, a
constant variance, and covariances that depend only on the distance between the
points x and x′). Because stochastic simulation has noisy outputs, we should
obtain replications; i.e., identically independently distributed (IID) simulation
outputs. The intrinsic noise εr(x) has a Gaussian distribution with zero mean
and variance Var[ε(x)] and is independent of the extrinsic noise M(x). We let
mi denote the number of replications if x = xi so the subscript r runs from
1 to mi. We let Σε denote the covariance matrix of ε. So, if the simulation
does not use CRN, then Σε is diagonal with the elements Var[ε(x)] on the main
diagonal. If the simulation does use CRN, then Σε is not diagonal; obviously,
Σε should still be symmetric and positive definite.

Note: The SK model defined in Eq. (1)—but without intrinsic noise—is
known as ordinary Kriging (OK). A more general model replaces the constant
µ in Eq. (1) by a prespecified low-order polynomial in x. General wisdom,
however, claims that in practice the latter model usually does not give better
predictions; seeTajbakhsh et al. (2014). So we focus on estimating the predictor
variance in SK with a constant mean µ.

Averaging the mi replications gives the average metamodel output y(xi) and
average intrinsic noise ε(xi), so Eq. (1) is replaced by

y(xi) = µ+M(xi) + ε(xi) with xi ∈ Rk and i = 1, . . . , n. (2)

where n denotes the number of so-called old simulated points. If we do not use
CRN, then Σε is a diagonal matrix with main-diagonal elements Var[ε(xi)]/mi.
If we do use CRN and mi is a constant m, then Σε = Σε/m. Notice that xi =
(xi;j) with j = 1, . . . , k and k defined below Eq. (1), so X′ = (x1, . . . ,xn) is a
k × n matrix; X is the so-called design matrix.

To estimate Var[ε(xi)], SK uses the following classic estimator that assumes
mi > 1:

s2i =

∑mi

r=1(wi;r − wi)2

mi − 1
with wi =

∑mi

r=1 wi;r
mi

. (3)

Note: Goldberg et al. (1998) uses log s2i , which may be normally (instead of
χ2) distributed; also see Kamiński (2015).

Assuming CRN with a constant number of replications m, we may estimate
Σε analogously to Eq. (3):

si;i′ =

∑m
r=1(wi;r − wi)(wi′;r − wi′)

(m− 1)
, (4)

where i = i′ gives si;i′ = s2i . Dykstra (1970) shows that the estimated covariance

matrix Σ̂ε = (si;i′) is singular if m ≤ n.
We define w = (w1, . . . , wn)′. SK uses a linear predictor ŷ(x0) for a new

point x0:

ŷ(x0) =

n∑
i=1

λiwi = λ′w (5)
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with λ = (λ1, . . . , λn)′.To determine the optimal weights λo, SK uses the best
linear unbiased predictor (BLUP) criterion where ‘best’ means that SK mini-
mizes the mean squared predictor error (MSPE) of the predictor so

minλMSPE[ŷ(x0)] = minλE[ŷ(x0)− y(x0)]2, (6)

and unbiased means
E[ŷ(x0)] = E[y(x0)]. (7)

It can be proven that the solution of the constrained minimization problem de-
fined by Eq. (6) and Eq. (7) implies that λ must satisfy the following condition
with the n-dimensional vector 1 = (1, . . . , 1)′ :

n∑
i=1

λi = 1′λ =1. (8)

Furthermore, it can be proven that

λ′o=[σ(x0)+1
1− 1′(ΣM + Σε)

−1σ(x0)

1′(ΣM + Σε)−11
]′(ΣM + Σε)

−1 (9)

where σ(x0) (cov(yi, y0)) denotes the n-dimensional vector with the covariances
between the metamodel’s n old outputs yi and the metamodel’s new output y0.
In general, the element i in λo decreases as the distance between the new input
combination x0 and the old combination xi increases.

Altogether, Eqs. (2), (5), and (9) imply that the optimal predictor is

ŷ(x0) = µ+ σ(x0)′(ΣM + Σε)
−1(w−µ1). (10)

If τ2 denotes the variance of y, then the MSPE of this ŷ(x0) can be proven to
be

MSPE[ŷ(x0)] = τ2 − σ(x0)′(ΣM + Σε)
−1σ(x0)

+
[1− 1′(ΣM + Σε)

−1σ(x0)]2

1′(ΣM + Σε)−11
. (11)

Because ŷ(x0) is unbiased, this MSPE equals the predictor variance—which
is often called the Kriging variance. We denote this variance at x by σ2(x).
Obviously, Kriging gives a high MSPE in extrapolation—compared with inter-
polation.

We have already mentioned that ΣM (x) in Eq. (2) must be symmetric and
positive definite. Now we add that this requirement may be satisfied by many
specifications of ΣM (x). We, however, focus on the specification that is most
popular in SK; namely, the Gaussian correlation function

ρ(θ,h) =

k∏
j=1

exp
(
−θjh2j

)
= exp(−

k∑
j=1

θjh
2
j ) (12)
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where θ = (θ1, . . . , θk)′ with θj ≥ 0, h = (h1, . . . , hk)′ and hj = |xg;j − xg′;j |
with j = 1, . . . , k and g, g′ = 0, 1, . . . , n (the subscript 0 refers to the new point).

In practice, we must estimate the Kriging parameters µ, ΣM (τ2, θ), and Σε.
For this estimation we usually select the maximum likelihood (ML) criterion,
which gives the ML estimators (MLEs). We denote these MLEs by a ‘hat’; e.g.,

µ̂. We denote the MLEs of all the SK parameters by the vector ψ̂; this notation
implies that the elements of Σ̂ε are arranged into a vector. Plugging ψ̂ into Eq.
(10), we obtain

ŷ(x0, ψ̂) = µ̂+ σ̂(x0)′(Σ̂M + Σ̂ε)
−1(w − µ̂1). (13)

Obviously, this predictor is nonlinear. However, most publications on Kriging—
including SK—ignore possible bias of this predictor and compute the estimated
MSPE—denoted by EMSPE—by simply plugging ψ̂ into Eq. (11):

EMSPE[ŷ(x0, ψ̂)] = τ̂2 − σ̂(x0)′(Σ̂M + Σ̂ε)
−1σ̂(x0)

+
[1− 1′(Σ̂M + Σ̂ε)

−1σ̂(x0)]2

1′(Σ̂M + Σ̂ε)−11
; (14)

also seeAnkenman et al. (2010, Eq. 25). For brevity’s sake we denote EMSPE[ŷ(x0

, ψ̂)] by s2P (x0) where the subscript P stands for plug-in.

We shall discuss various estimators of the true MSPE of ŷ(x0, ψ̂), in the next

sections. We conjecture that ignoring the randomness of ψ̂ tends to underes-
timate σ2(x0). Notice that Yin et al. (2009) also studies the effects that the
estimation of the Kriging parameters has on the predictor variance.

There is much software for Kriging; see Kleijnen (2015). In our experiments
we use the free R package DiceKriging—which is well documented in Roustant
et al. (2012). However, this software does not accept CRN, so for our experiment
with CRN we use the SK algorithm in Ankenman et al. (2010) for the plug-in

Kriging predictor ŷ(x0, ψ̂).
Note: We adhere to a frequentist view, but there are many publications that

interpret Kriging models in a Bayesian way; see Yuan and Ng (2014). Our
major problem with the Bayesian approach to Kriging is that we find it hard to
come up with prior distributions for ψ, because we have little intuition about
this ψ.

3 Macroreplications for M/M/1 simulation

The M/M/1 simulation model is a basic building block of many practical sim-
ulation models. One example of such a practical model is a model with the ex-
ponential service times replaced by a lognormal distribution so we get a M/G/1
model where the G stands for ‘general’. Furthermore, we might experiment
with the priority rule, the waiting-room capacity, and the balking probability.
Another example is a series of single-server models such that the customers of
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a preceding server move to the next server. Instead of a single server we might
simulate multiple parallel servers, etc. Altogether, the M/M/1 model is the
building block of supply chain models. The M/M/1 model looks misleadingly
simple; actually, its I/O function is highly nonlinear for the mean steady-state
waiting time—and even more nonlinear for the variance of this waiting time.

As ‘the’ output of the M/M/1 simulation model, we select an output that
has a known analytical solution so we can easily verify the correctness of our
three methods. We therefore select the expected steady-state waiting time (say)
E(w). Furthermore, we experiment only with the traffic rate x. We simulate n
= 11 traffic rates xi (i = 1, . . . , 11). For the experimental area we select 0.10 ≤
x ≤ 0.90. Furthermore, we select xi at fixed subintervals in this interval such
that these subintervals have the constant length (0.90 − 0.10)/10 = 0.08; so xi is
0.10, 0.18, ..., 0.82, and 0.90. Notice that Kriging software normalizes the input
values such that 0 ≤ xi ≤ 1; obviously, we make the normalized and the original
values coincide. We obtain mi = m = 20 replications—each with a runlength of
1000 customers—not starting in the empty state with zero customers waiting,
but starting with the number of waiting customers equal to the steady-state
mean. First we simulate the M/M/1 system without CRN; next we simulate
it with CRN. We fit a SK metamodel to the resulting simulation I/O data
(xi, wi;j) with i = 1, . . . , 11, and j = 1, . . . , 20. Because we experiment only
with the traffic rate x, the number of inputs is k = 1 and the k-dimensional
vector θ reduces to the single scalar θ1. Instead of a single new point x0, we
select T new traffic rates xt (t = 1, . . . , T ). Actually, we select T = 3 new
non-extrapolating values xt; namely, 0.20, 0.46, and 0.80.

By definition, macroreplications imply that the whole experiment with the
M/M/1 simulation model with its mi replications is repeated (say) M times, so

these macroreplications provide M IID predictors ŷ(x0, ψ̂r) with r = 1, . . . ,M ;
we use the subscript (local variable) r, which we also use for the replications;
see Eq. (1). In each macroreplication we fit a SK metamodel to the I/O data

of the M/M/1 simulation experiment. To generate IID predictors ŷ(x0, ψ̂r), the
macroreplications use nonoverlapping PRN streams.

The M macroreplications give the unbiased estimator s2M(xt) (where the sub-
script M—not to be confused with M—stands for macroreplications) of σ2(xt):

s2M(xt) =

∑M
r=1[ŷ(xt, ψ̂r)− ŷ(xt, ψ̂)]2

M − 1
with ŷ(xt, ψ̂) =

∑M
r=1 ŷ(xt, ψ̂r)

M
. (15)

Assuming that ŷ(xt, ψ̂r) is normally distributed, we get a χ2
M−1-distribution

for (M − 1)s2M(xt)/σ
2(xt). Let χ2

M−1;α denote the a-quantile of the χ2
M−1-

distribution, so P [χ2
M−1 ≤ χ2

M−1;α] = α. This gives a two-sided (1− α) asym-

metric confidence interval (CI) for σ2(xt):

P [
(M − 1)s2M(xt)

χ2
M−1;1−α/2

≤ σ2(xt) ≤
(M − 1)s2MC(xt)

χ2
M−1;α/2

] = 1− α. (16)

Macroreplication r also gives s2P(xt)r, which denotes the plug-in (symbol P)
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estimator of the predictor variance in macroreplication r; see Eq. (14). So an
unbiased estimator of E[s2P(xt)] is

s2P(xt) =

∑M
r=1 s

2
P(xt)r

M
.

The standard error (SE) of this s2P(xt) is

SE[s2P(xt)] =

√∑M
r=1[s2P(xt)r − s2P(xt)]2

(M − 1)M
.

Together, these last two equations give a two-sided symmetric (1 − α) CI for
E[s2P(xt)]:

P [E[s2P(xt)] ∈ s2P(xt)∓ tM−1;α/2SE[s2P(xt)] = 1− α (17)

where we assume that the t-statistic is insensitive to the nonnormality of s2P(xt).
Because M = 50 we replace tM−1;α by zα.

Eqs. (16) and (17) give the following results.

• If t = 1 so xt = 0.20, then the unbiased estimator s2M(xt) has the following
95% CI: [0.1470, 0.3271]×1.0E-05, whereas the CI for the biased plug-in
estimator s2P(xt) is 2.5843E-06 ± 1.3150E-13; these two CIs imply that
s2P(xt) is significantly lower.

• If t = 2 so xt = 0.46, then s2M(xt) has the CI [0.0827, 0.1840]×1.0E-03,
whereas s2P(xt) has 8.6835E-05 ± 2.1809E-11. So s2P(xt) is again signifi-
cantly lower. Notice that a higher traffic rate x gives higher intrinsic noise,
so the CI for s2M(xt) is wider.

• If t = 3 so xt = 0.80, then s2M(xt) has the CI [0.0466, 0.1038], whereas
s2P(xt) has 0.0208 ± 2.2694E-06 so s2P(xt) is again significantly lower.

From these three results we conclude that the plug-in estimator s2P(xt) sig-
nificantly underestimates the true variance.

Note: Whereas we fix the 11 ‘old’ traffic rates xi at fixed values in all MC
macroreplications, we might use Latin hypercube sampling (LHS) to sample 11
traffic rates xi—within the ten subintervals with length 0.08—such that these
traffic rates are not constant across the macroreplications in the MC experiment.
This gives the following results, which suggest that this LHS increases s2M (xt)
compared with fixed xi:

1. s2P (x1): 6.2794E-06 ± 4.6522E-12 and s2M(x1): 1.0E-04×[0.0657, 0.1462]

2. s2P (x2): 9.2900E-05 ± 4.5362E-11 and s2M(x2): 1.0E-03×[0.1302, 0.2897]

3. s2P (x3): 0.0185 ± 1.4459E-06 and s2M(x3): [0.0320, 0.0711].

7



Next we repeat the experiment with CRN when simulating the n traffic
rates xi. Obviously, CRN create correlations between wi;j and wi′;j with i,
i′ = 1, . . . , n. These correlations are estimated through si;i′ defined in in Eq.

(4). These si;i′ define Σ̂ε and affect the SK predictor ŷr(xt) defined in Eq. (13).
Substituting this ŷr(xt) into Eq. (15) gives the estimator (say) s2M(xt), which
we abbreviate to s2CRN(xt). We test whether the estimated predictor variances
with and without CRN differ significantly. We ensure that the PRN streams in
this experiment do not overlap with the PRN streams in the preceding experi-
ment without CRN, so that we may apply an F -statistic (this statistic assumes
that its numerator and denominator are independent). More precisely, we use
FM−1,M−1(xt) = s2M(xt)/s

2
CRN(xt), which gives a two-sided nonsymmetric CI;

e.g., M = 50 and α = 0.05 give a CI for FM−1,M−1 from 0.5675 to 1.7622. This
gives the following results.

• If t = 1, then FM−1,M−1(xt) = s2M(xt)/s
2
CRN(xt) = 0.4764 so the estimated

predictor variance without CRN is significantly lower. Our explanation is
that CRN requires the estimation of more parameters; namely, si;i′ with
i 6= i′ (see Eq. (4)).

• If t = 2, then FM−1,M−1(xt) = 0.3404 so the estimated variance without
CRN is again significantly lower.

• If t = 3, then FM−1,M−1(xt) = 0.4602 so the estimated variance without
CRN is still significantly lower.

From these three results we conclude that CRN increases the predictor vari-
ance in SK; this conclusion agrees with Chen et al. (2012). (Nevertheless, CRN
may decrease the variance of the gradient, but we do not investigate gradients.)

4 Distribution-free bootstrapping for M/M/1 sim-
ulation

Using M macroreplications—discussed in the preceding section—is expensive in
practical simulations that require much computer time for the total simulation
experiment with its

∑n
i=1mi simulation runs. We may therefore replace the

method using macroreplications by distribution-free bootstrapping (DB)—which
resamples the mi replications in a single macroreplication, as we explain next.
(if there is only a single macroreplication, then the whole concept of macrorepli-
cations makes little sense; likewise, if there is a single replication so mi = 1,
then we may say that there are no replications—as is the case in deterministic
simulation).

Like in our preceding experiments with macroreplications, we first simulate
without CRN. Again we select E(w) as the performance measure, and simulate
the same n = 11 traffic rates xi (i = 1, . . . , n), and obtain mi = m = 20 replica-
tions per simulated traffic rate. Now, however, we apply DB; i.e., per simulated
traffic rate xi we resample with replacement wi;j (j = 1, . . . , 20), which gives
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the bootstrapped output w∗i;j . We use these bootstrapped w∗i;r to compute w∗i
and s2∗i , which are the classic estimators of the mean and the variance; see Eq.
(3) with w replaced by w∗. We use these bootstrap means w∗i to estimate the
Kriging parameters µ and ΣM , and we use the bootstrap variances s2∗i to esti-
mate the diagonal matrix Σε. Next we compute the bootstrapped SK predictor
ŷ∗(xt) for the same new xt values as in the macroreplications; namely, the values
0.20, 0.46, and 0.80. We repeat this bootstrapping B times; we select B = 50
(so B = M). This gives ŷ∗b (xt) with b = 1, . . . , B. This gives the following DB
estimator of σ2(xt):

s2∗DB(xt) =

∑B
b=1[ŷ∗b (xt)− ŷ

∗
(xt)]

2

B − 1
with ŷ

∗
(xt) =

∑B
b=1 ŷ

∗
b (xt)

B
, (18)

which is the analogue of Eq. (15).
Now we test whether there is a significant difference between s2∗DB(xt) and

s2M(xt) (the DB and the macroreplications estimates without CRN).

• If t = 1, then FM−1,B−1(xt) = s2M(xt)/s
2∗
DB(xt) = 0.2499, which is signifi-

cantly low.

• If t = 2, then FM−1,B−1(xt) = 0.3566, which is also significantly low.

• If t = 3, then FM−1,B−1(xt) = 1.6748, which is not significant; an expla-
nation may be that the high traffic rate x3 creates high intrinsic noise so
the resulting F -statistic becomes nonsignificant.

Altogether, in two of the three new points, DB gives significantly higher
estimated variances than MC does, so DB tends to give a conservative estimator.

Next we repeat the experiment with CRN. In the preceding section we have
already observed that CRN create correlation between wi;j and wi′;j with i,
i′ = 1, . . . , n and j = 1, . . . ,m. Because of these correlations we now resample
with replacement the vectors wj where wj denotes the n-dimensional vector
with the simulation outputs that use the CRN of replication j. This resampling
gives w∗j . We use these w∗j to compute the bootstrap averages w∗i and the

bootstrap covariances s∗i;i′ where i = i′ gives s∗i;i = s2∗i ; see si;i′ defined in Eq.
(4). We use these w∗i to estimate the Kriging parameters µ and ΣM , and we

use s2∗i;i′ to estimate Σε; the resulting estimated bootstrap covariance matrix Σ̂∗ε
is not singular as m = 20 > n = 11. We test whether s2∗DB(xt) (DB with CRN)
and s2CRN(xt) (macroreplications with CRN) differ significantly. We obtain the
following results.

• If t = 1, then FM−1,B−1(xt) = s2M(xt)/s
2∗
DB(xt) = 0.6806, which is not

significant.

• If t = 2, then FM−1,B−1(xt) = 0.5890, which is again not significant.

• If t = 3, then FM−1,B−1(t) = 1. 1900, which is also nonsignificant.
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Altogether, all three new points gives nonsignificant differences between
macroreplications and DB when CRN are applied. Actually, CRN are the de-
fault option in many discrete-event simulation software packages (e.g., Arena).
So we conclude that DB is a useful method for estimating the variance of the
SK predictor when CRN are applied.

Finally, we test the difference between s2∗DB(xt) and s2∗CRN(xt), which denote
DB without and with CRN, respectively. For this test we use FB−1,B−1(xt) =
s2∗DB(xt)/s

2∗
CRN(xt). We obtain the following results.

• If t = 1, then FB−1,B−1(xt) = 1.2975 so the bootstrap SK predictor vari-
ance with and without CRN do not differ significantly (unlike we found
in our macroreplications).

• If t = 2, then FB−1,B−1(xt) = 0.5623 so the bootstrap variance without
CRN is significantly lower (like in our macroreplications).

• If t = 3, then FB−1,B−1(t) = 0.3270 so the bootstrap variance without
CRN is again significantly lower.

Altogether, we conclude that the variance of the SK predictor with CRN
tends to be higher than without CRN, like Chen et al. (2012) also concluded.

5 Parametric bootstrapping for M/M/1 simula-
tion

Next we replace DB by the following parametric bootstrap (PB). Again we first
simulate the M/M/1 system without CRN, selecting the performance measure
E(w), n = 11 traffic rates xi, and m = 20 replications per simulated traffic rate.
This simulation experiment gives the simulation outputs wi;j with i = 1, . . . , 11
and j = 1, . . . , 20. PB means that we independently sample w∗i;j (the bootstrap

output) m times from the n-variate Normal distribution Nn(µ̂1n, Σ̂M + Σ̂ε)

where µ̂ and Σ̂M are computed through the SK algorithm using wi, and Σ̂ε

denotes the n × n diagonal matrix with the elements s2i . We continue as in

DB; i.e., we use these w∗i;j to compute w∗i and s2∗i , followed by µ̂∗, Σ̂∗M , and

Σ̂∗ε. We use these µ̂∗, Σ̂∗M , and Σ̂∗ε to compute the SK predictor ŷ∗(xt) where t
= 1, 2, 3 gives xt = 0.20, 0.46, 0.80. We repeat this bootstrapping B times.
We compute s2∗PB(xt)—the PB estimator of σ2(xt)—through Eq. (18) where we
replace the subscript DB by PB. First we test whether s2∗PB(xt) and s2∗DB(xt) (DB
estimate without CRN) differ significantly. For this test we use FB−1,B−1(xt)
= s2∗DB(xt)/s

2∗
PB(xt). We obtain the following results.

• If t = 1, then FB−1,B−1(xt) = 6.9489E-06, which is an extremely low
significant value; i.e., PB gives a much higher variance estimate.

• If t = 2, then FB−1,B−1(xt) = 2.5460E-04, which is also extremely low.
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• If t = 3, then FB−1,B−1(xt) = 0.0275, which is significantly low.

So in all three new points, PB gives a much higher bootstrap variance than
DB does. To explain this result, we point out that PB samples from a normal
distribution for ŷ∗(xt) with positive probabilities for values that are either lower
or higher that the values sampled in DB (any normal distribution has tails that
theoretically range from −∞ to ∞).

Next we repeat the whole experiment with CRN ; i.e., we sample wj (j =

1, . . . ,m) from Nn(µ̂1n, Σ̂M + Σ̂ε) where CRN imply that Σ̂ε is not a diagonal
matrix but has the elements si;i′ . This sampling gives the bootstrapped outputs
w∗j , which give the averages w∗i and the estimated covariances s∗i;i′ , etc. We test
whether PB gives estimated predictor variances with CRN that differ signifi-
cantly from the DB estimates with CRN. For this test we use FB−1,B−1(xt) =
s2∗DB(xt)/s

2∗
PB(xt). and obtain the following results.

• If t = 1, then FB−1,B−1(xt) = 1.361E-05, which is an extremely low sig-
nificant value.

• If t = 2, then FB−1,B−1(xt) = 0.0011, which is again extremely low.

• If t = 3, then FB−1,B−1(xt) = 0.2105, which is again significantly low.

So in these three new points, PB again gives a much higher estimated pre-
dictor variances than DB does. (We gave a similar conclusion for simulation
without CRN).

Finally, we test whether PB gives estimates of the predictor variances with
and without CRN that differ significantly. For this test we use FB−1,B−1(xt) =
s2∗PB(xt)/s

2∗
CRN(xt).

• If t = 1, then FB−1,B−1(xt) = 2.5426 so the estimated predictor variance
without CRN is significantly higher.

• If t = 2, then FB−1,B−1(xt) = 2.5278 so the estimated variance without
CRN is again significantly higher.

• If t = 3, then FB−1,B−1(xt) = 2.5053 so the estimated variance without
CRN is still significantly higher.

Altogether, for all three new points the use of CRN reduces the PB estimates
of the predictor variances. This result conflicts with our previous conclusions.

6 Conclusions

In this paper we investigated the plug-in estimator s2P (x0) for the variance of

ŷ(x0, ψ̂), which denotes the SK predictor for the simulation output at the simula-

tion input combination x0 when using ψ̂ (the plug-in estimates of the Kriging pa-
rameters ψ). For this investigation we experimented with the M/M/1 simulation
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model—with and without CRN. Our macroreplications suggested that s2P(xt)
significantly underestimates the true variance; furthermore, CRN increase the
true predictor variance. In practice, we might save on computer time, replacing
macroreplications by DB. In our M/M/1 simulation experiment without CRN,
DB gives significantly higher estimated variances than our macroreplications do;
i.e., DB tends to give a conservative estimator. With CRN, however, DB and
macroreplications do not give significantly different estimates. PB gives a much
higher bootstrap variance than DB does—whether or not CRN are applied. So,
altogether we recommend DB for the correct estimation of the predictor variance
of SK in simulation experiments with CRN.

In future research we may investigate the consequences of the statistical
properties of SK, when using SK for either optimization or sensitivity analysis.
For deterministic simulation, Mehdad and Kleijnen (2015) has already investi-
gated these consequences.
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