
International Robotics & Automation Journal

Seamless Signal Processing Block Implementation Using 
the Cubed-C Design Environment

Submit Manuscript | http://medcraveonline.com

Introduction
The proliferation and complexity of current integrated circuits 

(ICs) both as FPGA and as Application-Specific Integrated Circuits 
(ASICs) and System-on-Chips (SoCs) determine that a high 
proportion of the custom, specialized logic on chip is designed 
and verified with High-level Synthesis/Verification techniques. 
However, low-level functions such as bit-level processing or signal 
coding are implemented manually, destroying the advantage of 
having a unified design flow for all parts of the chip. The main 
contribution of this work is to demonstrate that our Cubed-C 
High-level Synthesis (HLS) tool and method is able to deal with 
both complex and low-level blocks with ease and integrate the 
verification of both parts in one formal step, such as the cycle-
accurate simulators which are produced at the output of the 
tool. The tools is flexible and can be used to design loop-based 
signal coding response blocks for both NRZ and RTZ algorithms, 
as shown further down in this paper. All of this of course are 
simulated and shown both at the RTL and the cycle-accurate 
simulator accuracies. Next session discusses existing work for 
HLS. Session III outlines the Cubed-C tools and methodology. 
Session IV discusses signal-coding algorithms. Session V presents 
experimental results. The last session concludes upon this work 
and draws future work extensions. 

Related Work
Improved methodologies and tools started appearing as early 

as the late 90s and continue with enhanced input programming 
code sets as well as scheduling and other optimization algorithms. 
Furthermore, system level synthesis matured in the last decade 
by using more (application-wise) specialized and platform-
oriented methodologies. The CoWare hardware-software co-
design environment [1] employs a data model that allows the user 
to specify, simulate and produce heterogeneous implementations 
from heterogeneous specification source models. The specific 

synchronous dataflow (SDF) type of DSP applications is 
implemented into hardware using languages such as SILAGE [2], 
DFL [3], and LUSTRE [4,5], The advantage of this type of designs is 
that they can be scheduled at compile time and the execution of the 
compiled code can be two orders of magnitude faster than event-
driven VHDL (e.g. RTL) simulations. In contrast to this, dynamic 
dataflow (DDF) algorithms consume and produce tokens that 
are data-dependent, and thus they allow for complex if-then-else 
and while loop control constructs. This is the largest part of real 
applications and it is dealt with by the Cubed-C synthesizer. CAD 
systems that allow for specifying both SDF and DDF algorithms 
and perform as much as possible static scheduling are the DSP-
station from Mentor Graphics [3], PTOLEMY [6], GRAPE-II [7], 
COSSAP from Synopsys and SPW from the Alta group [8].

C programs that include dynamic memory allocation, 
pointers and the functions malloc and free are mapped onto 
specific hardware in [9]. The SpC tool [9] takes a C function 
with complex data structures and generates a Verlog model. 
The different techniques and optimizations described above 
have been implemented using the SUIF compiler environment 
[10]. The memory model consists of distinct location sets, and 
it is used to map memory locations onto variables and arrays in 
Verlog. A heuristic for scheduling behavioral code with complex 
conditional control flow is discussed in [11]. This heuristic is 
based on a specific intermediate design representation which 
apart from established techniques such as chaining and multi 
cycling, it enables more advanced techniques, such as conditional 
resource sharing and speculative execution, which are suitable 
for scheduling conditional behaviors. The developed tool can 
generate VHDL or C code from “Hierarchical Control and Data Flow 
Graphs”, but no reports about translating a standard programming 
language into HCDG are known so far. The synthesis approach 
in [12] utilizes a coordinated set of coarse-grain and fine-grain 
parallelizing transformations on the input design model. These 

 
Volume 2 Issue 4 - 2017

Department of Informatics Engineering, TEI of Western 
Macedonia, Greece

*Corresponding author: Michael Dossis, Department of 
Informatics Engineering, TEI of Western Macedonia, Greece, 
Email: 

Received: October 31, 2016 | Published: June 21, 2017

Research Article

Int Rob Auto J 2017, 2(4): 00029

Abstract

Design environments and automated CAD systems are proliferated nowadays 
with various preferences and restrictions in their work environments. One 
serious problem of automated high-level synthesis tools is their inability of 
at least difficulty to use for low, bit level functions such as signal processing 
blocks. Here the Cubed-C environment is used for the rapid implementation of 
a number of low level functions and blocks such as UARTs without difficulty. 
Cubed-C is a full-strength high-level synthesis CAD system; nevertheless, its 
structure and properties make it particularly suitable for this type of fine-grained 
applications. The experiments in this paper prove that the Cubed-C synthesis 
tools are particularly suitable for both complex and for low, bit level signal coding 
functions.

Keywords: High-level synthesis; Rapid prototyping; Low level signal processing; 
Serial communications



Citation: Dossis M (2017) Seamless Signal Processing Block Implementation Using the Cubed-C Design Environment. Int Rob Auto J 2(4): 00029. 
DOI: 10.15406/iratj.2017.02.00029

Seamless Signal Processing Block Implementation Using the Cubed-C Design 
Environment

2/5
Copyright:

©2017 Dossis

transformations are executed in order to deliver synthesis results 
that don’t suffer from the negative effects of complex control 
constructs in the specification code. The synthesis techniques 
were implemented in the SPARK HLS tool, which transforms 
specifications in a small subset of C into RTL VHDL hardware 
models. A resource-constrained scheduler is used in SPARK and 
it is essentially a priority-based global list scheduling heuristic. 
Nevertheless, there are serious restrictions on the subset of the 
C language that SPARK accepts as input, and limitations such as 
inability to accept design hierarchy modules (e.g. subprograms) 
and of “while” type of loops. 

Typical HLS tasks such as scheduling, resource allocation, 
module binding, module selection, register binding and clock 
selection are executed simultaneously in [13] so as to achieve better 
optimization in design energy, power and area. The scheduling 
algorithm utilized in [13] applies concurrent loop optimization 
and multi cycling and it is driven by resource constraints. The 
tool generates RTL Verlog implementations. The developed HLS 
system is targeted at control-intensive applications but it is also 
applicable to dataflow dominated designs. An incremental floor 
planner is discussed in [14] which combine an incremental 
behavioral and physical optimization into HLS. These techniques 
were integrated into an existing interconnect-aware HLS tool 
called ISCALP [14]. The average improvements of IFP-HLS over 
ISCALP, for implementations with unity aspect ratio functional 
units, are 12% in area, 7% in power consumption, 100% in 
reduction in the number of merge operations, and for some 
benchmarks the IFP-HLS CPU run time was 6 times less than that 
of the ISCALP method [15,16] introduces a synthesis methodology 
which is suitable for the design of distributed logic and memory 
architectures. Beginning with a behavioral description of the 
system in C, the methodology starts with behavioral profiling 
in order to extract simulation statistics of computations and 
references of array data. This allows the generation of footprints 
which contain the accessed array locations and the frequency of 
their occurrence. This synthesis approach is implemented into an 
industrial tool called Cyber [17]. 

Communicating processes which are part of a system 
specification are implemented in [18]. In contrast to the 
conventional HLS approach which synthesizes each concurrent 
process of the system individually, the impact of the operation 
scheduling is considered globally in [18], in the system critical 
path (as opposed to the individual process critical path). The 
authors in [18] claim that their methodology allocates the 
resources where they are mostly needed in the system, which is 
in the critical paths, and in this way it improves the overall multi-
process designed system performance. In [19] memory access 
management is integrated within a HLS design flow. It mainly 
targets digital signal processing (DSP) applications but also more 
general streaming systems can be included along with specific 
performance constraints. Mutually exclusive scheduling methods 
[19-21] are implemented with the “Extended Data-flow Graph”. 
This is achieved because EDFG allows for data and conditional 
semantics to be handled in the same way, and thus the exploitation 
of potential design parallelism can be maximized. The processed 
graph is then given to the GAUT HLS tool [22] to perform 
operator selection and allocation, scheduling and binding. This 
methodology is rather more suitable for dataflow dominated 
systems such as video streaming and linear DSP algorithms.

A combined execution of decomposition and pattern-matching 
techniques is applied on HLS problems, in order to reduce 
the total circuit area in [23]. The data path area is reduced by 
decomposing multi cycle operations, so that they are executed 
on monocycle functional units (FUs that take one clock cycle to 
execute and deliver their results). A simple formal model that 
relies on a FSM-based formalism for describing and synthesizing 
on-chip communication protocols and protocol converters 
between different bus-based protocols is discussed in [24]. 
The work in [24] contributes towards three aspects of protocol 
converter synthesis: a formal, FSM-based model for protocol 
definition, a precise definition of protocol compatibility and a 
definition of converters and converter correctness (for a given 
pair of existing and known protocols). Protocol converter test 
cases that were used to evaluate the work in [24] included an 
ASB to APB converter and a set of converters between the Open 
Core Protocol (OCP) and the AMBA family of bus protocols. The 
existing synthesis framework is limited to protocols that can be 
defined by a single FSM, and in the future more than one FSM per 
protocol description capabilities are envisaged by the authors. 

The methodology of System Co Designer [25] uses an actor-
oriented approach so as to integrate HLS into electronic system 
level (ESL) design space exploration tools. Its main aim is to 
automate the design and building of correct-by-construction 
System on a chip (SoC) implementations from a behavioral model. 
The design starts with an executable System C model. Then, 
commercial synthesizers such as Forte’s Synthesizer are used in 
order to generate hardware implementations of actors from the 
behavioral model. Modules or processes are modeled in [25] as 
an actor’s which communicate with other actors via a number of 
communication channels. This is the starting point for modeling a 
system in [25]. The specification language of an actor is a subset of 
System C which is defined in System oC library [25]. The final FPGA 
bit stream is generated in [25] using the Xilinx EDK (Embedded 
Development Kit) tools. A motion-JPEG test was used to validate 
the proposed methodology in [25]. A formal approach is followed 
in [26] so as to prove that every HLS translation of a source code 
model produces a RTL model that is functionally-equivalent to 
the one in the behavioral input to the HLS tools. The validating 
system in [26] is called SURYA and it is using the Simplify theorem 
proved to implement the validation algorithms. SURYA was used 
to validate the SPARK HLS tool [11], and consequently SURYA 
managed to find two bugs in the SPARK compilations, which were 
unknown before.

An assumption is made by the formal model of refinement 
in [27], that the specification and the implementation are single 
entry and single exit programs. A transition diagram represents 
every process in these programs. This diagram uses generalized 
program locations and program transitions. A program location 
represents a point in the control flow of the program and it is 
either a node identifier, or a pair of two locations which refer 
to the state of two processes that are running in parallel. The 
replacement of flip-flop registers with latches is proposed in [28] 
in order to yield better timing in the implemented designs. The 
justification for this is that latches are inherently more tolerant 
to process variations than flip-flops. The latch replacement in 
[28] is executed not only during the register allocation task, but 
in all steps of HLS, including scheduling, allocation and control 
synthesis. This method assumes that the delay of the controller 

http://dx.doi.org/10.15406/iratj.2017.02.00029


Citation: Dossis M (2017) Seamless Signal Processing Block Implementation Using the Cubed-C Design Environment. Int Rob Auto J 2(4): 00029. 
DOI: 10.15406/iratj.2017.02.00029

Seamless Signal Processing Block Implementation Using the Cubed-C Design 
Environment

3/5
Copyright:

©2017 Dossis

is negligible, as compared to the transparent and non-transparent 
phase times. Nevertheless, implementing registers with latches 
instead of edge-triggered flip-flops is generally considered to be 
cumbersome due to the complicated timing behavior of latches.

The Cubed-C Design Environment
The Cubed-C HLS design environment consists of the frontend 

and the backend compilers. The frontend compilers process 
programs in ADA and C and produce an intermediate format 
named ITF. More on the description of this format can be found 
in [29]. The frontend compilers extract all the information 
from the source code which is required to transform the input 
subprograms into functionally-equivalent RTL modules in 
hardware. The backend compiler is built with Prolog predicates 
and therefore its HLS transformations are formal and the 
produced hardware implementations are provably-correct. Most 
of these transformations and optimizations are captured in an 
aggressive scheduler called PARCS. PARCS will always try to bring 
the best result (most compressed schedule) however obeying to 
the data and control dependencies as well as any existing module-
locked or global resource constraints.

Figure 1 depicts the design and verification flow within the 
Cubed-C environment. The internal structure of the Cubed-C 
hardware compilation system is obscured in this figure. However, 
the main features of unified synthesis/verification strategy are 
apparent in Figure 1. PARCS is based on formal techniques and 
it is a resource-constrained scheduler. It can be driven with 
local (module-wise) or global resource constraints. The backend 
compiler can be driven by options about the architectural template, 
the HDL language, the location of large multi-dimensional data 
objects, the use of custom blocks, etc. Apart from the RTL code, 
the backend compiler uses the same internal formal model for 
the hardware FSMs to extract one cycle-accurate simulator in 
ANSI-C for each module in the input code hierarchy. By compiling 
and executing these simulators, the user can go through the 
FSM states and observe the changes in various storage elements 
inputs and outputs of the design. Thus, this verification is based 
on formal means of verifying the same model used by synthesis, 
and in all of our test cases the functionality of the generated 
hardware structure coincided with that of the input code, which 
was expected due to the formal nature of the hardware synthesis 
transformations.

Signal Coding Algorithms
The 0 and 1 value of digital signals are sometimes transmitted 

as are with low and high voltage corresponding values. Often, and 
in order to enable clock recovery from the signal waveform, as 
well as information compression, they are modulated or mapped 
onto signal voltage level change or stable value as well. In general 
there are four categories of signals:

a) Non-return to zero (NRZ) signals.

b) Return to zero (RZ) signals.

c) Phase Encoded (PE) or phase split signals.

d) Multiple level signals – Multi-level binary (MLB) signals.

NRZ-level signals map the 1 value to high voltage and 0 to low, 

or the other way round. It is the simplest type of NRZ signal. NRZ-
mark signals map the change in voltage to level 1 and the absence 
of change to level 0. NRZ-space coding is the opposite of NRZ-
mark. These types of signal coding don’t offer error correction 
or clock recovery and they have a constant component which 
makes it impossible to transmit it with capacitive or inductive 
links. Unipolar RZ is the simplest coding of including the clock 
information. Unipolar RZ is the logical AND between the signal 
and the clock, therefore when value 1 then there is a 1 pulse for the 
first half of the period, and 0 otherwise. In Unipolar PPM coding 
value 0 is coded as a short pulse (1) at the beginning of the clock 
period, and value 1 is coded as a short pulse (1) somewhere at the 
middle of the clock cycle. In Unipolar PDM value 0 is coded as a 
short pulse (1) at the beginning of the clock cycle and value 1 as a 
long pulse (1) at the beginning of the clock cycle. In this way this 
group of coding schemes carries in its data the clock information, 
which can be recovered at the receiver.

Another group of signal coding is the Phase coding group. The 
first coding is called the Polar Biphasic level, and it is otherwise 
known as Manchester code. In Manchester code value 0 is coded 
as 0-to-1 transition at the middle of the cycle and value 1 is 
coded as a 1-to-0 transition at the middle of the clock cycle. Polar 
Biphasic Mark and Polar Biphasic Space are essentially Frequency 
Key Shifting. In Biphasic M. value 0 is coded with stable and 
alternating (with continuous 0) levels, and value 1 is coded with 
double frequency clock. Polar Biphasic S. is the opposite coding 
of Biphasic M. In delay modulation which is also known as Miller 
code value 0 is coded with alternating level (at the end of the 
cycle) if it is followed by 0, or same level if it is followed by 1. In 
Miller code, value 1 is represented by a change of the level in the 
middle of the clock cycle. An interesting group of signal coding is 
referred to as multi-level coding. This type of coding avoids the 
constant component and offers excellent synchronization of the 
receiver. The Polar RZ represents values 1 and 0 with positive and 
negative pulse of duration half of the cycle, respectively. Bipolar 
or alternate mark inversion features half-duration alternating 
positive/negative pulse for value 1 and level 0 for value 0. Decode 
coding represents 0-to-1 change with a positive pulse and 1-to-
0 change with a negative pulse, and stable level otherwise. In 
pair selected ternary pairs of bits are encoded depending on an 
encoding table. In Duo binary coding, when value changes there 
is a change in level but only to half height, e.g. from 1 to 0, from 
0 to -1, from -1 to 0 and from 0 to 1, and no change when values 
remain the same. For this group of coding it is necessary to encode 
at least 3 levels of signal, e.g. 1, 0 and -1. For this we have selected 
encoding with two bits that will drive a DAC at the output (not 
shown in our experiments).

Design Experiments
Although most of the signal coding algorithms that were 

reported above, were coded in high-level ADA and implemented 
in the Cubed-C framework, for the sake of economy here we 
describe two representative ones the Manchester code and the 
Polar RZ. The algorithms were coded and debugged in executable 
ADA programs according to the verification scheme of Figure 1. 
Then the code was ported to the input of the Cubed-C compiler 
that synthesized the RTL VHDL code. The RTL models of the code/
decode processors were simulated and verified in a RTL simulator. 

http://dx.doi.org/10.15406/iratj.2017.02.00029


Citation: Dossis M (2017) Seamless Signal Processing Block Implementation Using the Cubed-C Design Environment. Int Rob Auto J 2(4): 00029. 
DOI: 10.15406/iratj.2017.02.00029

Seamless Signal Processing Block Implementation Using the Cubed-C Design 
Environment

4/5
Copyright:

©2017 Dossis

Then the RTL output (schematics) of the Cubed-C backend 
compiler we simulated and the simulations were compared to the 
behavior of the input ADA code. In all cases the behavior matched 
that of the source code programs. Figure 2,3 depict snapshots of 
the RTL simulations for the Manchester modulator/demodulator.

Moreover, the RTZ Polar RZ algorithm was implemented with 
the same flow and the automatically generated RTL code of the Polar 
RZ processors was simulated to verify the expected correctness of 
the synthesis process. Figure 4 & 5 contain snapshots of the Polar 
RZ modulator/demodulator respectively. As shown in the above 
figures, in all synthesis experiments with Cubed-C the behavior of 
the synthesized code matches the intended one of the ADA source 
code. It is worthy to mention that most of the experiments took 
less than an hour each, which reinforces our contribution towards 
a sizable increase of the designer’s productivity. The Polar RZ 
experiments utilized the custom blocks option of the Cubed-C 

compiler to design the custom Boolean functions required for the 
signal value translations.

A small UART serial communications processor

A UART design was verified and synthesized using the Cubed-C 
synthesizer. Table I shows the Xilinx Spartan 3 FPGA statistics 
of its implementation. The worse-case delay was around 8 ns, 
allowing an implementation speed of clock up to 100 MHz. The 
UART was verified at the ADA level, at the cycle-accurate simulator 
level (produced by Cubed-C) and at the RTL VHDL simulation. The 
latter is showed in a snapshot in Figure 6. It must be noted that in 
all cases the RTL and test benches as well as the cycle-accurate C 
models were produced in an automatic and formal way directly 
from the internal formal FSM model that is kept in the memory 
of the Cubed-C compiler. Therefore, the verification flow is formal 
and automatic which save the engineer from a lot of week’s 
manual work trying to remove functional and timing bugs.

Table 1: UART Design Implementation Statistics.

Object
SPARTAN-3 XILINX FPGA Stats

Used Total Utilization

Slice Flip Flops 84 7168 1%

4 Input LUTs 122 7168 1%

Occupied Slices 93 3584 2%

Bonded IOBs 27 173 15%

BUFGMUXs 2 8 255

Figure 1: The Cubed-C synthesis/verification flow.

Figure 2: RTL simulation of the Manchester encoder.

Figure 3: RTL simulation of the Manchester decoder.

Figure 4: RTL simulation of the Polar RZ encoder.

Figure 5: RTL simulator of the Polar RZ decoder.

Figure 6: RTL VHDL simulation snapshot of the UART design.

http://dx.doi.org/10.15406/iratj.2017.02.00029


Citation: Dossis M (2017) Seamless Signal Processing Block Implementation Using the Cubed-C Design Environment. Int Rob Auto J 2(4): 00029. 
DOI: 10.15406/iratj.2017.02.00029

Seamless Signal Processing Block Implementation Using the Cubed-C Design 
Environment

5/5
Copyright:

©2017 Dossis

Conclusion and Future Work
Formal and rapid automated synthesis and automated formal 

verification methods flows are used in the Cubed-C tools. The 
major contribution of this work is that low level, bit-wise; detailed 
hardware signal coding algorithms are rapidly and formally 
implemented with the Cubed-C framework, although Cubed-C is 
a full-blown HLS system. In all cases, RTL/gate level verification 
(simulations) showed that the behavior of the generated hardware 
processors matches the behavior of the input specification code 
and model. Future work includes more low level modulation 
algorithm implementation, more experiments with Cubed-C and 
the embedded Cycle-accurate simulator.

References
1. Bolsens I, De Man HJ, Lin B, Van Rompaey K, Vercauteren S, et al. 

(1997) Hardware/software co-designof digital telecommunication 
systems. Proc of the IEEE 85(3): 391-418.

2. Hilfinger PN, Rabaey J, Genin D, Scheers C, De Man H (1990) DSP 
specification using the SILAGE language. Proc Int Conf on Acoust 
Speech Signal Process. USA, pp. 1057-1060.

3. Willekens P (1994) Algorithm specification in DSP station using data 
flow language. DSP Applicat 3(1): 8-16.

4. Halbwachs N, Caspi P, Raymond P, Pilaud D The synchronous dataflow 
programming language Lustre. Proc IEEE 79(9): 1305-1320.

5. Van Canneyt M (1994) Specification, simulation and implementation 
of a GSM speech codec with DSP station. DSP and Multimedia Technol 
3(5): 6-15.

6. Buck JT, Soonhoi Ha, Edward A, David G (1992) PTOLEMY: A 
framework for simulating and prototyping heterogeneous systems. 
Int J Computer Simulation, USA, pp. 527-543.

7. Lauwereins R, Engels M, Ade M, Paperstraete JA (1995) GRAPE-II: 
A system level prototyping environment for DSP applications. IEEE 
Computer 28(2): 35-43.

8. Rafie MS (1994) Rapid design and prototyping of a direct sequence 
spread-spectrum ASIC over a wireless link. DSP and Multimedia 
Technol 3(6): 6-12.

9. Semeria L, Sato K, De Micheli G (2001) Synthesis of hardware models 
in C with pointers and complex data structures. IEEE Trans VLSI 
Systems 9(6): 743-756. 

10. Wilson RP, Robert S, Christopher, Saman P, Jennifer, et al. (1994) 
Suif: An infrastructure for research on parallelizing and optimizing 
compilers. ACM SIPLAN Notices 28(9): 67-70.

11. Kountouris A, Wolinski C (2002) Efficient Scheduling of Conditional 
Behaviors for High-Level Synthesis. ACM Trans on Design Aut of Electr 
Sys 7(3): 380-412.

12. Gupta S, Gupta RK, Dutt ND, Nikolau A (2004) Coordinated Parallelizing 
Compiler Optimizations and High-Level Synthesis. ACM Trans on Des 
Aut of Electr Sys 9(4): 441-470.

13. Wang W, Tan TK, Luo, Fei, Shang, et al. (2003) A comprehensive high-
level synthesis system for control-flow intensive behaviors. Proc 13th 
ACM Great Lakes symp on VLSI, USA, pp. 11-14.

14. Gu ZP, Wang J, Dick RP, Zhou H (2005) Incremental exploration of 
the combined physical and behavioral design space. Proc of the 42nd 
annual conf on des aut DAC ‘05, pp. 208-213.

15. Zhong L, Jha NK (2002) Interconnect-aware high-level synthesis for 
low power. Proc IEEE/ACM Int Conf Comp-Aided Des, USA, pp. 110-
117.

16. Huang C, Ravi S, Raghunathan A, Jha NK (2007) Generation of 
Heterogeneous Distributed Architectures for Memory-Intensive 
Applications Through High-Level Synthesis. IEEE Trans on Very Large 
Scale Integr (VLSI) Sys 15(11): 1191-1204.

17. Wakabayashi K (1999) C-based synthesis experiences with a behavior 
synthesizer, “Cyber”. Proc Des Autom and Test in Eur Conf, Germany, 
pp. 390-393.

18. Wang W, Raghunathan A, Jha NK, Dey S (2003) High-level Synthesis of 
Multi-process Behavioral Descriptions. IEEE International Conference 
on VLSI Design, India, pp. 467-473.

19. Gal BL, Casseau E, Huet S (2008) Dynamic Memory Access Management 
for High-Performance DSP Applications Using High-Level Synthesis. 
IEEE Trans Comput-Aided Des Integ Circuits Syst 16(11): 1454-1464.

20. Wakabayashi K, Tanaka H (1992) Global scheduling independent 
of control dependencies based on condition vectors. IEEE Conf Des 
Autom, USA, pp. 112-115.

21. Gupta S, Gupta R, Dutt N, Nicolau A (2003) Dynamically increasing 
the scope of code motions during the high-level synthesis of digital 
circuits. Proc IEEE Conf Comput Digit Techn 150(5): 330-337.

22. Martin E, Santieys O, Philippe J (1993) GAUT, an architecture synthesis 
tool for dedicated signal processors. Proc IEEE Int Eur Des Autom 
Conf, France, p. 14-19.

23. Molina MC, Ruiz-Sautua R, Garcia-Repetto P, Hermida R (2009) 
Frequent-Pattern-Guided Multilevel Decomposition of Behavioral 
Specifications. IEEE Trans Comput-Aided Des Integ Circuits Syst 
28(1): 60-73.

24. Avnit K, D’silva V, Sowmya A, Ramesh S, Parameswaran S (2009) 
Provably correct on-chip communication: A formal approach to 
automatic protocol converter synthesis. ACM Trans on Des Autom of 
Electr Sys (TODAES) 14(2): 19.

25. Keinert J, Streubuhr M, Schlichter T, Falk J, Gladigau J, et al. (2009) 
SystemCoDesigner-an automatic ESL synthesis approach by design 
space exploration and behavioral synthesis for streaming applications. 
ACM Trans on Des Autom of Electr Sys (TODAES) 14(1):1.

26. Kundu S, Lerner S, Gupta RK (2010) Translation Validation of High-
Level Synthesis. IEEE Trans Comput-Aided Des Integ Circuits Syst 
29(4): 566-579.

27. Falk J, Haubelt C, Teich J (2006) Efficient representation and 
simulation of model-based designs in SystemC. Proc of the Forum of 
Des Lang Darmstadt, Germany, pp. 129-134.

28. Paik S, Shin I, Kim T, Shin Y (2010) HLS-l: A High-Level Synthesis 
framework for latch-based architectures. IEEE Trans Comput-Aided 
Des Integ Circuits Syst 29(5): 657-670.

29. Michael Dossis (2010) Intermediate Predicate Format for Design 
Automation Tools. Journal of Next Generation Information Technology 
(JNIT) 1(1): 100-117.

http://dx.doi.org/10.15406/iratj.2017.02.00029
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/97300/
http://ieeexplore.ieee.org/document/97300/
http://dl.acm.org/citation.cfm?id=567050
http://dl.acm.org/citation.cfm?id=567050
http://dl.acm.org/citation.cfm?id=567050
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/974889/
http://ieeexplore.ieee.org/document/974889/
http://ieeexplore.ieee.org/document/974889/
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=764808.764812
http://dl.acm.org/citation.cfm?id=764808.764812
http://dl.acm.org/citation.cfm?id=764808.764812
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1167521/
http://ieeexplore.ieee.org/document/1167521/
http://ieeexplore.ieee.org/document/1167521/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/4601486/
http://ieeexplore.ieee.org/document/4601486/
http://ieeexplore.ieee.org/document/4601486/
http://dl.acm.org/citation.cfm?id=110380
http://dl.acm.org/citation.cfm?id=110380
http://dl.acm.org/citation.cfm?id=110380
http://ieeexplore.ieee.org/document/1245602/
http://ieeexplore.ieee.org/document/1245602/
http://ieeexplore.ieee.org/document/1245602/
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
http://ieeexplore.ieee.org/document/4723642/
http://ieeexplore.ieee.org/document/4723642/
http://ieeexplore.ieee.org/document/4723642/
http://ieeexplore.ieee.org/document/4723642/
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
http://ieeexplore.ieee.org/document/5452109/
http://ieeexplore.ieee.org/document/5452109/
http://ieeexplore.ieee.org/document/5452109/
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf

	Title
	Abstract
	Keywords
	Introduction
	Related Work 
	The Cubed-C Design Environment 
	Signal Coding Algorithms 
	Design Experiments 
	A small UART serial communications processor 

	Conclusion and Future Work 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

