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Capacity and Security of Heterogeneous Distributed
Storage Systems

Toni Ernvall, Salim El Rouayheb, Member, IEEE,
Camilla Hollanti, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—We study the capacity of heterogeneous distributed
storage systems under repair dynamics. Examples of these sys-
tems include peer-to-peer storage clouds, wireless, and Internet
caching systems. Nodes in a heterogeneous system can have
different storage capacities and different repair bandwidths. We
give lower and upper bounds on the system capacity. These
bounds depend on either the average resources per node, or
on a detailed knowledge of the node characteristics. Moreover,
we study the case in which nodes may be compromised by an
eavesdropper, and give bounds on the system secrecy capacity.
One implication of our results is that symmetric repair maximizes
the capacity of a homogeneous system, which justifies the model
widely used in the literature.

I. INTRODUCTION

Cloud storage has emerged in recent years as an inexpensive
and scalable solution for storing large amounts of data and
making it pervasively available to users. The growing success
of cloud storage has been accompanied by new advances in
the theory of such systems, namely the application of network
coding techniques for distributed data storage and the theory of
regenerating codes introduced by Dimakis et al. [1], followed
by a large body of further work in the literature.

Cloud storage systems are typically built using a large
number of inexpensive commodity disks that fail frequently,
making failures “the norm rather then the exception” [2].
Therefore, it is a prime concern to achieve fault-tolerance
in these systems and minimize the probability of losing the
stored data. The recent theoretical results uncovered funda-
mental tradeoffs among system resources (storage capacity,
repair bandwidth, etc.) that are necessary to achieve fault-
tolerance. They also provided novel code constructions for data
redundancy schemes that can achieve these tradeoffs in certain
cases; see for example [3], [4] and [5].

The majority of the results in the literature of this field
focus on a homogeneous model when studying the information
theoretic limits on the performance of distributed storage
systems. In a homogeneous system all the nodes (hard disks
or other storage devices) have the same parameters (storage
capacity, repair bandwidth, etc.). This model encompasses
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many real-world storage systems such as clusters in a data
center, and has been instrumental in forming the engineering
intuition for understanding these systems. Recent development
have included the emergence of heterogeneous systems that
pool together nodes from different sources and with different
characteristics to form one big reliable cloud storage system.
Examples include peer-to-peer (p2p), or hybrid (p2p-assisted)
cloud storage systems [6], [7], Internet caching systems for
video-on-demand applications [8], [9], and caching systems in
heterogeneous wireless networks [10]. Motivated by these ap-
plications, we study the capacity of heterogeneous distributed
storage systems (DSS) here under reliability and secrecy
constraints.

Contributions: The capacity of a DSS is defined as the
maximum amount of information that can be delivered to any
user contacting k out of n nodes in the system. Intuitively, in
a heterogeneous system, this capacity should be limited by the
“weakest” nodes. However, nodes can have different storage
capacities and different repair bandwidths. And the tension
between these two set of parameters makes it challenging to
identify which nodes are the “weakest”.

Our first result establishes an upper bound on the capacity
of a DSS that depends on the average resources in the system
(average storage capacity and average repair bandwidth per
node). We use this bound to prove that symmetric repair, i.e.,
downloading equal amount of data from each helper node,
maximizes the capacity of a homogeneous DSS. While the
optimality of symmetric repair is known for the special case
of MDS codes [11], our results assert that symmetric repair
is always optimal for any choice of system parameters. Fur-
ther, our proof avoids the combinatorial cut-based arguments
typically used this context.

In addition, we give an expression for the capacity when we
know the characteristics of all the nodes in the system (not just
the averages). This expression may be hard to compute, but we
use it to derive additional bounds that are easy to evaluate. Our
techniques generalize to the scenario in which the system is
compromised by an eavesdropper1. We give bounds on the
secrecy capacity when the system is supposed to leak no
information to the eavesdropper (perfect secrecy). Here too,
we show that symmetric repair maximizes the secrecy capacity
of a homogeneous system.

1Our results also generalize to the case of a malicious adversary who can
corrupt the stored data. This model will be included in the extended version
of this paper.



Related work: Wu proved the optimality of symmetric
repair in [11] for the special case of a DSS using Maximum
Distance Separable (MDS) codes. Coding schemes for a non-
homogeneous storage system with one super-node that is
more reliable and has more storage capacity were studied in
[12]. References [13] and [14] studied the problem of storage
allocations in distributed systems under a total storage budget
constraint. Pawar et al. [15], [16] studied the secure capacity of
distributed storage systems under eavesdropping and malicious
attacks.

Organization: Our paper is organized as follows. In
Section II, we describe our model for heterogeneous DSS and
set up the notation. In Section III, we summarize our main
results. In Section IV, we prove our bounds on the capacity
of a heterogeneous DSS. In Section V, we study the secrecy
capacity in the presence of an eavesdropper. We conclude in
Section VI and discuss some open problems. We postpone
some of the proofs to the Appendix, where we also discuss the
generalizability of our results from functional to exact repair.

II. MODEL

A heterogeneous distributed storage system is formed of
n storage nodes v1, . . . , vn with storage capacities α1, . . . , αn
respectively. Unless stated otherwise, we assume that the nodes
are indexed in increasing order of capacity, i.e., α1 ≤ α2 ≤
· · · ≤ αn. In a homogeneous system all nodes have the
same storage capacity α, i.e., αi = α,∀i. As a reliability
requirement, a user should be able to obtain a file by contacting
any k < n nodes in the DSS. The nodes forming the system
are unreliable and can fail. The system is repaired from a
failure by replacing the failed node with a new node. Upon
joining the system, the new node downloads its data from d,
k ≤ d ≤ n− 1, helper nodes in the system.

The repair process can be either exact or functional. In the
case of exact repair, the new node is required to store an exact
copy of the data that was stored on the failed node. Whereas
in the case of functional repair, the data stored on the new
node does not have to be an exact copy of the lost data, but
merely “functionally equivalent” in the sense that it preserves
the property that contacting any k out of n nodes is sufficient
to reconstruct a stored file. We focus on functional repair in
this paper, although some of our results do generalize to the
exact repair model (see the discussion in Appendix A).

An important system parameter is the repair bandwidth
which refers to the total amount of data downloaded by the
new node. In a homogeneous system, the repair bandwidth,
denoted by γ, is the same for any new node joining the system.
The typical model adopted in the literature assumes symmetric
repair in which the total repair bandwidth γ is divided equally
among the d helpers. Thus, the new node downloads β = γ/d
amount of information from each helper. In a heterogeneous
system the repair bandwidth can vary depending on which
node has failed and which nodes are helping in the repair
process. We denote by βijS the amount of information that a
new node replacing the failed node vj is downloading from
helper node vi when the other helper node belong to the index

set S (i ∈ S, |S| = d). An important special case is when the
repair bandwidth per helper depends only on the identity of
the helper node and not on the identity of the failed node
or the other helpers. In this case, we say that helper node vi
has repair bandwidth βi, i.e., βijS = βi,∀j, S. In the case
of a homogeneous system with symmetric repair, we have
βijS = β = γ/d,∀i, j, S.

We focus on repair from single node failures2. In this case,
there are

(
n−1
d

)
possibilities for the set of helpers S. Therefore,

the average repair bandwidth γj of node vj is

γj =

(
n− 1

d

)−1 ∑
S:j /∈S
|S|=d

∑
i∈S

βijS . (1)

We denote by γ = 1
n

∑n
j=1 γj and α = 1

n

∑n
j=1 αj the

average total repair bandwidth and average node capacity in
the DSS, respectively.

We are interested in finding the capacity C of a hetero-
geneous system. The capacity C represents the maximum
amount of information that can be downloaded by any user
contacting k out of the n nodes in the system. Recall from [1],
that the capacity Cho of a homogeneous system implementing
symmetric repair is given by

Cho(α, γ) =

k∑
i=1

min
{
α, (d− i+ 1)

γ

d

}
. (2)

We are also interested in characterizing the secrecy capacity
of the system when some nodes are compromised by an
eavesdropper. We follow the model in [15] and [16] and
denote by `, ` ≤ k, the number of compromised nodes. The
eavesdropper is assumed to be passive. She can read the data
downloaded during repair and stored on a compromised node.
We are interested here in information theoretic secrecy which
characterizes the fundamental ability of the system to provide
data confidentiality independently of cryptographic methods.
The secrecy capacity of the system, denoted by Cs, is defined
as the maximum amount of information that can be delivered
to a user without revealing any information to the eavesdropper
(perfect secrecy). We denote by Chos the secrecy capacity of
a homogeneous system with symmetric repair. Finding Chos is
still an open problem in general. The following upper bound
was shown to hold in [15] and [16]:

Chos (α, γ, `) ≤
k∑

i=`+1

min
{
α, (d− i+ 1)

γ

d

}
. (3)

III. MAIN RESULTS

We start by summarizing our results. Theorem 1 gives a
general upper bound on the storage capacity of a heteroge-
neous DSS as a function of the average resources per node.

2Multiple failures can be repaired independently as long as there are at
least d helper nodes in the system. For another model of repair that assumes
cooperation when repairing multiple failures in homogeneous systems, refer
to [17] and [18].
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Fig. 1. An example that illustrates the proof of the upper bound (14) on the capacity of a heterogeneous system. (a) A heterogeneous distributed storage system
(DSS) with (n, k, d) = (3, 2, 2). The nodes have storage capacities α1 = 1, α2 = α3 = 2 and the repair bandwidth per helper are β1 = 1, β2 = β3 = 2.
(b) A DSS constructed by combining together n! = 6 copies of the original heterogeneous system corresponding to all possible node permutations. The
obtained DSS is homogeneous with uniform storage per node α = 10 and repair bandwidth per helper β = 10. The capacity of this system is 20 as given
by (2) [1]. Any code that stores a file of size C (C = 3 here) on the original DSS can be transformed into a scheme that stores a file of size n!C = 6C in
the “bigger” system. This gives the upper bound in (14) C ≤ 20/6 = 10/3.

Theorem 1: The capacity C of a heterogeneous distributed
storage system, with node average capacity ᾱ and average
repair bandwidth γ̄, is upper bounded by

C ≤
k∑
i=1

min
{
ᾱ, (d− i+ 1)

γ̄

d

}
= Cho(ᾱ, γ̄). (4)

The right-hand side term in (14) is the capacity of a
homogeneous system in (2) in which all nodes have storage
α = ᾱ and total repair bandwidth γ = γ̄ . Th. 1 states that
the capacity of a DSS cannot exceed that of a homogeneous
system where the total system resources are split equally
among all the nodes. Moreover, Th. 1 implies that symmetric
repair is optimal in homogeneous systems in the sense that
it maximizes the system capacity. This justifies the repair
model adopted in the literature. This result is stated formally
in Cor. 2.

While the optimality of symmetric repair is known for
the special case of MDS codes [11], Cor. 2 asserts that
symmetric repair is always optimal for any choice of system
parameters. This result follows directly from Th. 1 and avoids
the combinatorial cut-based arguments that may be needed in
a more direct proof.

Corollary 2: In a homogeneous DSS with node capacity α
and total repair bandwidth γ, symmetric repair maximizes the
system capacity.

When we know the parameters of the nodes in the system
beyond the averages, we can obtain possibly tighter bounds as
described in Th. 3. To simplify the notation, let us order the
repair bandwidth per helper βijS into an increasing sequence
β′1, β

′
2, . . . , β

′
m, such that β′l ≤ β′l+1 and where m = nd

(
n−1
d

)
.

Also, recall that α1 ≤ α2 ≤ · · · ≤ αn.
Theorem 3: The capacity C of heterogeneous DSS is

bounded by

Cmin ≤ C ≤ Cmax

where

Cmin = min
l=0,...,k

 l∑
j=1

αj +

h∑
j=1

β′j

 ,

Cmax = min
l=0,...,k

 l∑
j=1

αj +

h∑
j=1

β′m+1−j

 ,

and

h =
(2d− k − l + 1)(k − l)

2
.

When the system is compromised by an eavesdropper the
system secrecy capacity can be upper bounded as follows.

Theorem 4: The secrecy capacity Cs of a DSS when `
nodes in the system are compromised by an eavesdropper is
upper bounded by

Cs ≤
k∑

i=`+1

min

{
α, (d− i+ 1)

γ

d

}
. (5)

This theorem implies that symmetric repair also maximizes
the secrecy capacity of a homogeneous DSS.

IV. CAPACITY OF HETEROGENEOUS DSS

A. Example & Proof of Theorem 1

We illustrate the proof of Th. 1 through an example for the
special case in which the bandwidths depend only on identity
of the helper node. We compute the capacity of the DSS for
this specific example, and show that it is strictly less than the
upper bound of Th. 1. That is, it does not achieve the capacity
of a homogenous system with the same average characteristics.
More specifically, consider the heterogeneous DSS depicted in
Fig. 1(a) with (n, k, d) = (3, 2, 2) formed of 3 storage nodes
v1, v2 and v3 with storage capacities (α1, α2, α3) = (1, 2, 2)
and repair bandwidths (β1, β2, β3) = (1, 2, 2). The average
node capacity α = 5/3 and repair bandwidth are β = 10/3.
Th. 1 gives that the capacity of this DSS C ≤ 10/3 = 3.33.



For this example, it is easy to see that the DSS capacity
is C = 3 ≤ 10/3. In fact, a user contacting nodes v1 and
v2 cannot download more information then their total storage
α1 + α2 = 3. This upper bound is achieved by the code in
Fig. 1(a). The code stores a file of 3 units (x, y, z) in the
system. During repair the new node downloads the whole
file and stores the lost piece of the data (note that the repair
bandwidth constraints allow this trivial repair).

To obtain the upper bound in (14), we use the original
heterogeneous DSS to construct a “bigger” homogeneous
system. We obtain this new system by “glueing” together
n! = 3! = 6 copies of the original DSS as shown in Fig. 1(b).
Each copy corresponds to a different permutation of the nodes.
In the figure, the ith copy stores the file (xi, yi, zi). For
example in Fig. 1(b), the first copy is the original system itself,
the second corresponds to node v1 and node v3 switching
positions, and so on.

The “bigger” system is homogeneous because all its nodes
have storage α = 10 and repair bandwidth per helper β =
γ/d = 10. The capacity C ′ of this system can be computed
from (2):

C′ =

k∑
i=1

min{α, (d− i+ 1)
γ

d
} = 20. (6)

As seen in Fig. 1, any scheme that can store a file of size
C in the original DSS can be transformed into a scheme that
can store a file of size n!C in the “bigger” DSS. Therefore,
we get n!C ≤ C ′ and C ≤= 10/3. This argument can be
directly generalized to arbitrary heterogeneous systems. The
general proof follows the same steps explained above and can
be found in Appendix B.

Theorem 1 implies that symmetric repair, i.e., downloading
equal numbers of bits from each of the helpers, is optimal in a
homogeneous system. To see this, consider a DSS with node
storage capacity α, and a total repair bandwidth budget γ. A
new node joining the system has the flexibility to arbitrarily
split its repair bandwidth among the d helpers as long as the
total amount of downloaded information does not exceed γ. In
other words, we have

∑
i∈S βijS = γ,∀j, S. Now, irrespective

of how each new node splits its bandwidth budget, the average
repair bandwidth in the system is the same, γ = γ. If we apply
Th. 1, we get an upper bound that matches exactly the capacity
in (2) of a homogeneous DSS with symmetric repair. Hence,
we obtain the result in Cor. 2.

B. Proof of Theorem 3

To avoid heavy notation, we focus on the case in which the
repair bandwidth depends only on the helper node (βijS = βi).
We give in Th. 5 lower and upper bounds specific to this
case. These bounds are similar to the ones in Th. 3, but can
be tighter. The proof of Th. 3 follows the exact steps of the
proof below and will be omitted here. Again, we assume that
the nodes are indexed in increasing order of node capacity,
α1 ≤ α2 ≤ · · · ≤ αn. We also order the values of the repair
bandwidths β to obtain the increasing sequence β′1 ≤ β′2 ≤
· · · ≤ β′n.

Theorem 5: The capacity C of a heterogeneous DSS, in
which the repair bandwidth depends only on the identity of
the helper node, is bounded as C ′min ≤ C ≤ C ′max, where

C ′min =

k∑
i=1

min(αi, β
′
1 + β′2 + · · ·+ β′d−i+1)

= min
l=0,...,k

 l∑
i=1

αi +

k−l−1∑
j=0

d−l−j∑
i=1

β′i

 ,

(7)

and

C ′max =

k∑
i=1

min(αi, β
′
i+1 + β′i+2 + · · ·+ β′d+1)

= min
l=0,...,k

 l∑
i=1

αi +

k−l∑
j=1

d+1∑
i=l+1+j

β′i

 .

(8)

The second expressions for C ′min and C ′max highlight the
analogy with the bounds in Th. 3. Before proving Th. 5, we
give a couple of illustrative examples and discuss some special
cases.

Example 6: Consider again the example in the previous
section where (n, k, d) = (3, 2, 2) and where the nodes param-
eters are (α1, β1) = (1, 1), (α2, β2) = (α3, β3) = (2, 2). Here,
C ′min = 2 and C ′max = 3. Note that here C ′max is tighter then
the average-based upper bound of Th. 1 which gives C ≤ 3.33.
Recall that the capacity for this system is C = 3 = C ′max.

Example 7: Consider now a second DSS with (n, k, d) =
(3, 2, 2) and (α1, β1) = (5, 3), (α2, β2) = (6, 4) and
(α3, β3) = (7, 5). Here, C ′min = 9 and C ′max = 11, and Th. 1
gives C ≤ 10 < C ′max.

The upper and lower bounds can coincide (C ′min = C ′max) in
certain cases, which gives the exact expression of the capacity.
For example:

1) A homogeneous DSS, where we recover the capacity
expression in (2).

2) A DSS with uniform repair bandwidth, i.e., βi = β,∀i.
The capacity is C =

∑k
i=1 min(αi, (d− i+ 1)β).

3) Whenever αi ≤ β′1,∀i. In this case the capacity C =∑k
i=1 αi.

To prove the upper and lower bounds in Th. 5, we first
establish the following expression of the DSS capacity.

Theorem 8: The capacity C of a heterogeneous DSS is
given by

C = min
(f1,...,fk)

fi 6=fj for i 6=j

k∑
i=1

min

αfi , min
|Si|=d+1−i

Si∩{f1,...,fi}=∅

βSi

 , (9)

where for any S ⊆ {1, . . . , n}, βS =
∑
i∈S βi.

The proof of Th. 8 is a generalization of the proof in [1]
of the capacity of a homogeneous system (2). We defer this
proof to Appendix C and explain here the intuition behind
it. Consider the scenario depicted in Fig. 2 where nodes
vf1 , . . . , vfk fail and are repaired successively such that node
vfi is repaired by downloading data from the previously
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Fig. 2. A series of k failures and repairs in the DSS that explains the capacity
expression in (9). Nodes vf1 , . . . , vfk fail successively and are repaired as
depicted above. The amount of “new” information that node vfi can give the
user is the minimum between his storage capacity αfi and downloaded data
βSi

.

repaired nodes vf1 , . . . , vfi−1
and d − (i − 1) other helper

nodes in the system. Consider now a user contacting nodes
vf1 , . . . , vfk .

The amount of “non-redundant” information that node vfi
can give to the user is evidently limited by its storage capacity
αi on one hand, and on the other hand, by the amount of
information βSi downloaded from the d− i+ 1 helper nodes
that are not connected to the user. Minimizing over all the
choices of f1, . . . , fk gives the expression in (9).

It is not clear whether the capacity expression in (9) can be
computed efficiently. For this reason we give upper and lower
bounds that are easy to compute. To get the lower bound in
(7), let (f1, . . . , fk) = (f∗1 , . . . , f

∗
k ) be the minimizer of (9).

We have

C =

k∑
i=1

min

αf∗
i
, min
|Si|=d+1−i

{f∗
1 ,...,f

∗
i }∩Si=∅

βSi


≥

k∑
i=1

min
(
αf∗

i
, β′1 + β′2 + · · ·+ β′d−i+1

)
≥

l∗∑
i=1

αi +

d−l∗∑
i=1

β′i +

d−l∗−1∑
i=1

β′i + · · ·+
d−k+1∑
i=1

β′i

= min
l=0,...,k

 l∑
i=1

αi +

k−l−1∑
j=0

d−l−j∑
i=1

β′i

 ,

(10)

where l∗, 0 ≤ l∗ ≤ k is the number of those cases where αf∗
i

is smaller or equal than the corresponding sum of β’s.
The upper bound C ′max is obtained by taking (f1, . . . , fk) =

(1, . . . , k) in (9) and following similar steps as above.

V. SECURITY

A. Secrecy Capacity

We now consider the case in which ` nodes in the system
are compromised by a passive eavesdropper who can observe
their downloaded and stored data, but cannot alter it. The
secrecy capacity Cs of the system is the maximum amount of

information that can be delivered to any user without revealing
any information to the eavesdropper (perfect secrecy).

Formally, let S be the information source that represents
the file that is stored on the DSS. A user contacts the nodes
in any set B ⊂ {v1, . . . , vn} of size k and downloads their
stored data denoted by CB . The user should be able to decode
the file, which implies H(S|CB) = 0. Let E be the set of
the ` compromised nodes, and DE be the data observed by
the eavesdropper. The perfect secrecy condition implies that
H(S|DE) = H(S). Following the definition in [16], we write
the secrecy capacity as

Cs(α, γ) = sup
H(S|CB)=0∀B

H(S|DE)=H(S)∀E

H(S). (11)

Finding the secrecy capacity of a DSS is a hard problem
and is still open in general, even for the class of homogeneous
systems. Let Chos (α, β, `) denote the secrecy capacity of a
homogeneous DSS implementing symmetric repair and having
` compromised nodes. Following the same steps in the proof
of Th. 1, we can show that the secrecy capacity Cs of a
heterogeneous DSS cannot exceed that of a homogeneous DSS
having the same average resources.

Theorem 9: Consider a heterogeneous DSS with average
storage capacity per node α, average repair bandwidth γ, and
` compromised nodes. The secrecy capacity of this system is
upper bounded by

Cs ≤ Chos (α, γ, `). (12)

Equations (12) and (3) imply the following upper bound stated
in Th. 4:

Cs ≤
k∑

i=`+1

min

{
α, (d− i+ 1)

γ

d

}
. (13)

Using Th. 9, we easily deduce that symmetric repair is
also optimal in terms of maximizing the secrecy capacity of a
compromised DSS.

Corollary 10: Symmetric repair maximizes the secrecy ca-
pacity of a homogeneous system with a given budget on total
repair bandwidth.

VI. CONCLUSION

We have studied distributed storage systems that are het-
erogeneous. Nodes in these systems can have different storage
capacities and different repair bandwidths. We have focused
on determining the information theoretic capacity of these
systems, i.e., the maximum amount of information they can
store, to achieve a required level of reliability (any k out of the
n nodes should be able to give a stored file to a user). We have
proved an upper bound on the capacity that depends on the
average resources available per node. Moreover, we have given
an expression for the system capacity when we know all the
nodes’ parameters. This expression may be hard to compute,
but we use it to derive additional upper and lower bounds that
are easy to evaluate. We have also studied the case in which the
system is compromised by an eavesdropper, and have provided



bounds on the system secrecy capacity under a perfect secrecy
constraint. Our results imply that symmetric repair maximizes
the capacity of a homogeneous system, which justifies the
repair model used in the literature. Problems that remain open
include finding an efficient algorithm to compute the capacity
of a heterogeneous distributed storage system, as well as
efficient code constructions.

APPENDIX

A. Functional vs. Exact Repair

All of our results so far assumed a functional repair model.
However, Theorems 1, 4 and 9 can be directly extended to the
exact repair case. For instance, Th. 1 becomes:

Theorem 11: The capacity C of a heterogeneous distributed
storage system under exact repair, with node average capacity
ᾱ and average repair bandwidth γ̄, is upper bounded by

C ≤ Choexact(ᾱ, γ̄), (14)

where Choexact(ᾱ, γ̄) is the capacity of a homogeneous DSS
under exact repair.

In the proofs of Theorems 1, 4 and 9 we construct a new
“big” storage system using the original one as a building block.
Hence, if we had exact repair in the original system to start
with, we will have exact repair in the new “big” system. The
results can thus be straightforwardly generalized to the case
of exact repair. Moreover, under an exact repair constraint, a
homogeneous DSS with symmetric repair maximizes capac-
ity under given average node storage and repair bandwidth
budgets.

The other results, namely Theorems 3, 5, and 8, are proved
using the analysis of the information flow graph. Therefore, It
is not clear if there is an obvious extension of these results to
the case of exact repair.

B. Proof of Theorem 1

We prove Th. 1 by making formal the argument of the
example in Section IV-A. We start by describing the operation
of adding, or combining, together multiple storage systems
having same number of nodes. Let DSS1,DSS2 be two
storage systems with nodes v11 , . . . , v

1
n and v21 , . . . , v

2
n, respec-

tively. The new system that we refer to as DSS obtained
by combining DSS1 and DSS2 is comprised of n nodes,
say u1, . . . , un. Node ui has storage capacity αi = α1

i + α2
i

(superscript j, j = 1, 2, denotes a parameter of system Sj).
Moreover, when node uj fails in DSS, the new node down-
loads βijS = β1

ijS + β2
ijS amount of information from helper

node ui (recall that S is the set of indices of the d helper
nodes). We write DSS = DSS1 +DSS2.

Now, let DSS be the given heterogeneous system for which
we wish to compute its capacity C. For each permutation σ :
{1, . . . , n} → {1, . . . , n}, we denote by DSSσ the storage
system with nodes vσ1 , . . . , v

σ
n such that vσi = vσ(i). Let Pn

denote the set of all n! permutations on the set {1, . . . , n}.
We define a new “big” system by

DSSb =
∑
σ∈Pn

DSSσ.

The new system DSSb is homogeneous with symmetric repair
where the storage capacity per node αb is given by

αb = (n− 1)!

n∑
i=1

αi = n!α,

and the repair bandwidth per helper βb is given by

βb =(n− d− 1)!(d− 1)!

n∑
j=1

n∑
i=1
i6=j

∑
S
i∈S
j /∈S
|S|=d

βijS

=(n− d− 1)!(d− 1)!

n∑
j=1

(
n− 1

d

)
γ̄j

=
(n− 1)!

d

n∑
j=1

γ̄j = n!
γ̄

d
.

(15)

Therefore, the capacity Cb of DSSb as given by (2) is

Cb = n!

k∑
i=1

min
{
ᾱ, (d− i+ 1)

γ̄

d

}
. (16)

Any scheme achieving the capacity C of the original system
can be naturally extended to store a file of size n!C in DSSb
(see Fig. 1). Therefore, Cb ≥ n!C. This inequality combined
with (16) gives the result of the Th. 1.

C. Proof of Theorem 8 (sketch)

We use the definition of the flow graph in [1] to represent
the DSS. The flow graph is a multicast network in which
the multiple destinations correspond to the users requesting
files from the DSS by contacting any k out of the n nodes.
Therefore, the capacity of the DSS is the capacity of this
multicast network which is equal to the minimum value of the
min-cuts to the users, by the fundamental theorem of network
coding. Note that in the flow graph, a storage node vi is
represented by two vertices xiin and xiout connected by an
edge of capacity αi (see Fig. 2).

Let C be the capacity of the DSS and define F to be

F , min
(f1,...,fk)

fi 6=fj for i6=j

k∑
i=1

min

αfi , min
|Si|=d+1−i

{f1,...,fi}∩Si=∅

βSi

 .

We want to show that C = F .
Let (f1, . . . , fk) be fixed and consider the successive fail-

ures and repairs of nodes vf1 , . . . , vfn as seen in Fig. 2.
Suppose node vf1 is repaired by contacting the helper nodes
that minimize the sum βS1

with |S1| = d and {f1} ∩ S1 = ∅,
and node vf2 is repaired by contacting node vf1 and the d−1
helper nodes that minimize the sum βS2 with |S2| = d−1 and
{f1, f2}∩S2 = ∅. We continue in this fashion and finish with
node vfk being repaired by contacting nodes vf1 , . . . , vfk−1

and the d − k + 1 helper nodes that minimize βSk
with

|Sk| = d+ 1− k and {f1, . . . , fk} ∩ Sk = ∅. Now consider a
user contacting nodes vf1 , . . . , vfn there is a cut to the user of
value F . By the max-flow min-cut theorem, we get C ≤ F .



To prove the other direction, consider a user in the system
and let E denote the edges in the min-cut that separates this
user from the source in the flow graph. Also, let V be the set
of vertices in the flow graph that have a path to the user. Since
the flow graph is acyclic, we have a topological ordering of
the vertices in V , which means that they can be indexed such
that an edge from vi to vj implies i < j.

Let x1out be the first “out-node” in V (with respect to the
ordering). If x1in /∈ V , then x1inx

1
out ∈ E. On the other hand,

if x1in ∈ V , then the set of incoming edges S1, |S1| = d, of
x1in must be in E.

Now similarly let x2out be the second “out-node” in V with
respect to the ordering. If x2in /∈ V , then x1inx

2
out ∈ E. If

x2in ∈ V , then the set S2, |S2| ≥ d− 1, of edges incoming to
x2in, not including a possible edge from x1out, must be in E.
All k nodes adjacent to the user must be in V so continuing
in the same fashion gives that the min-cut is at least

k∑
i=1

min(αfi , βSi
),

where fi 6= fj for i 6= j, |Si| = d+ 1− i, and {f1, . . . , fi} ∩
Si = ∅. Hence C ≥ F .
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