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Abstract

The paper presents a model predictive allocation scheme for constrained over-actuated linear systems, for which input redun-
dancy entails the existence of multiple trajectories in the state space yielding a given reference output. The method relies upon
the concept of inverse model allocation, where dynamic allocation of reference state and input trajectories is accomplished
within the framework of output regulation while maintaining invariance of the error-zeroing subspace. The study focuses on
the design of model predictive allocator to achieve constraint satisfaction and asymptotic evolution of the trajectories to a pre-
computed steady-state target. In particular, the objective of this study is the analysis of the stability and feasibility properties
of the proposed schemes and the characterization of suitable sufficient conditions for stability in geometric terms. In support
of the theoretical findings, this study presents an example where the proposed methodology is applied to solve a constrained
tracking control problem for the linearized model of the air path system of a turbocharged Diesel engine.
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1 Introduction

Control allocation is a standard tool in the design of con-
trol systems for plant models possessing a redundant set
of control inputs (see Bodson (2002); Johansen and Fos-
sen (2013) and references therein.) A typical formulation
involves squaring the plant model by factoring out the
null space of the input map, computing the control poli-
cy for the ensuing virtual square system, and lifting the
control policy to the original higher dimensional input
space by means of optimization techniques. Recent con-
tributions have started to address more challenging cas-
es of input-redundant systems that can not be rendered
square by projection. The work of Zaccarian (2009) pro-
poses a taxonomy of input redundant systems, in which
the above situation was explicitly recognized. The case
of injective input maps in over-actuated systems was
termed weak input redundancy to distinguish this sce-
nario from the standard case of strong input redundancy,
which can be addressed solely by projection. Geometric
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characterizations of weak input redundancy have been
recently proposed in the context of full-information out-
put regulation (Serrani, 2012; Galeani et al., 2015), and
for more general tracking problems in Cristofaro and
Galeani (2014). In these works, it was shown that weak-
ly input redundant systems possess a non-unique inverse
model, where redundancy yields the existence of a family
of state and input trajectories that are compatible with a
given output trajectory. This allows for the definition of
control allocation policies aimed at shaping the behavior
of the regulated system by providing a suitable on-line
selection of the steady-state behavior of the closed-loop
system. This selection can be accomplished with perfor-
mance criteria in mind, which possibly include avoid-
ance of constraint violation in both the input and state
space, while preserving invariance of the error-zeroing
subspace. In particular, in Serrani (2012) a redundant
inverse model is parameterized as a controllable system
with assigned dynamics, where a remarkable feature is
that the allocation problem is decoupled from error reg-
ulation, and can be formulated independently as a dy-
namic optimization problem. Building upon this work, a
model-predictive approach was proposed in (Zhou et al.,
2013) for the design of the allocation module, in the spe-
cific context of control of over-actuated turbocharged in-
ternal combustion engines for automotive applications.
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For systems that are subject to constraints, Model Pre-
dictive Control (MPC) is one of the few methodologies
that are able to address state/input constraints in a sys-
tematic fashion (Mayne et al., 2000). Considerable study
has been devoted to application of MPC to the tracking
problem, and solutions have been developed by resort-
ing to appropriate formulations in the MPC setting of
the internal model principle (Pannocchia and Rawlings,
2003; Limon et al., 2008; Maeder et al., 2009; Maed-
er and Morari, 2010). For systems with redundant in-
puts, the use of constrained optimization (Bodson and
Frost, 2011) and model predictive control has also been
explored in the context of control allocation in appli-
cations such as aerospace systems (Luo et al., 2007),
thermal management (Vermillion et al., 2011), marine
and underwater vehicles (Johansen et al., 2005), auto-
motive systems (Zhou et al., 2013), and fault tolerant
control (Cristofaro and Johansen, 2014). The concept of
dynamic reference management has also been proposed
within the framework of reference governors (Bemporad
et al., 1997), where the manipulation of external refer-
ence signals is accomplished via predictive optimization.

This paper presents amodel predictive allocation scheme
for constrained weakly input redundant system, based on
the concept of inverse model allocation (Serrani, 2012;
Zhou et al., 2013). Differently from reference or com-
mand governors, an inverse model allocator aims at op-
timizing the state/input trajectories while maintaining
invariance of the tracking error, that is, without modify-
ing the output reference to be tracked. Moreover, with a
compensator pre-designed for stabilizing purposes, the
model predictive allocator performs as an add-on mod-
ule, which mainly focuses on selecting optimal reference
trajectories from the redundant family of states/inputs
and addressing the constraint requirements. In particu-
lar, the cost function to be optimized does not incorpo-
rate the tracking error, as opposed to conventional M-
PC tracking control (Pannocchia and Rawlings, 2003).
By expanding on the preliminary results in Zhou et al.
(2013), the paper offers a detailed analysis of the stabil-
ity and feasibility of the proposed approach, and a char-
acterization of sufficient geometric conditions for stabil-
ity. The investigation focuses on optimality and stability
of the allocation of the steady-state trajectories, with an
eye to incorporating performance requirements on the
transient behavior as well. Finally, a case study is pre-
sented to illustrate how the proposed methodology may
be applied to a constrained tracking control problem for
linearized models of turbocharged Diesel engines char-
acterized by redundant actuation in the air path system.

The paper is organized as follows: Section 2 presents the
problem statement. In Section 3, the concept of inverse
model allocation is recalled, together with the salient
aspects of the synthesis of the extended reference mod-
el of Serrani (2012). The design of the dynamic alloca-
tion module is described in Section 4, whereas stability
and feasibility analysis under the assumption of perfect

tracking are presented in Section 5. The case study on
the control of the air path system of a linearized over-
actuated Diesel engine model is presented in Section 6.
Conclusions are offered in Section 7, whereas notation
and technical details are found in appendix.

2 Problem Statement

Consider the following output regulation problem for
discrete-time system

w(t+ 1) = Aew(t) x(t+ 1) = Ax(t) +Bu(t) +Bew(t)

y(t) = Cx(t) z = Dx(t)

r(t) = Cew(t) e = Cx(t) − Cew(t) (1)

with time t ∈ N+ := {0, 1, · · · }, plant state x ∈ X ≃
Rn, exosystem state w ∈ W ≃ Rq, control input u ∈
U ≃ Rm, regulated output y ∈ Y ≃ Rp, reference r ∈
Rp and auxiliary performance output z ∈ Z ≃ Rs. State
and input trajectories of the plant model are subject to
polyhedron constraints of the form

P , {u ∈ U , x ∈ X , w ∈ W} (2)

where U ⊂ U , X ⊂ X and W ⊂ W are given com-
pact sets. It is required that W be a forward invariant
set for the exosystem. The following assumptions char-
acterize the class of plant and exosystem models:

Assumption 1

(1) The pair (A,B) is stabilizable.
(2) ThematrixAe is semi-simple with specAe∩C+ = ∅,

where C+ := {λ ∈ C : |λ| > 1}.
(3) The set of invariant zeros of the triple (C,A,B) and

the spectrum of Ae are disjoint.
(4) The triplet (C,A,B) is right-invertible.

The linear model (1) is assumed to be over-actuated,
that is, dim y < dimu. It is further assumed that the
matrix B has full column rank and the matrix C has
full row rank. This scenario has been termed weak input
redundancy (Zaccarian, 2009). Finally, it assumed that
a dynamic state-feedback stabilizer

xc(t+ 1) = Acxc(t) +Bcuc(t)

yc(t) = Ccxc(t) +Dcuc(t) (3)

with state xc ∈ Xc, input uc ∈ Uc and output yc ∈ Yc

has been designed such that the closed-loop matrix

Aa :=

[

A+BDc BCc

Bc Ac

]

resulting by setting uc = x, u = yc satisfies specAa ⊂
C−, where C− := {λ ∈ C : |λ| < 1}.
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Fig. 1. Architecture of the proposed regulator.

The control goal is to find a full-information plug-in reg-
ulator with interconnection structure shown in Figure 1,
and the largest possible set of initial conditions such that
all trajectories of the closed-loop system remain confined
within the constraint set and satisfy limt→∞ e(t) = 0,
while minimizing a given cost functional J(z, u) of per-
formance output and input trajectories. It is worth not-
ing that the cost function is not required to incorporate
penalties on the tracking error. In this study, the cost
function is chosen as a quadratic functional of the form

J(z, u) =

∞
∑

t=0

z(t)TWzz(t) + u(t)TWuu(t) (4)

whereWz ,Wu are positive definite matrices. This is done
for convenience, as efficient algorithms are available to
calculate the solution (Bemporad et al., 2002).

3 Extended Reference Model Synthesis

To deal with system constraints in the MPC framework,
we adopt a discrete-time formulation of the setup of Ser-
rani (2012), which is briefly recalled for the reader’s ben-
efit. As mentioned, the inverse model of weakly input-
redundant systems is not unique, hence the steady-state
behavior (in the input and state space) can be selected
to yield a desired reference output while satisfying addi-
tional performance criteria. To this end, Serrani (2012)
proposes a method for dynamic allocation of the trajec-
tories of the inverse model of the plant, which is inde-
pendent from the controller used to steer the closed-loop
trajectories to the chosen steady-state behavior. The
methodology makes use of an extended reference model,
which is a dynamical system of the form

w(t+ 1) = Aew(t) , ξ(t+ 1) = Φξ(t) + Ξv(t) (5)

xr(t) = Πw(t) + Σξ(t) , ur(t) = Γw(t) + Ψξ(t) + Υv(t)

with additional state ξ ∈ Rρ and input v ∈ Rm−p.

Definition 1 System (5) is said to be an extended ref-
erence model for system (1) if for any initial condition
(w(0), ξ(0)) = (w0, ξ0) and any v(·) ∈ ℓ∞ the signals
xr(·), ur(·) are bounded and satisfy

xr(t+ 1) = Axr(t) +Bur(t) +Bew(t) ,

r(t) = Cxr(t) (6)

System (5) performs a stable selection (in the ℓ∞ sense)
of the reference trajectory

(

xr(·), ur(·)
)

that generates
the desired output Cew for (1) by means of the assign-
ment of the trajectory ξ(·), which is controlled by the
input v(·). Manipulation of

(

ξ(·), v(·)
)

will be achieved
by means of receding-horizon optimization.

The synthesis of the extended reference model in Serrani
(2012) will be briefly summarized, as it is instrumental
for the results developed in Section 5.2. Standard nota-
tion from geometric control is provided in Appendix A.

Proposition 1 Let (Π,Γ) denote a solution of the reg-
ulator equation (Francis, 1977)

ΠAe = AΠ+BΓ +Be, Ce = CΠ (7)

Let R⋆ ⊂ X denote the supremal controllability sub-
space contained in kerC, and let F(R⋆) be the set of
friends of R⋆ (see (Wonham, 1985, Ch.5)). Let 1 ρ :=
dimR⋆ > 0. Define V := B−1R⋆. It is known that
dimV = m−p (Galeani et al., 2015). Select, arbitrarily,
a symmetric set Ωρ ⊂ C− and let F ∈ F(R⋆) be such that
specAF |R⋆ = Ωρ, where AF := A + BF . Let B̄ denote
the domain restriction of B to the subspace B−1R⋆, Υ be
the insertion map ofB−1R⋆ in U and Ξ : B−1R⋆ → R⋆

be the codomain restriction of the mapping B̄ to R⋆. Fur-
thermore, let Σ : R⋆ → X denote the insertion map of
R⋆ in X , let Ψ : R⋆ → U be defined as Ψ = FΣ and
let Φ := AF |R⋆. With this assignment, system (5) is an
extended reference model for (1). ⊳

The design of the full-information regulator is accom-
plished by letting uc = x−xr and u = yc+ur. Changing
coordinates as x 7→ x̃ := x−xr and using the augmented
state x̃a := (x̃, xc) one obtains the following expression
of the closed-loop system

w(t+ 1) = Aew(t) , ξ(t+ 1) = Φξ(t) + Ξv(t)

x̃a(t+ 1) = Aax̃a(t) e = Cax̃a (8)

where Ca :=
[

C 0
]

. By inspection, system (8) satisfies
the control objectives – in particular, asymptotic regu-
lation of e(t) – irrespectively of the action of the external
input v(·), as long as v(·) ∈ ℓ∞. It is also worth noting
that since the augmented plant (with state x̃a) is au-
tonomous, its trajectories do not depend on v(·); rather,
x̃a(t), t ≥ 0, depends uniquely on the initial condition
x̃a(0) =

(

x(0) − xr(0), xc(0)
)

, hence on the selection of
ξ(0). Therefore, the problem of allocating the reference
trajectories is formulated independently from the regu-
lation problem and can be cast as a dynamic optimiza-
tion problem involving suitable performance criteria and
system constraints. Note that if one lets the cost func-
tion of the optimization problem depend on x̃a(·) and

1 Weak input redundancy implies that R
⋆ is nontrivial.
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the control u(·), as opposed to depend solely on the refer-
ences xr(·) and ur(·) as done in Zhou et al. (2013), then
stability of the overall interconnection becomes an issue.

4 Dynamic Allocation Framework

In this section, a dynamic allocator module is proposed
to accomplish the selection of the assignable trajectory
ξ(·) via the input v(·), according to the architecture
shown in Figure 1. The design of the allocator module
aims at selecting the references xr(·), ur(·) so that sta-
bility and feasibility properties are enforced in the pre-
compensated system. Consequently, appropriate con-
straining sets for the references trajectories, Xǫ ⊂ intX ,
Uǫ ⊂ intU , are defined such that the constraints
xr(t) ∈ Xǫ, ur(t) ∈ Uǫ shall be enforced by the allocator
for all t ≥ 0. This requires the following assumption:

Assumption 2 The set Xε,Uε,W are compatible,
meaning that there exists a solution (Π,Γ) of the regula-
tor equation (7) that satisfies ΠW ⊂ Xǫ, ΓW ⊂ Uǫ.

In addition, we focus on the case of asymptotically con-
stant reference signals, that is, such that for anyw0 ∈ W ,
there existsw⋆ ∈ W such that limt→∞ w(t) = w⋆. In this
case, the spectrum of Ae consists of eigenvalues within
the unit circle and simple eigenvalues on the unit circle.
Note that the assumption of asymptotically constant
references is widely adopted in the MPC literature for
its practical relevance and methodological significance
alike (Limon et al., 2008; Maeder et al., 2009).

The model predictive paradigm is employed here for the
design of the allocationmodule in Figure 1. Note that M-
PC is not used for the design of the stabilizer (3), which
is assumed to be given. The strategy adopted for the
synthesis of the allocator proceeds as follows: A static
optimization procedure (commonly referred to as target
calculation) is initially performed to determine an op-
timal feasible solution in the family of equilibria of the
system that are compatible with a given setpoint. Then,
a model predictive control allocation policy is derived
on the basis of the controllable dynamical system in (5),
which shapes the unobservable trajectory of the closed-
loop system evolving on the subspace R⋆ of X .

4.1 Target Calculation

Target calculation is a standard procedure when solv-
ing tracking problems in the MPC framework (Rao and
Rawlings, 1999; Pannocchia and Rawlings, 2003). For
a given constant exosystem signal w(t) ≡ w⋆, an opti-
mal solution shall be determined among all equilibrium
pairs (x⋆, u⋆) that yields the desired output set-point
Cew⋆. The cost function considered at this stage applies
a quadratic penalty to the auxiliary performance out-
put and the actuator efforts, compatibly with the con-
straints. In particular, the target calculation problem is

cast as the solution of the following quadratic program:
Given w⋆ ∈ W , determine

(ξ⋆, v⋆) = argmin
ξ⋆,v⋆

{

zT⋆ Wzz⋆ + uT
⋆ Wuu⋆

}

= argmin
ξ⋆,v⋆

{

xT
⋆ Wxx⋆ + uT

⋆ Wuu⋆

}

(9)

subject to: (I − Φ)−1ξ⋆ − Ξv⋆ = 0

x⋆ = Πw⋆ +Σξ⋆ ∈ Xǫ, u⋆ = Γw⋆ +Ψξ⋆ +Υv⋆ ∈ Uǫ

where Wz,Wu are positive definite matrices, whereas
Wx := DTWzD is, in general, positive semi-definite. The
existence of admissible solutions of (ξ⋆, v⋆) of the prob-
lem (9) for any w⋆ ∈ W is guaranteed by Assumption 2.

4.2 Dynamic Allocation Formulation

For notational convenience, the dependence on the tem-
poral variable t on signals will be henceforth denoted by
a subscript, that is, we let ζt := ζ(t) denote the value of
the signal ζ(·) at time t. Applying the change of coor-

dinates w̃ := w − w⋆, ξ̃ := ξ − ξ⋆ and ṽ := v − v⋆, the
extended reference model (5) is rewritten as the system

w̃t+1 = Aew̃t , ξ̃t+1 = Φξ̃t + Ξṽt (10)

xrt = x⋆ +Πw̃t +Σξ̃t , urt = u⋆ + Γw̃t +Ψξ̃t +Υṽt

which has an equilibrium at the origin (w̃, ξ̃, ṽ) =
(0, 0, 0). Consequently, the deviation from the optimal
equilibrium (in the state and input spaces of the aug-
mented plant) reads as

xt − x⋆ = x̃t +Πw̃t +Σξ̃t

ut − u⋆ = Ccxct +Dcx̃t + Γw̃t +Ψξ̃t +Υṽt (11)

As long as the control policy ṽ(·) for the controllable sub-
system of (10) is such that the trajectory ξ̃t is defined
for all t ≥ 0, it follows that limt→∞(x̃at

, w̃t) = (0, 0) in-
dependently from the allocation policy (this is a conse-
quence of asymptotic stability of the dynamics x̃at+1

=
Aax̃at

and w̃t+1 = Aew̃t.) Hence, boundedness of all tra-
jectories and convergence to the optimal equilibrium de-
fined in (11) (that is, limt→∞ xt = x⋆ and limt→∞ ut =
u⋆) are guaranteed if the allocation stabilizes the control-

lable subsystem of (10) so that limt→∞(ξ̃t, ṽt) = (0, 0).

With the previous discussion at hand, the cost function
for the dynamic reference allocator is selected to penalize
the deviations from the optimal equilibrium:

min
ṽt

J(x̃at
, w̃t, ξ̃t, ṽt) =

∞
∑

k=0

{

(

xk|t − x⋆

)T
Wx

(

xk|t − x⋆

)

+
(

uk|t − u⋆

)T
Wu

(

uk|t − u⋆

)

}

(12)

subject to: ξ̃k+1|t=Φξ̃k|t + Ξṽk|t, w̃k+1|t=Aew̃k|t,

x̃ak+1|t
=Aax̃ak|t

, xk|t ∈ X , uk|t ∈ U , ∀k = 0, 1, 2, ...
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where (·)k|t denotes prediction at time t + k from
sampling time t. Applying the control sequence
ṽt := {ṽ0|t, ṽ1|t, . . .} over the predicted horizon and
solving the optimization at each sampling time, one
obtains the optimal control law

ṽt = ṽ⋆0|t , ∀ t ≥ 0 (13)

5 Model Predictive Control Allocation

A practical way to solve the dynamic optimization (12)
is to apply a finite horizon receding optimization, im-
posed with a terminal cost and terminal constraint set.
In particular, the cost function (12) is replaced by

J(x̃at
, w̃t, ξ̃t, ṽt) =

N−1
∑

k=0

{

(

xk|t − x⋆

)T
Wx

(

xk|t − x⋆

)

+
(

uk|t − u⋆

)T
Wu

(

uk|t − u⋆

)

}

+ Vf (ξ̃N |t) (14)

with terminal cost Vf (ξ̃N |t) := ξ̃T
N |tP ξ̃N |t, where P is a

suitably defined positive definite matrix. The terminal
constraint set will be introduced in the sequel. Following
the definition of dynamic reference allocator given in
(Serrani, 2012, Def. 6.1), the control policy (13) must
satisfy the following requirements:

a) Nominal Stability (0-GAS): When x̃a ≡ 0 and w̃ ≡ 0,

the origin ξ̃ = 0 of the system

ξ̃t+1 = Φξ̃t + Ξṽ⋆0|t , ξ̃0 = ξ0 − ξ⋆ (15)

is an asymptotically stable equilibrium.

b) Converging Input / Converging State (CICS): There

exists a set Xξ̃ such that for all ξ̃0 ∈ Xξ̃ and for

any converging feasible trajectory (x̃at
, w̃t), ξ̃t is a

converging signal.

The specific context of this work adds the following re-
quirement:

c) Feasibility: For any converging feasible (x̃at
, w̃t), the

constraints are satisfied for the closed loop system,
namely, xt ∈ X , ut ∈ U , ∀t > 0.

Remark 1 In studying nominal stability, since x̃a ≡
0, it is implicitly assumed that the augmented plant is
initialized at the same initial condition as the reference
trajectory. Therefore, feasibility of the closed loop system
follows from feasibility of the reference trajectory.

5.1 Nominal Stability

To prove nominal stability, let x̃at
≡ 0 and w̃t ≡ 0 in (11)

to obtain x − x⋆ = Σξ̃ and u − u⋆ = Ψξ̃ + Υṽ. As a

result, the receding horizon optimization (14) becomes

min Ja(ξ̃t, ṽt) = Vf (ξ̃N |t) +

N−1
∑

k=0

{

(

Σξ̃k|t

)T

Wx

(

Σξ̃k|t

)

+
(

Ψξ̃k|t+Υṽk|t

)T

Wu

(

Ψξ̃k|t+Υṽk|t

)

}

subject to ξ̃k+1|t = Φξ̃k|t + Ξṽk|t , x⋆ +Σξ̃k|t ∈ X ,

u⋆ +Ψξ̃k|t +Υṽk|t ∈ U , ξ̃N |t ∈ Eaf (ξ⋆)

for all k = 0, 1, ..., N − 1 (16)

where the terminal constraint set Eaf (ξ⋆), centered at ξ⋆,
is imposed to ensure feasibility. In equation (16), N ∈ N

is the length of the horizon, whereas the input sequence
ṽt =

{

ṽ0|t · · · ṽN−1|t

}

is the optimization variable.

The next proposition establishes conditions for nominal
stability and feasibility of the steady-state trajectory. S-
ince feasibility and stability of finite-horizon constrained
optimal control have been widely studied (Mayne et al.,
2000), only a sketch of the proof, which borrows from
(Borrelli et al., 2014), will be given.

Proposition 2 Consider the system (10) and the con-
trol law given by the solution of the optimization prob-
lem (16). Let Υ† denote a left inverse of Υ, which exists
because the map Υ : V → U is monic. Assume that the
pair (DΣ,Φ − ΞΥ†Ψ) is detectable. Define E0 as the set

of initial states ξ̃0 for which the optimization (16) is fea-
sible, and select:

i) Eaf as the maximal positive invariant set of the sys-

tem ξ̃t+1 = Φξ̃t subject to constraints in (16).

ii) P as the positive definite solution of−P+ΣTWxΣ+
ΨTWuΨ+ΦTPΦ � 0, which exists as specΦ ∈ C−

by assumption.

Then the following results hold:

(a) The problem (16) is persistently feasible (Borrelli
et al., 2014).

(b) The origin ξ̃ = 0 of the controlled subsystem in (10)
is asymptotically stable, with domain of attraction
that contains E0.

Proof of Proposition 2. Persistent feasibility and
monotonicity of the value function follow by stan-
dard arguments, see for instance Mayne et al. (2000).
Using as Lyapunov function candidate the value func-
tion (16) at its optimal value, V (ξ̃t) := Ja(ξ̃t, ṽ

⋆
t ),

and invoking LaSalle’s Invariance Principle (LaSalle
et al., 1986), trajectories are shown to converge to
the largest invariant set M contained in the set
S := {ξ̃ : DΣξ̃ = 0 , Ψξ̃ + Υṽ = 0}. In particular

lim
t→∞

DΣξ̃t = 0 , lim
t→∞

Ψξ̃t +Υṽt = 0 (17)
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and, for any initial condition ξ̃0 ∈ M, the trajectories of
system (15) satisfy

ξ̃t+1 = (Φ− ΞΥ†Ψ)ξ̃t , DΣξ̃t = 0 (18)

which is the zero dynamics of system (15) under the
optimal control policy, with respect to the output ζ =
DΣξ̃. Since the pair (DΣ,Φ − ΞΥ†Ψ) is detectable by

assumption, convergence ofDΣξ̃t implies convergence ξ̃t
to zero. Since Υ is monic, one obtains limt→∞ ṽt = 0. �

5.2 A Generalized Condition for Detectability

A crucial ingredient of Proposition 2 is detectability of
the pair (DΣ,Φ−ΞΥ†Ψ), a condition that is expressed in
terms of the realization of the extended reference model,
and that one must check for all left inverses Υ†. A more
preferable detectability condition would be expressed in
terms of the realization of the original plant model, as
this latter could be checked a priori. To this end, we re-
sort to the geometric characterization of the state/input
redundancy given in Section 3.

LetU be expressed asU = V ⊕V †, where V = B−1R⋆,
and V † denotes an arbitrary complementary subspace
of V . DenoteQ : U → U the projection on V

† along V ,
and consider, alongside the plant model P = {C,A,B},
the “squared” plant model Psq := {C,A,BQ}, where
the m− p directions in the input space on V have been
erased 2 . A sufficient condition for the detectability con-
dition is formally stated in Proposition 3, whose proof
is given in Appendix B.

Proposition 3 Let F ∈ F(R⋆) be chosen such that the
map induced on S /R⋆ by AF has all eigenvalues in C−,
where S := R⋆ + 〈A|imB〉. Define AQF := A+BQF .
If the subsystem (D|R⋆, AQF |R⋆) is detectable, then the
pair

(

DΣ,Φ− ΞΥ†Ψ
)

, obtained from the corresponding
synthesis of the extended reference model, is detectable.

5.3 Converging-input/Converging-state Property

Consider now the case (x̃at
, w̃t) 6= 0, so that the allo-

cator incorporates in the optimization the information
on the transient behavior of the augmented plant. Since
the trajectories (x̃at

, w̃t) are governed by autonomous

convergent dynamics, boundedness of ξ̃(·) is guaranteed.
However, the transient behaviormay produce a violation
of the constraints, thus feasibility becomes the primary
concern in this case. It is worth noting that the stabiliz-
er has not been defined with the objective of constraint
satisfaction in mind, hence the only result that can be
expected at this stage is the existence of feasible solution
from specified sets of initial conditions. The integration

2 Note that the “squared” system has still m inputs, but the
m−p directions on V have been erased from the input map.

in the stabilizer of mechanisms to prevent constraint vi-
olation is the subject of future investigation.

To simplify the notation, define η := (w̃, x̃a, ξ̃); then
the closed loop system (8) is written as

ηt+1 = Θηt +∆ṽt (19)

where Θ = diag{Ae, Aa,Φ} and ∆ =
[

0 0 ΞT
]T

. It

is readily seen that only the modes associated to ξ̃ are
controllable from ṽ, and that (19) is Lyapunov stable. In
this scenario, the optimization problem (12) becomes:

min
ṽt

Jb(ηt, ṽt) =

N−1
∑

k=0

{

(

xk|t − x⋆

)T
Wx

(

xk|t − x⋆

)

+
(

uk|t − u⋆

)T
Wu

(

uk|t − u⋆

)

}

+ ξ̃TN |tP ξ̃N |t

subject to: ηk+1|t = Θηk|t +∆ṽk|t

xk|t ∈ X , uk|t ∈ U , ξ̃N |t ∈ Ebf (w̃N |t, x̃aN|t
, ξ⋆)

for all k = 0, 1, ..., N − 1 (20)

Note that terminal penalty and terminal constraint set
are considered only with respect to ξ̃ in equation (20),
since adding any terminal cost or constraint for the un-
controllable modes will produce no effect.

Proposition 4 Consider the closed loop system (19)
and the control law given by (20), and let O∞(Θ) denote
the maximal positive invariant set for the autonomous
system ηt+1 = Θηt subject to the constraints in (20). Let
the assumptions of Proposition 2 hold, and, in addition:

(1) Let the terminal set be chosen as Ebf (w̃, x̃a, ξ⋆) ,

{ξ̃ ∈ Rρ : ∃ (w̃, x̃a) ∈ W ⊕ Xa, s.t. η ∈ O∞(Θ)}

(2) Suppose that η0 ∈ KN (O∞(Θ)), whereKN (O∞(Θ))
denotes the maximal N -step stabilizable set, as de-
fined in (Borrelli et al., 2014, Ch. 11).

Then the receding optimization (20) is persistently feasi-

ble and ξ̃t converges to the origin.

Proof of Proposition 4. By Assumption (2) in the s-
tatement of the proposition, there exists a control se-
quence ṽ0 = {ṽ0|0, ṽ1|0, . . . , ṽN−1|0} such that the
optimization (20) is feasible at time t = 0. Moreover,
combining assumption 1) and assumption 2) it follows
that Ebf 6= ∅, ∀ t ≥ 0, and that the terminal state
ηN |t ∈ O∞(Θ), which is a control invariant set for the
closed loop system (19). As a result, the optimization
problem is persistently feasible, (Thm. 13.2, (Borrelli
et al., 2014)). To prove stability, recall that the system
(19) is asymptotically stable, and that ṽ = 0 is a feasible
input in Ebf . Therefore, applying ṽ = 0 and by assump-
tion 4) from Proposition 2, the monotonicity of the value
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Fig. 2. Scheme of the engine air path system.

function holds for (20). As a result, it follows that

lim
t→∞

D(x̃t +Πw̃t +Σξ̃t) = 0,

lim
t→∞

Ccxct +Dcx̃t + Γw̃t +Ψξ̃t +Υṽt = 0

Convergence of (ξ̃t, ṽt) follows by convergence of (x̃a, w̃)
and the results in Section IV. �

Remark 2 Differently from the nominal case, since the
initial condition of the plant model reads as x0 = x̃0 +
x⋆ + Πw̃0 + Σξ̃0 it is possible to assign the projection
of the initial condition x̃0 onto the subspace R⋆ via the
selection of ξ̃0. In fact, denoting by Projw̃,x̃a

(O∞) the
projection of O∞ onto the subspace W ⊕Xa, and Ωξ̃0

:=

{(w̃, x̃a) : (w̃, x̃a, ξ̃0) ∈ O∞}, it follows that Ωξ̃0
⊂

⋃

ξ̃0∈Proj
ξ̃
(O∞) Ωξ̃0

= Projw̃,x̃a
(O∞). Note that Ω0 rep-

resents the admissible set of (w̃, x̃a) in absence of the ex-

tended reference model. Assignability of ξ̃0 allows a possi-
ble enlargement of the domain of admissible w̃0 and x̃a0

.
Thus, the initial feasibility assumption in Proposition 4
may be achieved by an appropriate choice of ξ̃0.

6 Case Study: Over-actuated Diesel Engine

To demonstrate the benefits of the proposed regulator
design, we present a case study concerning a tracking
control problem for air path systems of turbocharged
Diesel engines (Guzzella and Amstutz, 1998) character-
ized by a redundant set of actuators, namely an Exhaust
Gas Recirculation (EGR) valve, a Variable Geometry
Turbine (VGT), and a Variable Geometry Compressor
(VGC) (Canova et al., 2011). A schematic representa-
tion of the considered air path system is shown in Fig-
ure 2, illustrating the available actuator set. Production
air path systems are typically equipped with air mass
flow rate ṁc and intake manifold pressure pIM sensors.
Selecting these variables as regulated outputs yields an
over-actuated system in the sense of this paper. In tur-

Driver

Fuel Maps

FI Control

Air Path
References Engine FE

VGT/EGR/VGC

Control

VGT/EGR

Control

Fig. 3. Proposed air path control systems, as a plugged-in
module within a standard EGR-VGT control scheme.

bocharged Diesel engines, the VGT is controlled to al-
ter the amount of energy extracted by the turbine, im-
proving the boost pressure and avoiding over-speeding
at high engine speed. The EGR recirculates the exhaust
gas into the intake manifold to lower the combustion
temperatures and reduce NOx formation. The two actu-
ators are coordinated to achieve a trade-off between fuel
economy and emissions, and multivariable tracking con-
trollers are today common practice (Jankovic and Kol-
manovsky, 2000; Stefanopoulou et al., 2000). Typically,
the objective of the coordinated EGR-VGT control is
to regulate pIM and ṁc to suitable set-points (p⋆IM , ṁ⋆

c)
obtained from steady-state optimization either experi-
mentally or through the use of high-fidelity engine sim-
ulation models. The set-points are scheduled based on
the engine speed and torque demand from the driver,
and a feedback controller is designed to track the desired
targets in transient conditions. However, turbocharged
engines are affected by the well-known turbo-lag issue,
which has considerable detrimental effects on perfor-
mance in transient conditions. Downsized engines are
further penalized by the risk of operating the compres-
sor close to the surge limit, due to the need of maintain-
ing high boost pressure at low flow rate conditions (i.e.,
during gear shifts). The use of VGCs have been recently
proposed as a solution to directly control the compressor
operating point and stability. The additional degree of
freedom introduced by the VGC can be exploited to op-
timize the trajectory of the compressor operating point
while steering the output to the desired set-point.

Application of the methodology proposed in this paper
aims at the synthesis of an “add-on” controller that can
be connected to an existing EGR-VGT controller (see
Figure 3.) Due to the considerable calibration effort re-
quired to develop a control strategy, redesigning an ex-
isting architecture to accommodate the presence of an
additional actuator would be a costly and unappealing
proposition. Here, dynamic control allocation is used
to modify the references for an existing air path sys-
tem, and does not require modification or recalibration
of the tracking controller. Additionally, it relies only on
the available set-point (p⋆IM , ṁ⋆

c), as shown in Figure 3;
hence the steady-state optimization of the air path sys-
tem, which involves considerable fine-tuning from engine
calibrators, can be preserved in its integrity. Transitions
between set-points have been modeled as step respons-
es of stable systems emulating typical engine dynamic-
s, which can be incorporated in the plant model in the

7



Table 1
Engine operating condition for model linearization

Neng = 1.8 kr/min, ṁfuel = 5.53 g/s

pIM = 201.7 kPa, pEM = 245.3 kPa, Ntc = 79.6 kr/min

uV GT = 44 %, uEGR = 7 %, uV GC = 50 %

ṁc = 187 g/s, ηc = 69.4 %

form of a suitable exosystem.

6.1 Air Path System Model and Control Objectives

In previous work (Taburri et al., 2011), a five-state non-
linear model was developed to capture the low-frequency
dynamics of the engine air path system, and validat-
ed against experimental data collected on a test engine.
A three-state, reduced-order model was then derived to
predicts the dynamics of the intake and exhaust mani-
fold pressure (respectively, pIM and pEM ) and the tur-
bocharger speed, Ntc. Using the notation shown in Fig-
ure 2, the model equations read as:

dpIM
dt

= KIM (ṁc + ṁEGR − ṁeng)

dpEM

dt
= KEM (ṁeng + ṁfuel − ṁEGR − ṁt)

dNtc

dt
=

1

JNtc

(Pt − Pc) (21)

where the constants Kj, j =IM ,EM are computed by
averaging the temperature of the fluid (air, exhaust gas-
es) within the intake and exhaust manifold, and J is
the rotational inertia of the turbocharger. The nonlin-
ear nature of the model results from the expressions for
the mass flow rates (ṁc, ṁEGR, ṁeng, ṁt) and the com-
pressor and turbine powers (Pt, Pc), which are nonlinear
functions of states and inputs of (21). A detailed de-
scription of the model is found in Taburri et al. (2011).
For control design, the model (21) has been linearized
about the engine operating point given in Table 1.

The exogenous signal, state vector, control input, regu-
lated output and performance output appearing in (1)
are respectively given by:

w = [Neng ṁfuel]
T , x = [pIM pEM Ntc uV GC ]

T

u = [uV GT uEGR vV GC ]
T

y = [pIM ṁc]
T , z = [ηc Ntc]

T (22)

With a mild abuse of notation, all variables in (22) are
now used to represent deviations from the nominal oper-
ating condition, whereas in (21) the same notation was
employed for the physical variables. Note that the origi-
nal control input uV GC has been augmented as an addi-
tional state with an integrator to remove the direct feed-
through at the output equation by considering the slew
rate vV GC as a new input. The auxiliary performance

Table 2
Exosystem model parameters

ωn = 25.12 rad/s, ζ = 0.4, τ = 0.707 s, κ = 1.414 s
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Fig. 4. Exogenous signals: engine speed (top) and fuel flow
rate (bottom).

variables z focus primarily on the compressor operating
point by considering the turbocharger shaft speed Ntc

and the compressor efficiency ηc, which can be related to
turbo-lag and boosting performance. The constraints for
the linearized system (in terms of deviations from nom-
inal operating condition) include saturation limits for
the actuators, uV GT ∈ [−20, 20] %, uEGR ∈ [−7, 20] %,
uV GC ∈ [−30, 30] %, and states pIM ∈ [−60, 60] kPa,
pEM ∈ [−75, 75] kPa, Ntc ∈ [−30, 30] krmin−1, repre-
senting permissible deviations from the nominal values.
An additional constraint is included to characterize the
safe operating region for the compressor, which is limited
by surge and choke at low and high flow rate condition-
s, respectively. The constraint is formulated in terms of
the Surge Index (SI), constrained in the range [5, 95] %.

The exosystem has been obtained from the discretiza-
tion of an integrator cascaded with a second-order filter
for engine speed, and of an integrator cascaded with a
first-order filter for fuel flow rate to generate the time-
varying input profiles (Neng(t), ṁfuel(t)) shown in Fig-
ure 4. The parameters of the filters (natural frequen-
cy ωn and damping ζ, and pole time constant τ and ze-
ro time constant κ, respectively) are given in Table 2.
These values are representative of the engine response
during a vehicle tip-in (acceleration) and tip-out (decel-
eration) transient. The corresponding time-varying ref-
erence r(t) = [prIM (t), ṁr

c(t)] in Figure 6 has been ob-
tained from (Neng(t), ṁfuel(t)) by using a linearization
of the aforementioned static feed-forward map.

6.2 Control Design and Simulation Results

The control objective is to track the desired set-point of
air mass flow rate ṁ⋆

c and intake manifold pressure p⋆IM ,
while improving the compressor efficiency ηc and shaft
speed Ntc and avoiding compressor surge. These addi-
tional performance specifications are to be accomplished

8



Fig. 5. Maximal feasible set for the exosystem states
Neng , ṁfuel (top) and plant states pIM , pEM (bottom).

via minimization of the cost functional

J (z, u) =

∞
∑

t=0

z̃(t)TWz z̃(t) + u(t)TWuu(t) (23)

where z̃ := z−zd denotes deviation from the desired val-
ue zd = [30.6% 30.4 kr/min]T for z, andWz ∈ R2×2 and
Wu ∈ R2×2 are symmetric and positive definite weight-
ing matrices. The extended reference model (5) has state
ξ ∈ R2 and input v ∈ R. A stabilizer of the form

xc(t+ 1) = xc(t) + Tse(t) , yc(t) = Ccxc(t) +Dcuc(t)

with state xc ∈ R2 and input uc(t) = x(t)− xr(t), is de-
signed on the basis of the linearized model. The stabiliz-
er incorporates integral actions of the regulated error to
achieve offset-free tracking. A standard linear quadrat-
ic regulator (LQR) approach has been used to design
the stabilizing feedback gain Kc = (Cc Dc). A sampling
time Ts = 0.02s and a prediction horizon with N = 5
are used in this study. Note that robust stability and ro-
bust feasibility issues are outside the scope of this paper.
Consequently, it has been assumed that the mismatch
between the nonlinear and the linearized models is small
enough so that stability and feasibility are maintained
in the vicinity of the operating condition.

The proposed allocator-based regulator has been tested
in simulation on the nonlinear model (21), and com-
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pared is compared against a baseline regulator obtained
by assigning ξ(0) = 0 and v(t) ≡ 0, resulting in the
steady state pair xr(t) = Πw(t), ur(t) = Γw(t), where
(Π,Γ) solve the regulator equation (7). Note that the t-
wo regulators share the same stabilizing feedback gain
matrixKc. Figure 5 shows the computed maximal feasi-
ble sets for the exogenous signals Neng, ṁfuel and state
pIM , pEM respectively, which represent the projection of
Ω0,O∞ onto the associated subspaces. Note that these
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sets are shifted by adding the target values. It is clear
that Ω0 ⊂ O∞, confirming the advantage (for the lin-
earized model) over a conventional design, as suggested
in Remark 2. Figure 6 compares the output reference tra-
jectories and the actual trajectories obtained with the
two regulators. The regulated outputs pIM , ṁc converge
asymptotically to the reference trajectories, with neg-
ligible differences between the two different design ap-
proaches. Figure 7 compares the auxiliary performance
variables and highlights the improvement achieved by
the allocator-based regulator over the baseline. In par-
ticular, the proposed approach improves the compressor
efficiency and turbocharger shaft speed without affecting
the output tracking performance. This result is achieved
mainly by a substantial actuation on the VGC, as shown
in Figure 8. This outcome can be explained by examining
the control authority of the actuators. A simple inspec-
tion of the linearized plant model shows that the VGC
has the highest control authority on the auxiliary perfor-
mance variables ηc, Ntc and SI, while the EGR andVGT
have higher influence on the boost pressure and air flow
rate. Although small differences are observed, the VGT
and EGR valve positions converge to different steady s-
tate values, which is primarily required to compensate
the deviations of the regulated variables caused by the
VGC actuation. Additionally, the allocator-based regu-
lator is able to maintain the system transient response
well within the limits of the inputs, states and perfor-
mance variables, as opposed to the baseline case. Specif-
ically, the SI is kept within the limit of stability for the

compressor at 10s and 15s, as shown in Figure 7, while
the VGC and the EGR actuators are saturated at the
limits. This is mainly achieved via a proper assignmen-
t of the internal dynamics ξ(t) at those instants, which
modifies the state x̃(t) and renders the constrained pre-
dicted optimization problem feasible.

7 Conclusions

A systematic methodology for the design of optimizing
regulators for input-redundant systems has been pre-
sented within the framework of inverse model allocation
introduced in Serrani (2012). In particular, a model-
predictive approach has been taken in this paper towards
the definition of the dynamic allocation module of the
regulator architecture proposed therein. The feasibility
properties of the ensuing closed-loop system have been
investigated, and a sufficient condition for asymptotic
stability has been formulated in a coordinate-free set-
ting. A case study on the control of the air path system
for a linearized model of a turbocharged Diesel engine
has been presented. The results of a nonlinear simulation
study confirm the benefits of the proposed methodology
over standard regulators, although one should be wary
of the local domain of validity due to the linear setup
required by the current framework. Efforts are being de-
voted to extending the applicability of the methodology
to linear parameter-varying (LPV) systems and specific
classes of nonlinear models of interest.
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A Terminology and Notation (Wonham, 1985)

Let C : X → Y and let V ⊂ X be a subspace
with insertion map V : V → X . The domain restric-
tion of C to V is the map C|V : V → Y defined
by C|V := CV . Let C : X → Y and let W ⊂ Y

be a subspace with insertion map W : W → Y , and
imC ⊂ W ⊂ Y . The codomain restriction of C to W

is the map W |C : X → W defined by W (W |C) := C.
If AV ⊂ V , the restriction to the invariant subspace
V ⊂ X of the endomorphism A : X → X is the map
A|V : V → V that satisfies V (A|V ) = AV , where V
is the insertion map of V in X . Let X̄ := X /V and
denote by P : X → X̄ the canonical projection mod-
ulo V . Then there is a unique map Ā : X̄ → X̄ such
that ĀP = PA, where Ā is termed the map induced on
X /V by A. Let A : X → X and B : U → X . A
subspace V ⊂ X is a controlled-invariant subspace of
the pair (A,B) if there exists a map F : X → U such
that (A+BF )V ⊂ V , where F is termed a friend of V .
For a given controlled-invariant subset V of X , the set
of all friends of V is denoted by F(V ). The controllable
subspace associated to the pair (A,B) is the subspace
〈A|B〉 := B + AB + · · · + An−1B, where B := imB.
A subspace R ⊂ X is called a controllability subspace if
there exists a map F : X → U and G : U → U such
that R = 〈A+BF |im (BG)〉.

B Proof of Proposition 3

The proof of Proposition 3 follows by a series of inter-
mediate results established in the form of lemmas.

Lemma 5 The pair (DΣ,Φ−ΞΥ†Ψ) is detectable if the
pair

(

D,A+B(I −ΥΥ†)F
)

is detectable.

Proof of Lemma 5. The lemma is proved by contradic-
tion. Assume that the pair

(

D,A+B(I −ΥΥ†)F
)

is de-
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tectable but the pair (DΣ,Φ−ΞΥ†Ψ) is not. Then, there
exists λ ∈ spec(Φ−ΞΥ†Ψ)∩ C̄+ and ξ ∈ Cρ, ξ 6= 0 such
that (Φ−ΞΥ†Ψ)ξ = λξ andDΣξ = 0. Since the insertion
map Σ : R⋆ → X is monic, by applying Σ on both sides,
one obtains (ΣΦ−ΣΞΥ†Ψ)ξ = λΣξ. Recalling the syn-
thesis of the extended reference model, the above equa-
tion readily implies (A+BF ) Σξ − BΥΥ†FΣξ = λΣξ.
As a result, there exists λ ∈ spec

(

A+B(I −ΥΥ†)F
)

∩
C̄

+ and x = Σξ ∈ C
n, x 6= 0 such that

(

A+B(I −ΥΥ†)F
)

x = λx , Dx = 0

which contradicts the assumption. �

Lemma 6 The subspace R
⋆ is a controlled-invariant

subspace for Psq, and each friend of R⋆ for P is also a
friend of R⋆ for Psq. Morevover, for Psq the spectrum
of the restriction of AQF to R⋆, spec(AQF |R⋆), is fixed
for any F ∈ F(R⋆).

Proof of Lemma 6. Let F ∈ F(R⋆). Since (F −
QF )R⋆ = (I − Q)FR⋆ ⊂ im (I − Q) = B−1R⋆,
then from (Wonham, 1985, Ch.4), it follows that
QF ∈ F(R⋆). Hence, (A + BQF )R⋆ ⊂ R⋆, and the
first claim is proven. To prove the second claim, let
Fi ∈ F(R⋆), i = 1, 2, and ĀQFi denote the restriction of
A+BQFi to R⋆. Again from (Wonham, 1985, Ch.4), it
follows that (F1 − F2)R

⋆ ⊂ B−1R⋆. Then, for any x̄ ∈
R⋆, one obtains Σ(ĀQF1 − ĀQF2)x̄ = BQ(F1 − F2)Σx̄.
Since Σx̄ ∈ R⋆, it follows that (F1 − F2)Σx̄ ∈ B−1R⋆.
Recalling that kerQ = B−1R⋆, it follows that
Σ(ĀQF1 − ĀQF2)x̄ = 0, ∀x̄ ∈ R⋆. The insertion map Σ
being monic implies that ĀQF1 = ĀQF2, hence the map
AQF |R

⋆, is independent of F for F ∈ F(R⋆). �

Fix a basis adapted to the chain 0 ⊂ R⋆ ⊂ S ⊂ X ,
and a basis adapted to both V and V † for U . In these
coordinates, the maps A, B and BQ have representation

A=









A11 A12 A13

A21 A22 A23

0 0 A33









, B=









B11 B12

0 B22

0 0









, BQ=









0B12

0B22

0 0









being

R
⋆ = im









Iρ

0

0









, V = im

[

Im−p

0

]

, V
† = im

[

0

Ip

]

The fact thatR⋆ is a controlled-invariant subspace forP

implies that imA22 ⊂ imB22, hence for any F ∈ F(R⋆)

F =

[

F11 ∗ ∗

F ⋆
21 F22 ∗

]

where ∗ denotes unimportant entries, F ⋆
21 is such that

B22F
⋆
21 = −A21, and F11, F22 assign eigenvalues to the

controllable pairs (A11, B11) and (A22, B22), respective-
ly. Clearly, for any F ∈ F(R⋆)

A+BQF =









A11 +B12F
⋆
21 A12 +B12F22 ∗

0 A22 +B22F22 ∗

0 0 A33









whereA33 represents the induced map of AQF to X /S ,
which is fixed for any F ∈ F(R⋆) and AQF |X /S =
A|X /S . It follows immediately that (A+BQF )R⋆ ⊂
R⋆ for any F ∈ F(R⋆). Also, the second claim implies
that the map A11 +B12F

⋆
21 is fixed for any F ∈ F(R⋆).

Remark 3 For the “squared” triplet (C,A,BQ), the
controllability subspace contained in kerC is 0, and
R⋆ is a controlled-invariant subspace. In particular,
A11 + B12F

⋆
21 is a representation of the induced map

AQF |(R⋆/0), which is independent of the choice of
F ∈ F(R⋆) and whose spectrum is part of the set of the
invariant zeros of Psq (Schumacher, 1980).

Lemma 7 Let F ∈ F(R⋆) be selected such that
spec(AF |S /R⋆) ∈ C−. Denote by D|R⋆ the domain re-
striction of the performance output map D : X → Z to
R⋆. Then, the pair

(

D,A+B(I −ΥΥ†)F
)

is detectable
if and only if the pair (D|R⋆, AQF |R⋆) is detectable.

Proof of Lemma 7. Since Υ : V → U is the inser-
tion map from V to U , the map ΥΥ† : U → U is the
projection on V along V

†. As a result, Q = I − ΥΥ†.
Denoting by D =

[

D1 D2 D3

]

the representation of
D in the basis adapted to R⋆ used in the proof of Lem-
ma 6, detectability of the pair

(

D,A+B(I −ΥΥ†)F
)

is equivalent to the condition

rank















A11+B12F
⋆
21 − λI A12 +B12F22 ∗

0 A22 +B22F22 − λI ∗

0 0 A33−λI

D1 D2 D3















= n+ s

for all λ ∈ spec(A + BQF ) ∩ C̄+. Since by assump-
tion spec(A22 +B22F22) = spec(AF |S /R⋆) ⊂ C−, and
spec(A33) = spec(A|X /S ) ⊂ C

− by proposition 1, the
above condition becomes

rank

[

A11 +B12F
⋆
21 − λI

D1

]

= ρ+ s

for all λ ∈ spec (A11 +B12F
⋆
21) ∩ C̄+. The result follows

from the fact that A11+B12F
⋆
21 and D1 are respectively

the coordinate representations of AQF |R⋆ and D|R⋆. �
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