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Abstract

We illustrate the importance of geometrically accurateunod quadrature for obtaining optimal
accuracy with non-boundary-fitted finite element discedtans, when the problem domain is de-
fined by sharp boundaries. We consider the tetrahedral Geitenethod (TetFCM) and replace its
recursive subdivision based integration approach wittmgeacally accurate quadrature rules that
emanate from higher-order geometric parametrizationsibfetrahedral elements. The element-
wise parametrization procedure relies on the identificatithe intersection topology and a series
of higher-order mappings based on Lagrange polynomialsiéieonstrate with several 3D exam-
ples that geometrically faithful local parametrizatiorseres optimal accuracy, while significantly
reducing the number of quadrature points with respect tarsaee subdivision. On the other hand,
we highlight the strength of subdivision quadrature in thietext of a patient-specific workflow for
the simulation-based performance analysis of coupled/bopkant configurations. In particular,
we show that accuracy, flexibility and computational efficig of the TetFCM critically depends
on flexibly applying the two different quadrature variamasfuzzy imaging data and sharp bound-
ary representations, respectively.

Keywords: Tetrahedral finite cell method, non-boundary-fitted diszation, higher-order
geometric parametrization, numerical integration

*Corresponding author;
Dominik Schillinger, Department of Civil Engineering, Wersity of Minnesota, 500 Pillsbury Drive S.E., Minneapo-
lis, MN 55455, USA; Phone: +1 612 624 0063; Fax: +1 612 626 7EsMail: dominik@umn.edu

Preprint submitted to Computer Methods in Applied Mechsiaied Engineering July 25, 2016

© 2016. This manuscript version is made available under the Elsevier user license
http://www.elsevier.com/open-access/userlicense/1.0/




Contents

3

4

4

6

3 7
A modelproblem . . . . . . . . e e e e e e e e 8

Review of theoretical resu or isoparametric finiseents . . . . . .. . ... 9
nterrelation between quadrature and solution acgurathe finite cell methad . 10

4 Quadrature rules based on local parametrization of cut tetahedra 11
/ dentification and classification of valid intersecttopologies . . . . . . . . . .. 11
4.2 Beyond valid intersection toooloaies ........................ 13
4.3 Parametrization based on nodal Lagrange polyndmials. . .. .. ... ... 13

S 19

i vlindri le . .. e e 20

5.2 Thick spherical shell under internal pressure . . . . . cooee o oo oo 21
actured femur bone withanailimplant. . . . . ... ... . ... .. ... 24

y imaging data harply defined B-rep models . . . . . . .. 25




1. Introduction

Embedded domain finite element methods approximate théi@olof boundary value prob-
lems using non-boundary-fitted meshes [1]. Their primargl goto increase the geometric flex-
ibility of the finite element method and to alleviate meslatedl obstacles that often appear for
geometrically complex domains. For example, embedded ooomncepts have been success-
fully employed to deal with trimmed CAD surfaces [2-5] anchigpe based geometries [6, 7], to
prevent mesh updating and mesh distortion effects [8—11§ bandle fluid—structure interaction
problems involving large displacements and contact [1P-15

Embedded domain methods require two fundamental compebeybnd standard finite ele-
ment technology. First, they need to be able to enforce Bletdoundary conditions at embedded
surfaces, for which variational methods such as Lagrandeptiers [16--18] or Nitsche-type tech-
niques|[19-21] have been successfully employed. Secoeyinged to be able to evaluate surface
and volume integrals in cut elements. In this context, thpartance of geometrically faithful
guadrature has been recently highlighted in a series ofrpapen early account can be found
in the thesis of $AVREV [22] who demonstrated the direct relation between geomatturacy,
numerical quadrature of cut elements and reduced ratewwérgence in the Cartesian finite cell
method. KAMENSKY et al. [13] recently presented the role of geometry in embddbmain-type
methods from a broader perspective, coining the iemmersogeometric analydisr methods that
precisely capture immersed geometry in a non-boundaedfiiackground mesh. Several authors
recently contributed techniques to generate geometyiealturate quadrature points for cut ele-
ments [18, 23-28]. We highlight the framework presented R\eE and QuEROVIC [24], which
we will make frequent use of in our implementation.

The finite cell method introduced byaRvizIAN , DUSTER and RANK [29,/30] combines non-
boundary-fitted Cartesian meshes with higher-order apmration of the solution fields and adap-
tive quadrature of intersected elements based on recusgbaivision. A concise summary of the
Cartesian finite cell method can be found for example in toenereview inl[31]. Readers inter-
ested in an instructive and easy-to-handle starting pomiiplementing the finite cell method are
referred to the open source code FCI\E]I{RE]. The tetrahedral finite cell method (TetFCM) is an
emerging variant that employs non-boundary-fitted meshesdon tetrahedra with direct access
to local mesh adaptivity [33, 34] as an alternative to otbeal refinement schemes in the Carte-
sian finite cell method [35—38]. A considerable advantageefinite cell method is the flexibility
of its recursive subdivision based quadrature approactthwg easy to implement and can oper-
ate with almost any type of geometric model. It is based om#dw®mposition of each intersected
element into adaptive sub-cells that can be efficientlymizgad in hierarchical tree data structures,
aggregating quadrature points around the intersectirfgsirGiven a large enough depth of the
tree, the geometry in intersected elements is resolvedsaificient fidelity, so that higher-order
accuracy of the solution fields can be maintained. The firatiencethod therefore falls under the
umbrella of immersogeometric methods![33, 34]. Howeves, @tialuation of the large number
of quadrature points in intersected elements involves hipitovely large computational cost, in
particular for high-fidelity analysis of three-dimensibpeoblems.

http://fcmlab.cie.bgu.tum.de



In this paper, we first outline a framework for automaticalgrametrizing the geometry of
tetrahedral elements that are arbitrarily intersected Isynaoth surface parametrized by non-
uniform rational B-splines (NURBS) [39]. The element-wsarametrization procedure is based
on the identification of cut elements in the non-boundatgditmesh and their classification in
terms of a few topological cut cases that decompose eachésiron into a combination of sub-
elements. Core components of our framework are root-findiggrithms and a series of higher-
order mappings motivated by the NURBS-enhanced finite at¢cencept [40-42]. The former
determine element intersections with a smooth spline serthe latter blend sub-element surfaces
on the intersecting spline surface. The robustness andkeffic of this procedure can be improved
by a variety of techniques shown in [24].

We use the element-wise geometric parametrizations teelgaometrically accurate volume
quadrature rules as an alternative to the recursive-sisialivbased quadrature approach in the
tetrahedral finite cell method. The main part of the papamapts a careful assessment of each
guadrature variant with respect to accuracy and conveegeifrttie solution, the number of quadra-
ture points and the associated computational cost, andotheatibility with different geometric
models. To this end, we employ several benchmark problefirsedieby sharp spline surfaces to
compare the performance of the two quadrature variantseim&FCM. We also present a cou-
pled bone/implant simulation of a fractured human femurebitvat is held together by a proximal
femoral nail implant. This example involves both geomatnmdels based on fuzzy medical imag-
ing data and sharp CAD boundary representations. Our sesmphasize that, depending on the
specific geometric model, both quadrature variants playgooitant role to preserve the flexibility
of the TetFCM, while increasing its computational efficigmt high-fidelity 3D computations.

The paper is organized as follows: In Section 2, we providereise summary of the TetFCM
technology, with particular focus on the quadrature ofrsgeted elements based on recursive
subdivision. Section 3 illustrates the importance of geicedly accurate volume quadrature for
obtaining optimal accuracy with non-boundary-fitted mest&ection 4 outlines our parametriza-
tion framework, discussing its basic components. SectipreSents numerical benchmarks and
the coupled bone/implant analysis, computed with our TBtRFamework that uses a combina-
tion of the two quadrature variants. Section 6 puts the nigaleesults into perspective and draws
conclusions about the competitiveness of quadrature igeés in the non-boundary-fitted setting.

2. Brief review of the tetrahedral finite cell method

We start with a summary of the tetrahedral finite cell methrothe context of linear elasticity.
For details, we refer the interested reader to the receRCIdtcontributions in|[33, 34].

2.1. Discretization with non-boundary-fitted tetrahedei#ments

The starting point is the variational form of a problem, defiron the domaif with Dirichlet
and Neumann boundariés, andI"y, respectively. For linear elasticity, we use the principie
virtual work

oW (u,ou) = /

a’:éedQ—/(Su-bdQ—/ ou-tdl'y = 0 (1)
Q Q 'y
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Figure 1: Boundary value problem defined éhand its discretization with a non-boundary-fitted triarsguhesh,
leading to elements intersected by the embedded boundanyd).

wherew anddu are the true and virtual displacementssandde = 1/2 (Vu + Vul) denote
the Cauchy stress and virtual strain tensors, &amehd¢ are body forces and boundary traction,
respectively@ﬂq.

In contrast to the standard finite element method, the Tet@dWvs the discretization of the
variational form[(1) with basis functions that can arbitsaoverlap the domain boundaiy. This
leads to a non-boundary-fitted finite element mesh, whoseezies can be arbitrarily intersected
by the domain boundary. Figuré 1 illustrates the concepttHfertwo-dimensional analogue with
triangular elements. Releasing the constraint of bounfitieg elements constitutes a significant
simplification for meshing geometrically complex domaisom a practical point of view, it is
convenient to first define an embedding domain of simple gégrtieat can be meshed easily and
subsequently remove all elements without support in thblpro domain.

The same principle applies in three dimensions for tetretiedements. Figurgl 2 illustrates
the generation of a non-boundary-fitted tetrahedral mesha first step, we identify a suitable
embedding domain and employ a standard octree [45] to spegfons of local refinement. The
octree can be easily transferred into a measure of local dessity by writing out the position of
the center of each octree leaf and the associated edge kaggpecifies the local element width
h in its vicinity. In a second step, we feed this cloud of poimtsl the associatédvalues into the
open-source mesh generator NetdEh [46] (or any other sthtetsahedral meshing tool), which
generates a corresponding adaptive non-boundary-fitteahemiral mesh. Advanced tetrahedral
mesh generators make use of built-in efficient mesh smaogtmia regularization algorithn‘aﬂ]

a Define an embedding domain b Adaptive tet mesh with octree ¢ Remove all elements without
with a hierarchical octree. edge lengths as locatvalue. support in the problem domain.

Figure 2: The three steps of generating an adaptive non-boundaey-fét mesh for a plate with a circular hole.
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that ensure high-quality undistorted elements with weti¥fed angles. In the third step, we re-
move all elements that have no support in the problem donfdia.resulting tetrahedral mesh is
independent of the geometric boundaries of the immersextband its local features.

To enforce Dirichlet boundary conditions at embedded sedathe TetFCM uses variationally
consistent Nitsche methods, which do not introduce adaatianknowns and preserve a positive
definite stiffness matrix. For linear elasticity, the Nhecmethod extends the principle of virtual
work (1) as follows

5WK(u,5u):/a:56dQ—7/ uy, - (6o -m™)dl
Q I'p
—/ (op-nt)-dudl+ 43 [ w-dudl (2)
FD FD
5Wf(5u):/b-5ud9—7/ ﬁ-(éa-nﬂdf%—/ t-oudl+p w-dudl  (3)
Q I'p I'n I'p

wheredWg = 6Wy. Functionii denotes the prescribed displacements along the Diricblatdb-
ary I'p andn™ is the outward unit normal vector dn,. With v = 1, we obtain the standard
symmetric form of Nitsche’s method, which we use in this pafigequires a scalar stabilization
parametep; that can be determined empirically or from a generalizedraiglue problem [20, 48].
We note that withy = —1, we obtain a parameter-free hon-symmetric Nitsche metd6d30],
which was recently shown to work accurately and robusthynfar-boundary-fitted discretizations
of linear elastic problems without stabilization (i.8.= 0) [21].

A
A\

a Separate the four corner sub-cells first. b Split the remaining octahedron into four sub-cells.

Figure 3: Building block of the recursive subdivision approach: aakédron is split int@ sub-cells.

2.2. Quadrature of cut tetrahedra based on recursive subidin

Tetrahedral elements intersected by the embedded bouretariye special numerical integra-
tion methods, because the volume integrald in (2) ahd (3pake defined over portions of the
element domain. The tetrahedral finite cell method uses drgtie technique based on recursive
octree subdivision of all cut elements. Its basic buildifagk is the split of a tetrahedron into eight
tetrahedral sub-cells as shown in Kifj. 3. This split can Ipdiegh recursively for each cut sub-cell
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Figure 4: Example of recursive subdivision quadrature: Tetraheah@dh (black lines) of the embedding domain,
resolution of the cube geometry with sub-cells (blue linasyl quadrature points (green to red - inside, blue - oytside

until a predefined maximum level of sub-cells is reached. alchesub-cell, we apply a standard
5-point monomial rule for quadratic basis functions and &paint quadrature rule for cubic basis
functions [51], so that quadrature points are aggregatéfteatnmersed boundary. The weights
of the quadrature points in each sub-cell are scaled witiahene of the sub-cell. The concept
of recursive subdivision is illustrated for a cube that scdetized by a non-boundary-fitted mesh.
Figure 4 illustrates the tetrahedral elements (black )inkge adaptive sub-cell structure (blue
lines) and the quadrature points. We note that all quadraiaints outside the problem domain
are not taken into account during integration. Figure 4tHates the significant increase in point
evaluations produced by recursive subdivision. The Teth&Ciis form therefore shifts the effort
from meshing to numerical quadrature of intersected tettedd cells.

From an algorithmic viewpoint, we implement recursive suisibn in a “bottom-up” fashion.
We first refine the complete tetrahedral element by genegratirpossible leaves at the maximum
tree depth. We then start to build up the octree by combinétg ef uncut sub-cells into one
sub-cell of higher level. This pruning procedure is repgagzursively until we reach the root at
the top, that is, the original finite element. Our intersattest relies on an inside/outside test that
determines whether quadrature points of a sub-cell areéddan different sides of the geometric
boundary. A major advantage of this approach is that sm#dlane captured reliably, if they have
at least one quadrature point inside the problem domainieftubut otherwise. The bottom-up
procedure is computationally more expensive than the tapagrocedure applied e.g. in[33], but
is very well suited for parallelization. We refer to [34] fardetailed description of the algorithm.

3. Importance of geometrically accurate quadrature in embedded domain analysis

Before discussing the technical aspects of parametrirditgsed quadrature, we illustrate the
importance of geometrically accurate volume quadratur@lfdaining optimal solution accuracy
on non-boundary-fitted finite element meshes. To this endexaenine the convergence behavior
of a simple numerical example for two different quadratuagants and interpret our observations
by pointing out analogies to standard theoretical resaltssbparametric finite elements.
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Figure 5: Annular ring under internal pressure (from/[31]).

3.1. A model problem

We consider a confined ring in plain strain elasticity, satgd to internal pressure, which is
shown in the sketch of Fig. 5. A detailed description of thelgem and its analytical solution
is given in [7]. We discretize the problem domain with Cadasmeshes whose elements do
not conform to the circular boundaries. We emphasize tleajfometric aspects addressed in the
following do not depend on a specific type of basis functionshe present case, we employ cubic
B-splines, but the same observations can be made for noddritateral or triangular elements.
The Dirichlet boundary conditions on the outer circle ar@ased with Nitsche’s method, where
the stabilization parametéris estimated from a local eigenvalue problem [21., 48, 52].

Following the thesis of 8avREV [22], we compare recursive-subdivision and element-wise
parametrization based quadrature for numerically integgantersected elements. The two quadra-
ture variants are illustrated in Figs. 6a and 6b, respdgtivehe recursive-subdivision based ap-
proach subdivides each cut elementinto a hierarchicatsilistructure and subsequently removes
all quadrature points located outside of the problem domdihe approach for quadrilaterals
shown in Fig. 6a is equivalent to what has been describe@t@attedra in Section 2.2 above. The
alternative quadrature approach of Fig. 6b is based on #maezit-wise parametrization of the
portion of each element domain that is located within theudamring. Since we employ cubic
B-splines for the approximation of the solution in this exd&) we use cubic Lagrange polyno-
mials defined over quadrilaterals and triangles for the @ppration of the circular boundary in
each intersected element. The coefficients of the polynanterpolation simply emanate from
the nodal coordinates of quadrilateral and triangularesfee elements.

Figures 7a and 7b illustrate the convergence iniheorm and the//! semi-norm, respec-
tively, as the mesh is uniformly refined. We observe that threfmutations based on the recursive-
subdivision approach achieve optimal higher-order ratesoavergence in the pre-asymptotic
range. However, convergence abruptly stops after a drércar level has been reached, which de-
pends on the depth of the hierarchical sub-cell structurtéhed present case, we use four recursive
levels of adaptive sub-cells. In contrast, the computatlmased on element-wise parametrization
of cut elements are not affected by the quadrature scherievaty optimal higher-order rates of
convergence also in the asymptotic range.
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Figure 6: The two quadrature variants employed in the annular ringberk.

3.2. Review of theoretical results for isoparametric fi@tlements

Before performing computations, we review a theoreticalitefor boundary-fitted finite ele-
ments given in the classical book byRANG and Fx [53]. In chapter 4.4, “Approximation of
domain and boundary conditions3frang and Fix examine the influence of the geometry approxi-
mation on the accuracy of the finite element solution ford&ad isoparametric discretizationa.
what they denote as “case 2", they consider a boundary vabtdgm with Neumann boundary
conditions only, defined over an exact problem donfaiand discretized by isoparametric ele-
ments. Case 2 resembles our embedded domain situatione \Riméchlet boundary conditions
based on Nitsche’s method have a variational format sirtol&reumann boundary conditions.

The main points can be summarized as follows: In general,ite fshlement mesh does not
represent the problem domdinexactly, but represents an approximatighof the exact domain
Q. In the case of Neumann boundary conditions only, there iguastion of imposing conditions
on the wrong boundary, since basis functions are unrestriat the boundary. Therefore, the
effect of using an approximate domain enters exclusivedyintegrating ovef2” instead of(.
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Figure 7: Convergence in relative error norms vs. the number of degrEgeedom for the annular ring problem.

In this sense, the impact of integrating over an approxirdateain geometry and the impact of
integrating with an inaccurate quadrature rule can be tyreelated and the corresponding errors
commute. In[[53], Strang and Fix provide an error estimaterims of the (squared) error in strain
energyFE? due to integration ove®” instead of?, which reads

E? < C1h% + C, g%t (4)

The first term in Eql4 represents the usual strain energy due to the difference between the
exact solution: and the finite element approximatia#i. It involves an error constar,, the
characteristic mesh siZzeand the polynomial degreeof the finite element approximation. The
second term is purely geometrical and represents the effegpproximating the geometry of
the problem domain. It involves another error constantthe characteristic mesh sigeand the
degreey of the polynomial geometry approximation. For isoparamefements, the characteristic
lengthsh and g and the polynomial degreesand ¢ coalesce. It is then easy to see that the
geometric part of Ed.J4 converges at a faster rate than thedira and will thus never affect the
performance of standard isoparametric methods.

3.3. Interrelation between quadrature and solution acoyran the finite cell method

Equation’ 4 directly generalizes to the embedded domain eas8trang and Fix did not as-
sume at any point during their derivation that the finite edaibasis functions or the underlying
elements need to be fitted to the dom@inin contrast to the isoparametric case discussed |n [53],
the finite cell method uses a geometry approximation thattsied to the finite element mesh. In
the embedded domain cageandq of Eq.[4 are therefore independent frénandp.

The key to understanding the interrelation between quadrand solution accuracy in the
finite cell method is to consider the influence of the two gaadhe variants oy andq. When
the recursive-subdivision based approach is used, thexippate domair2” is represented by
a cloud of quadrature points that is generated from the sillstucture (see Fig. 6a). While
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the interpretation ofj as the edge length of the finest sub-cell is obvigusgmains unknown,
as the cloud of quadrature points is not a polynomial appnation. However, it is intuitively
clear when considering the “saw-tooth” pattern of the sel-structure that the equivalent to
g must be low order. The geometric fidelity can always be irsgday adding more sub-cell
levels, that is, decreasing However, if the finite cell method employs basis functiohkigher-
order polynomial degreg, the first term in Eql.J4 will converge significantly faster enanesh
refinement with constant number of recursive sub-cell ketredn the second part that is dominated
by a low orderg. It is therefore unavoidable that at some error level, tiededer convergence of
the geometry will start to dominate the overall error, |@gdio an abrupt change in convergence
rate as shown in Figs. 7a and 7b. In addition, increasing épehdof the sub-cell structure is
limited by the exponential growth in the number of quadramints, which makes this approach
prohibitively expensive even for moderate recursive selbrefinement. The recursive subdivision
approach can therefore be considered unable to achieverkogtter convergence rates in the
asymptotic limit. With this being said, we emphasize thatrcursive subdivision approach can
still lead to full accuracy in the pre-asymptotic range, & start with a large enough number of
sub-cell levels. In particular for low order instantiatsoaof the finite cell method, the recursive
subdivision approach can be a competitive choice (seelZS§). [

When an element-wise parametrization is used, the appetgidomairf)” is represented by
higher-order accurate polynomials (see Fig. 6b). As we deaj@ometric parametrizations for
each intersected element, the corresponding charaatéeisgthg is of the same order ds It is
therefore straightforward to see that if we choose polymdsrof degree = p for parametrizing
the geometry in cut elements we are in the same situationthe isoparametric cas&he second
term of Eq[4 converges slightly faster than the first termwitidhus never affect the convergence
rate of the finite cell method. This is confirmed by Figs. 7a @gdwhich illustrates asymptotic
higher-order convergence rates for the local parameimizaariant.

4. Quadrature rules based on local parametrization of cut terahedra

The discussion in Section 3 motivates the use of local paraagon-based quadrature rules
in the tetrahedral finite cell method. In the following, wesdebe our framework that generalizes
the element-wise parametrization concept for tetrahetieahents intersected by trimmed NURBS
surfaces. Our implementation consists of three basic s{épfind intersected elements and clas-
sify them into topologically valid and invalid cases; (2y@aetrize the cut element domain with
Lagrange polynomials if possible; (3) generate geomélyieacurate quadrature rules from each
local parametrization. There are several contributiorthérecent literature that describe differ-
ent variants for parametrizing cut elements [18,/22| 24—Rvparticular, we would like to point
interested readers to the work oRIEs and QMEROVIC [24], which contains a comprehensive
discussion of basic concepts and technical details foraatiraon 2D and 3D element types. We
also note that the basic concept of element-wise pararagtiizis closely related to blending
techniques employed in higher-order finite element metf4lS5].

4.1. ldentification and classification of valid intersectimpologies
We start with a geometric boundary representation thatistsnsf a trimmed NURBS surface
immersed into a non-boundary-fitted tetrahedral mesh. érfitht step, we identify all elements

11
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a Cutinto tet and prism. b Cut into two prisms.

Figure 8: Intersection topologies that allow for parametrizatiothvdasic combinations of Lagrange polynomials.

that are intersected by the immersed boundary. To this eadyexform inside/outside tests for

all vertex points and several test points distributed owmhetriangular face of the tetrahedral
mesh. For the latter, we use the locations of the 6-poinhgugar quadrature rule, which we

found sufficient for practical spline surfaces. We note tbasurfaces with pronounced curvature
in coarse unfitted discretizations, one should increaseuh®er of points. The inside/outside test
is based on a ray tracing framework for trimmed NURBS sudatzscribed in [56].

If we find that different points are located on different siae the surface, we mark the ele-
ment as cut, otherwise as completely inside or outside. détoailiedral elements, there are only
two intersection topologies that allow for parametrizatwith basic combinations of Lagrange
polynomials. As illustrated in Fig. 8, a tetrahedron can itteee split into a sub-tetrahedron and a
sub-prism or into two sub-prisms [24,/57]. We determine iiaelement belongs to either of the
two valid intersection topologies by carrying out the fallog tests for each of the four triangular
faces:

« If all three vertex points of a face lie on one side of the NUBR&irface, all other test points
on that face must lie on the same side.

* If vertex points of a face lie on different sides, two edgasstrbe cut with only one cut per
edge. If a cut goes through a vertex, the opposite edge oo etige must be cut.

« If we find a total of three cut edges in the element, we havedhprism case. If we find a
total of four cut edges in the element, we have the prisrmpadase.

For determining intersections with element edges, we eyrthl® same ray tracing framework
[56]. The global coordinates of intersections points aneest for use in the next step. We note that
there exist fast alternatives to ray tracing that are coatpmrtally more efficient. An example is
a GPU-accelerated point membership classification basedfioely sampled voxelization of the
CAD object and a rendering technique developed by Krishmdmet al. [58]. Recent tests in the
context of the finite cell method have shown that this metks@bie to determine an inside/outside
identification of half a billion voxels in less than 30 secemh a GPU of a standard laptop|[59].
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4.2. Beyond valid intersection topologies

There are a number of situations, when a valid intersectipnlogy as defined above cannot
be established. Typical examples are cut elements withsditige are cut more than once or with
edges that are not cut at all, although the correspondirgifacut. These situations are quickly
encountered even for simple geometries and coarse mesgeee (§., [24] for illustrations). We re-
act to these situations by consecutively applying two diifi: remedies. In a first step, we employ
subdivision into sub-elements. In many cases, this willoresvalid intersection topologies for
each sub-element, for which the parametrization procechmebe then applied separately. For all
sub-elements, whose intersection topology is still irtjadubdivision can be recursively repeated
until a maximum depth is reached or only valid intersectapologies are found. In a second step,
if recursive sub-division could not restore a complete $gabd intersection topologies, we resort
to the standard recursive subdivision based quadratuteediriite cell method (see Section 2.2).
We note that we will also apply the second option, if the gemimeodel has features, for example
sharp edges along trimming curves, that cannot be resolvéiber-order parametrization. We
anticipate that some sort of local mesh generation couldppéeal to fit sub-elements to sharp
features (see, e.g., [26]), which is outside the scope sftiork.
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a Tet with one quadratic face. b Prism with quadratic triangle. ¢ Prism with serendipity face.

Figure 9: Reference elements for quadratic parametrization emglmythis paper.

4.3. Parametrization based on nodal Lagrange polynomials

If the cut element can be characterized by one of two intémetopologies shown in Fig. 8,
we can parametrize the relevant part of the element domamaembinations of Lagrange poly-
nomials. These polynomials can be defined in a straighti@wey by standard tetrahedral and
prism elements with one higher-order face. In the scopeisfghper, we employ the following
three types of element parametrizations illustrated in &iga) a tetrahedron with a quadratic tri-
angular face, (b) a prism with a quadratic triangular faoel, @) a prism with a quadrilateral face
based on the quadratic serendipity element. This concepbeaasily extended to higher-order
polynomials, if required, by using more nodes on each cusuethce.
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In the following, we provide some basic technical detailstfee three cases applied in this
work. For triangular faces, we use the basis functibh®f the 6-noded Lagrange triangle in
natural coordinate§d;, 62, 05} = [0, 1], which read|[60]

L1 = (91(2(91 — 1)7 LQ = 92(292 — 1), L3 = (93(2(93 — 1)
L4 = 491(92, L5 = 492(93, L6 = 49193 (5)

The first and second lines represent vertex and edge modpsctively.
The basis functiong,; of the 8-noded quadrilateral serendipity element in patemeoordi-
nates{¢,n} = [0, 1] read [60]

1A=L +n+8); La=1(1-n1-gA-n+¢)
Ly=3(1-n)(1+&1—-n—&); Li=3(1+n)1+&(1+n-¢)
Ls = 5(1=n*)(1 =€) Ls=5(1 - &)1 +n)

(=) (1 +&); Ls=3(1-&)(1—n) (6)

where the first two lines represent the vertex modes and steévi@ lines the edge modes. We
choose the serendipity over the 9-noded quadrilateral eiénsince it does not require finding
geometric parameters for the center node, but still ackiquadratic convergence.

The geometric mappings of the parametrized volumetricedabients are then obtained by
blending linear basis functions with the quadratic surfae@pingsl(b) and {6) at the higher-order
face. The sub-element geometric maps are parametrizecebgotirdinatesi;, 7;, 27 of nodal
points. For the sub-tetrahedron with one quadratic tritargace, we obtain the map

T Z7
Ui| +1 |7 (7)
Z; Zq
For the sub-prism with one quadratic triangular face, waiokthe map
6 Zi‘z i’7 Ii‘g i’9
(r,s,t):(1—t)ZLi(91,92,93)~ Ui| +tr |gr| +ts |gs| +t(1—7—=5) [99]| (8)
=1

2 27 Zg
In both (7) and[(B), the natural coordinates of the quadtatngle ared, = -, 6, = *; and
03 = 1*53. For the sub-prism with one quadratic quadrilateral facepltain the map

[ ] (r,s,t) = (L=7) > Li(&n) - { ] +tr H + (1=t {yig] 9)

=1 ZZ 29
where the parametric coordinates of the serendipity basigibns aré = —landnp =2t—1.

L7:

6

} (r,s,t) = (1=1) Y Li(61,65,065) -

i=1

SIS

N e oy

INEENS
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and weights of Lagrange polynomials

quadrature points

Figure 10: Sequence of mappings that enable the geometrically aecp@aaametrization of intersected elements.

4.4. Sequence of higher-order mappings

We can now construct a sequence of higher-order mappinggkeus from the identification
of the intersection topology to the local geometric paraination of the physical element domain.
Figure 10 illustrates the complete process. Once a valtsattion topology for a cut element is
found, we use the ray tracing framework![56] to find interpiolapoints on the element faces that
provide geometric parameters for the edge modes of theceunfiappingd (5) andl(6). To this end,
we construct a search line on each cut triangular face tmatemis the mid-point of the uncut edge
with the opposite vertex. The ray tracing framework debviere coordinates of the interpolation
nodes in parametric surface coordinaf€sn} of the spline space (yellow dots in Fig. 10). For
higher-order parametrizations where several interpmatodes have to be chosen, optimal search
paths for different intersection topologies and elemepésyare given in [24].

We can then recover the corresponding coordinates in phiysjpace{z, y, z} by using the
NURBS surface map, for which we know B-spline basis fundjorontrol points and weights
[39]. The corresponding anisotropic sub-elements careyphrameter space of the geometric
parametrization in parametric coordinafess, t}. Using the physical coordinatés;, 4;, 2;]* of
the interpolation nodes as parametric input in expresgidn$8), and[(P), we can parametrize the
local geometry in each intersected tetrahedral elemergpimg the sub-elements to the physical
space. For valid intersection topologies, the framewodwshin Fig. 10 is a robust way to estab-
lish connections between the different geometric entifidsere are a few interesting aspects that
we would like to address in the following three remarks.

Remark 1: As we use tetrahedral elements with strictly planar fadesrélation between global
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coordinateqz, y, z} and barycentric element coordinates, (o, (3, (4}, in which the tetrahedral
basis functions are defined, can be exactly expressed|eS1B4,

1 1 1 1 1 C1
T _| %1 T2 T3 T4 G2 (10)
Yy Y1 Y2 Ys Ya G
z 21 k2 k3 24 Ca

where the coordinates in the matrix are the vertex pointe@btriginal cut element. It is easy to
compute the inverse relation f (10) analytically, from eihalso partial derivatives of each phys-
ical coordinate with respect to each barycentric cooréirtain be established (see for example
[61]). These partial derivatives can be used to map devestivith respect to barycentric coordi-
nates to derivatives with respect to physical coordindesation [10) also holds for higher-order
elements (subparametric mapping).

Remark 2: While the Jacobian matrix for mapping the basis functiorsoistrolled by [(1D), the
integration over the parametrization domain requires tmeputation of a second “geometric” Ja-
cobian matrix, whose determinant is required for mappiffgintial elements from the paramet-
ric space{r, s, t} of the sub-elements to global coordinafesy, z}. This “geometric” Jacobian
can be computed in the usual way by re-expressing all basaifuns in expressiongl(7).1(8), and
@) in terms of{r, s, t} and taking corresponding partial derivatives.

Parametric space {&,n} Physical space
(spline surface)
f Spline
blendin
fa g
—

({,/

Figure 11: If a linear interpolation between the intersection vegiteassumed in the spline space, the parametriza-
tions in general do not maintain planar faces of the tetrefi@tements.

Remark 3: An important point of our framework is the higher-order padynial interpolation of
the curved spline surface in each intersected element (ged®. As the interpolation nodes
are located on the planar faces of the tetrahedral elenm@stgtiarantees that the polynomial
parametrizations conform to the planar faces of the intéesktetrahedral element. In this context,
we would like to emphasize that applying an exact splineditemnmethod, e.g., in the sense of
the NURBS-enhanced finite element method [18, 42, 62], asswantinear interpolation between
the intersection vertices in the parametric space of thaeplrface. It is clear that when mapped
forward to the physical space the resulting curves do nahltee planar faces of the tetrahedral
element. In particular, they arbitrarily bulge out of thamdr element faces as illustrated in Fig. 11.
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a Geometry. b Tet mesh of the embedding cube.

Figure 12: Octant of a thick spherical shell.

a Quadratic parametrization (curved b Recursive subdivision using four lev-
edges approximated by straight lines).  els of sub-cell refinement.

Figure 13: Sub-element structure.

a Quadratic parametrization. b Recursive subdivision.

Figure 14: Quadrature points corresponding to the sub-element sresshown in Fig. 13.
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To close the gap between the original affine non-boundamsdfiietrahedron, on which finite
element basis functions are defined, and the spline basedefeo parametrization, one could
map the finite element basis functions on the curved geommetrthe same exact spline blending
functions. However, this requires that common faces of@ging elements are mapped in ex-
actly the same way to maintain a properly defined geometiyanitgaps and overlaps. Therefore,
re-introducing curved element faces into the non-boundited mesh leads to several restric-
tions. For example, in discretizations with both standardrnlary-fitted elements and embedded
boundaries, the spline mapping in general also deformsdbadary-fitted faces in elements that
see both types of boundaries. Another restriction is thaticking between several quadrature
variants in neighboring elements, e.g. spline blending sutatlivision based quadrature, is not
possible anymore, because these mappings in general indgfiesent geometric mappings that
lead to incompatible common faces.

4.5. Higher-order geometrically accurate quadrature sile

The sequence of mappings illustrated in Fig. 10 provide®#ses for generating higher-order
guadrature rules that also represent the geometry of a entesit with higher-order accuracy.
For tetrahedral sub-elements, we use a 5-point quadratilgefar the integration of quadratic
basis functions and an 11-point quadrature rule for thegmateon of cubic basis functions [51].
For prism-type sub-elements, we employ tensor-produensions of 6- and 12-point triangular
monomial rules, multiplied by corresponding Gauss-Legemdles in a tensor-product sense, for
integrating over quadratic and cubic basis functions, eeyely. These rules are not exact, as
the “geometric” Jacobian is a rational function. We note #ray other monomial rule can be
used as well that yields the desired accuracy (see for exa[éh) 63-65]). Before using a local
parametrization based quadrature rule we check the “gemh@acobian of the parametrization
mapping to ensure that it is well defined and larger than z#rd.is smaller than zero, which
could potentially happen in case of intersecting splinéesas with very high curvature [24], we
initiate the subdivision procedure described in Secti@n 4.

As a first test case, we use our quadrature framework for womdary-fitted tetrahedral ele-
ments for the integration of the volume of a thick spheritelsshown in Fig. 12a. The inner and
outer radii are chosen d3,=50 andR,=100, respectively. The domain is embedded in a cube,
which is discretized by a sequence of tetrahedral meshescddrsest mesh is shown in Fig. 12b.
We also compare the performance of our framework based oreelewise quadratic parametriza-
tion with the recursive subdivision approach that has beed within the finite cell method so far.
Figures 13a and 13b plot the sub-elements generated bydimeet-wise parametrization and by
recursive subdivision of level 4, respectively. We notd thie choose this particular level of sub-
cell refinement, as it achieves approximately the same acgwas the parametrization approach
for mesh densities of practical engineering interest (si& 5). Figures 14a and 14b plot the
corresponding quadrature points generated by the two gtiadrvariants. Blue sub-elements and
points are within the domain, red points are outside andnlegsected in the quadrature process.

We observe from these plots that the recursive subdiviggpnaach requires significantly more
guadrature points than the parametrization approach tesckthe same level of accuracy. This
is confirmed by Figs. 15a and 15b. They plot the relative aerrdhe volume integral and the
quadrature cost in terms of the number of points that areiregjgo achieve this specific error
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level with respect to increasing mesh size. For the thirdmibe two quadrature variants shown
in Figs. 14a and 14b achieve the same accuracy, but the rexgrbdivision approach at level 4
requires approximately 8 times more point evaluations.tkeifourth tetrahedral mesh, the accu-
racy of the local parametrization approach is already omtach for recursive subdivision at level
5, which requires 15 times the number of quadrature poirdgsathe maximum number of levels
computable on a standard laptop.

Remark 4: There is a cost involved for generating parametrizatiosedaquadrature rules. In
particular, the root-finding step can be computationallgemsive, when implemented in a naive
fashion. However, the final realistic computational effortgeometry-related operations is diffi-
cult to estimate, as the implementation of correspondiggréghms in our research code could be
significantly improved, based on an abundance of related wofields such as computer graph-
ics, computational visualization, or animati[66]. Ind&tbn, nonlinear or multiphysics simu-
lations, where computational cost is decisive for the tahfsi of an analysis, typically require
a large number of iterations with the same quadrature pofatem an analysis viewpoint, the
reparametrization cost quickly becomes insignificant, raiten how expensive, and the number
of quadrature points remains the only significant measuar€idure 15 and all other figures in the
remainder of this paper, we therefore use the number of quaerpoints as the only measure for
computational cost of a quadrature method.

5. Numerical examples in three dimensions

We are now in a position to test the performance of elemesé\warametrization based vol-
ume quadrature of intersected elements in the tetrahedii@ &iell method. To this end, we will
consider two benchmark problems and an application omestample of a coupled bone/implant
simulation. The latter involves geometric models baseduzzyf imaging data and sharp CAD
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Figure 15: Comparison of element-wise parametrization and recusiNelivision based quadrature for numerically
integrating an octant of a thick spherical shell over a noaruary-fitted tetrahedral mesh.
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boundary representations, providing an opportunity talngdt the advantages of recursive subdi-
vision and parametrization based quadrature varianthielis¢ope of this work, we focus on local
parametrizations based on quadratic polynomials, usiedrémework discussed in the previous
section. We emphasize that second-order geometric agasrdne most relevant case from a prac-
tical engineering viewpoint, as the finite cell method hasrbghown to be particularly attractive
at moderate polynomial degrees 2 and 3, representing a comg® between higher-order conver-
gence and a reasonably conditioned system [34]. We not®tindtamework can be extended in
a straightforward way to geometric parametrizations highan second order [24].

— -
‘ — - Traction t=10

Material:
E=100,000
v=0.3

Figure 16: Three-dimensional thick plate with a circular hole.

5.1. Plate with a cylindrical hole

As a first benchmark, we consider a thick plate with a circtidle under uniform tension
shown in Fig[ 16. We reduce the system to one octant of thénatigomain and apply symme-
try boundary conditions in a weak sense by Nitsche’s metiwd.generate a sequence of four
uniformly refined non-boundary-fitted tetrahedral mesies discretize the embedding box irre-
spective of the hole. Quadrature of intersected elememsriermed with recursive subdivision
at different levels of sub-cell refinement and with elemarge parametrization. Figures 17a and
17b show the corresponding quadrature points for the csians@-boundary-fitted mesh.

Figure[18 plots the strain energy error versus the numbeegfeis of freedom for the four
different meshes. We compute the relative error in stragrggnnorm defined as [43, 44, 67]

‘Unum_ Uref|
e = 4| ——"1 11
Uref ( )

whereU,,m, represents the numerical strain energy obtained for afepd@cretization, and/ e
is a reference strain energy computed with an overkill éiszation [34]. We observe that the
finite cell method with local parametrization achieves iati rates of convergence. For the same
accuracy level, the subdivision approach requires at Bebestels of recursive sub-cell refinement.
In Fig. 19, we plot the circumferential stress, evaluatexh@glthe circular boundary of the
hole @ = 0...w/2), for different quadrature variants in the second mesh ofsauies. The
corresponding location is illustrated in Fig. 16 as a daskddine. We observe that the geometric
error of the subdivision approach with just one level of seli-refinement leads to a significant
error in the boundary stresses. The error can be mitigateaddidyng additional sub-cells, but
we need at least four levels to match the accuracy of the elemise parametrization approach.
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Geometrically accurate quadrature rules based on parnaat&in guarantee an accurate stress
solution directly at the embedded boundary from the onda¢. résults of Fig. 19 highlight again
the importance of geometric accuracy in embedded domailysasare-enforcing the opening
discussion of Section 3 that has been based on initial 20tsesWe emphasize again that all
results of Fig. 19 have been generated from the same mesithgigame quadratic finite element
basis functions, with the only difference being the quadetule in intersected elements.

5.2. Thick spherical shell under internal pressure

As a second example, we examine the spherical thick she#runternal pressure, whose
geometry corresponds to the example shown in Fig. 12a. Dwggrtonetry, we consider only
one eighth of the original problem. Following the derivatishown in [63| 69], there exists an
analytical solution in spherical coordinatgs ¢, 0} of the form

.

oy =——0>h <&‘) —1 (12)
CEL
.

Oy =09 = p3 %(%) +1 (13)
i)

Uy = - (1 —v)og — vo,] (14)

The rest of the displacement components are zero due to syyariée choose an inner radius
R;=50, an outer radiu&,=100, Young’s modulu&'=10,000 and an internal pressuyres0.

We discretize an embedding box in such a way that both dowlrixed surfaces are intersected
by the tetrahedral mesh. The coarsest discretization afessef four uniformly refined meshes is

a Element-wise parametrization. b Recursive subdivision.

Figure 17: Coarsest mesh for the plate problem with integration palaté/ed from the two quadrature variants.
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Figure 18: Convergence of the relative error in strain energy for tlaepbroblem.

shown in Fig. 12b and the corresponding quadrature poimsrgéed from element-wise quadratic
parametrization and recursive subdivision are plottedigs.FL4a and 14b, respectively. We em-
ploy quadratic basis functions and impose symmetry boynctamditions weakly using Nitsche’s
method as formulated ifl(2) ard (3).

Figures 20a to 20c plot the von Mises stresses in a sectidredhick shell computed with the
third mesh from our series and different quadrature vagiahie three plots show that in the bulk
of the domain the stress results are equivalent irrespeatithe quadrature method used. However,
the stress accuracy at the surface varies greatly betweandthods. We observe in Fig. 20a that
using recursive subdivision with only one level of adapteBnement leads to large oscillations
in the surface stress. We can improve the stress accuracgidiygamore levels (see Fig. 20b),
since this increases the geometric fidelity at the embeddeddary. Figure 20c demonstrates
that quadrature points based on quadratic parametrizaioave the oscillations entirely, leading
to an accurate stress solution at the surface.

Figure 21a compares the convergence in strain energy ebtaiith quadratic non-boundary-
fitted tetrahedral elements and different quadrature ntwias the mesh is uniformly refined. We
once more observe the characteristic convergence behhatowe have already observed in Sec-
tion 3. Recursive subdivision based quadrature with only lenel of sub-cell refinement leads
to sub-optimal rates of convergence due to its low-ordengeoy approximation. Increasing the
number of recursive refinement levels ensures optimal natibe pre-asymptotic range, but leads
to a sudden decrease asymptotically, as soon as the low-gedenetric convergence of the sub-
division approach reaches its accuracy limit. Quadratraipetrization and associated quadrature
points represent the geometry with a second-order rateshndmables optimal rates of conver-
gence in the energy error at all accuracy levels.

Figure 21b repeats the same study for cubic tetrahedra,ishm®train energy errors in the
pre-asymptotic range. We observe that the subdivisioncggpr at both one and three levels of
recursive sub-cell refinement does not lead to full accuraby parametrization approach based
on quadratic Lagrange polynomials shows good accuradyuth the geometry representation
is one order lower than the cubic approximation of the sotut\We observe that for the targeted
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Figure 19: Accuracy of the circumferential stress along the circulanridary for different levels of sub-cell refine-
ment. Note that we always use the same mesh and quadragcdiaihent basis functions.

error level can be reached before the lower quadratic appagion of the geometry, on which
guadrature points are based, can affect the strain enenygi@ence, governed the cubic approxi-
mation of the solution fields. This indicates that for engimgg accuracy, quadratic element-wise
parametrization seems to be a viable approach also fohestra with cubic or higher-order basis
functions.

Figures 22a and 22b demonstrate the advantages of elensnparametrization from a com-
putational cost point of view. They compare the strain eparuracy computed on cubic tetra-
hedral meshes with respect to the number of quadraturepatidifferent levels of sub-cell refine-
ment. Accuracy is measured by the ratio between the “besilge5energy error on a given mesh
provided there is no geometry error and the actual strairggregror obtained with a given quadra-
ture variant. We use element-wise quadratic parametizat approximate the “best possible”
strain energy error, as this is the most accurate way of iateg intersected elements currently
available to us. We observe that for achieving a ratio closene, the recursive subdivision ap-
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Figure 20: Accuracy of the von Mises stress at the inner circular boondamputed with the tetrahedral finite cell
method on the same mesh based on recursive subdivisioriexedif sub-cell levels and quadratic parametrization.
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Figure 21: Convergence of the relative error in strain energy for thektbpherical shell problem..

proach requires in general between one and two orders ofitndgrmore point evaluations than
guadrature based on element-wise parametrization. K@2& and 22b repeat the same study for
the initial coarse mesh and the mesh after two uniform medsteraent steps. We see that the dif-
ference in point evaluations at the same accuracy levetasas with mesh refinement, since the
higher approximation accuracy in the finer mesh also regunrere levels of recursive refinement
to achieve the corresponding geometric fidelity.

5.3. Fractured femur bone with a nail implant

The previous examples demonstrated the advantages in ¢éimproved accuracy and com-
putational efficiency that element-wise parametrizatibout elements brings about for the tetra-
hedral finite cell method on domains with sharply defined loaumes. The following example
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Figure 22: Ratio of actual vs. best possible energy error with increivels of sub-cell refinement. The first blue
point on the left corresponds to one level of sub-cell refiaetywhich is then increased in steps of one.

illustrates that the success of a particular quadraturersehdepends very much on the type of
geometric model under consideration. In particular, wé @emonstrate that depending on the
specific geometric model, both subdivision based quadradnd element-wise parametrization
play an important role to preserve the flexibility of the TEM.

5.3.1. Fuzzy imaging data vs. sharply defined B-rep models

We present a coupled bone/implant simulation of a fractim@shan femur bone, which in-
volves both diffuse medical imaging data and a CAD model ¢hasesharply defined boundary
data (B-rep).[66]. From an application point of view, thelgieam to be analyzed is part of a patient-
specific workflow for simulation-based performance analygdicoupled bone/implant configura-
tions. It supports physicians in reliably identifying th@st suitable implant type and its optimal
position in a fractured bone of a specific patient. Predictimplant performance constitutes the
basis for an effective and reliable treatment of bone frastu

Patient-specific stress and fracture simulations need tmabed on imaging data of an indi-
vidual bone. Figure 23a shows an X-ray of a broken bone thatiates the fuzziness of the
underlying imaging based geometric information. Figure p®ts data obtained from quantita-
tive computed tomography (qCT) scans after the layer-wisggies have been transferred into a
3D rasterized voxel structure. Each voxel contains a calduerthat can be associated with the
bone’s mineral density. Based on experimental observatian isotropic heterogeneous linear
elastic material can be assumed [70-72]. The distributidheocorresponding Young’s modulus

1Adapted from “Fixing Hip Fractures” by S. Mears, http://wwn@pkinsmedicine.org/gec/series/fixing_fractures
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Bone mineral density

aX-ray of fractured femur boffle b 3D voxel model constructed from qCT scans.

Figure 23: Diffuse patient-specific imaging data of human femur bones.

can be inferred at each image point from the following emplr'relations@ﬂB]

Pash =(1.22 pegm + 0.0523) [glcm?’] (15)
Eeore =10200 x pl [MPa] (16)
Etrab =5307 X Pash T 469 [Mpa] (17)

wherep.,,,, andp,s, denote the mineral density and the ash density, respe;cﬁ]. Depending
on the local density, we use relation]16) for the corticglaa (stiffer material in the outer part) or
relation [17) for the trabecular region (spongy materighi@ inner part). In addition, we assume
a homogeneous Poisson’s ratie= 0.3.

In contrast to the bone, the implant is a well-designed arnamoped technical device, man-
ufactured from titanium with highly homogeneous materiatgmeters, Young's modulus =
116 GPa and Poisson’s ratio= 0.3, and a geometry that is known exactly from the CAD model.
Figures 24a and 24b show an X-ray of a nail implant under ¢ipgraonditions and a plot of the
technical device itself along with corresponding B-rep NB8Rsurfaces and control points of the
CAD model. The CAD model uses the trimming paradigm to regmea perfectly bonded joint.

5.3.2. Phase-field modeling of brittle fracture

Our representation of a crack is based on a phase-field nardwittle fracture@gﬂ, which
is represented in variational form for quasistatic cowndisi by the following multifield equations

/(%HTO(‘”)Jrl)chQ +/4ZSchqu=/qdﬂ (18)

3Adapted from “Fixing Hip Fractures” by S. Mears, http://wvinpkinsmedicine.org/gec/series/fixihgp_fractures
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a X-ray of a femur bone with a nail implzﬁn b Technical device itself, related CAD model.

Figure 24: A nail implant device defined by sharp boundary surfaces.

/(a++a):vwdQ:/b-wdQ+/t-wdaQ (19)

The pairs{u, w} and{c, ¢} represent the displacement and phase-field solutions arespond-
ing test functions. Material parameters involved are thexrgynrelease raté., the characteristic
length scald,, and the Lamé parameters of linear elastigitgndy:.. The tensile and compressive
parts of the stress tensor read

ot = (A\tr(e))" I+ 2ueh) (20)
o = X(tr(e))” I +2ue” (21)

which are based on a corresponding additive split of thésteasor.#, is a history function that
tracks the maximum strain energy induced by the tensilegddhe strain tensor. The phase-field
part [18) requires homogeneous Neumann boundary conslitiba elasticity part(19) the usual
traction and displacement constraints.

The basic idea of the phase-field fracture model (18) andi§l®) represent cracks by a con-
tinuous scalar field that has a value of one away from the crack and is zero at tlok tweation.
The phase-field serves as a multiplication factor to temsikergy components if (R0) such that it
locally penalizes the capability of the material to carrgsiée stress at the crack location. The
diffusiveness of the crack approximation is controlled bg tength-scale parametgr From
a numerical point of view, the diffusive approximation oktbrack by a continuous phase-field
eliminates the need for explicit discontinuities in the mes
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5.3.3. Bone/implant coupling based on Nitsche’s method

In the scope of the present work, we assume perfect bondihg aiterface between the bone
and the implant, neglecting any nonlinear or cohesive &ffatthe interface. The bone and the
implant domains can therefore be coupled weakly by introduan interface term [21, 78] into
the variational form of Nitsche’s methdd (2) that extendshiinear form as follows

Wi (u, du) :;/’Ca’hzéedQ—W*/r*[[u]] - {6o}dl — /F*{a} . [0u] dT
—7/ - (o - n)dF—/(a-n*)-éudF

I'p

+5/ - [6u] dF+6/ Sudl (22)

where quantities denoted with a star are defined on the moplkint interfacd™. The jump and
average operators in_(22) are defined as

[ul] =ut@n" +u" @n~ (23)
(o} =5 +o) (24)

With v+* = 1, we obtain the standard symmetric form of Nitsche’s methekich we use in
this paper. It requires a stabilization parametérthat can be determined from a generalized
eigenvalue problem [3, 52, 79]. In the present study, we sbtloe parameter empirically to be as
small as possible. We note that for = —1, we obtain a parameter-free non-symmetric Nitsche
method [49, 50], which has been shown to work accurately ahdstly for non-boundary-fitted
discretizations of linear elastic problems without stizbiion (i.e.,5* = 0) [21].

5.3.4. Supporting accuracy and flexibility of the TetFCM bgguate quadrature

We discretize the coupled bone/implant problem with twoemehdent non-boundary-fitted
tetrahedral meshes, which are plotted in Figs. 25a and 25hvéobone and the implant, respec-
tively. The geometric basis for the patient-specific bonalysis is the voxel model shown in
Fig. 23b, which provides the qCT-based spatial distributd Young’s modulus from[(16) and
(d2). For a fuzzy voxel model, the concept of intersectethelgs does not directly apply, as there
exists no sharply defined boundary of the problem domain.N&ketore leverage the subdivision
approach to take into account the inhomogeneous stiffrieBgdtion at the quadrature level. We
first locate all tetrahedral elements that are completadatied outside of the bone domain. This
requires that the color value of all voxels located withipadfic element are below a predefined
stiffness threshold. All elements outside of the bone doraaé then removed from the mesh.

Second, we subdivide all remaining tetrahedral elememtssab-cells. The sub-cell resolu-
tion is chosen such that the density of the resulting quadggtoints corresponds to the voxel
resolution. As a consequence, each voxel is associatecatMiglast one quadrature point, so that
the voxel information is fully taken into account during tfleemation of the stiffness matrix. We
emphasize that a finer resolution of quadrature points shtmeibvoided, as it could resolve sharp
interfaces and re-entrant corners between single voxdighware an artifact of the geometric
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Figure 25: Non-boundary-fitted tetrahedral meshes for the bone anidnpiant.

model. In voxel based analysis, the abundance of points ladigision based quadrature is a
clear benefit, as it is the essential mechanism that endidemc¢orporation of the influence of
all voxels in a coarse finite element discretization thaigsificantly below the voxel resolution.
In this sense, the subdivision based quadrature approachecaterpreted as a simple type of
homogenization procedure [80].

Having set up the image based model of the bone, we induce iatingxfully developed
fracture by solving the phase-field equatibnl (18) with a gis&tic#, of the form

BE(1-4)  if d@) <l

Hol®) =1 0 it d(x) > 1

(25)
where B = 1,000 [81]. In our simulation,H, represents a typical fracture plane between the
greater and the lesser trochanters, where approximatéy efOall hip fractures happen. We
note that[(2b) eliminates the material prop&fty reducing the number of open parameters to the
characteristic length scalg, which we choose al§ = h/2 with respect to the mesh sizeat the
crack location.

We adaptively resolve the fracture region by a finer meshKgge25a), leveraging straightfor-
ward mesh refinement in three dimensions as one of the cavahtages of the TetFCM [34].
The corresponding phase-field solution is plotted in Fig.Z6he fracture topology in a typical
application scenario is given in terms of fuzzy images (sgereg. 23a), which impedes the extrac-
tion of an exact sharp fracture surface. Therefore, theskffracture representation conceptually
fits well in this simulation framework.
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Figure 26: Coupled bone/implant analysis based on the TetFCM withilgxapplied quadrature variants, a phase-
field approach to fracture, and perfect bond Nitsche cogplin
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Being based on a sharp B-rep model, the implant fully ben&bis the advantages of the
guadrature approach based on element-wise parametnizigieloped in this paper. As we are
given the exact smooth spline surface of the implant, we @aivel quadratic parametrizations
in a large part of the intersected elements, which serve agh&horder accurate geometric map
for corresponding quadrature points. The presence of sfggps along trimming curves and at
the outer edges of the two implant shafts lead to intersecases that are not considered valid
in the scope of the present paper. This requires the applicat the remedies that we discussed
in Section 4.2. In the present case, we apply recursive gigimh with three levels of adaptive
refinement. In Fig. 25b, the quadrature points generatedéwent-wise parametrization and
recursive subdivision are plotted for a zoom-in close tgaid of the two shafts. We observe that
element-wise parametrization significantly reduces thaber of quadrature points away from
the joint. In the area around the joint the density of quadeapoints remains unchanged, as both
variants currently use subdivision quadrature due to thegrce of sharp edges.

In the final step of the analysis, we tie the bone and implast@gtogether, using the coupling
(22). Taking advantage of the exact CAD surface representaive generate surface quadra-
ture points for integrating coupling terms directly basedtbe Bézier elements of the spline
parametrization [59]. We note that although we assume gigbfending, we are fully taking into
account the varying local bone stiffness along the couphteyface. In the limiting case, we are
coupling the full-stiffness titanium shaft of the implantd zero stiffness voxel of the bone mesh,
which will effectively replicate a free surface on the immtla The imposition of homogeneous
Neumann boundary conditions in the phase-field equdtiondtithe bone surface does not pose
a problem in the TetFCM, since this can be achieved withodidse quadrature. For the elasticity
equation|[(IB), we apply a load of 1000 N on the bone head hlis&dl over a spherically shaped
loading area/ [6]. Displacement boundary conditions at threel lower end are weakly enforced
with Nitsches method.

Figures 26b and 26c¢ plot the coupled bone/implant displacgésron the deformed configura-
tion and the von Mises stress over a surface that cuts the dwdaundary-fitted meshes in half.
The plots demonstrate the successful coupling betweenaihe &nd the implant that is essential
for bridging the intertrochanteric fracture. We obsena th accordance with our tests of Fig. 20,
element-wise parametrization based quadrature enablesdltation free stress representation.
Due to the fuzziness of the image based geometric basis bfthe, the accuracy of stresses at a
specific point of the bone may vary, although the overalkstistribution from a global viewpoint
is accurate (see e.q. [6]). The disadvantage of subdivisased quadrature in terms of point-wise
accuracy on a surface therefore carries far less weightag@ased analysis.

6. Summary and conclusions

The goal of this paper was to highlight the role of two diff@rquadrature variants for inter-
sected elements in the context of the tetrahedral finiteraethod (TetFCM). On the one hand
stands subdivision quadrature that is based on the reeursfinement of quadrature sub-cells
in cut elements and has been a fundamental component of tteedatl method since its begin-
nings. On the other hand stands the element-wise paraateinf cut elements by higher-order
Lagrange polynomials. It accommodates higher-order géawrfedelity that has been recently
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shown to be a key ingredient for preserving optimal accuna@mbedded domain-type methods.
Recalling a basic proof given by Strang and Fix on geomettcigcy in isoparametric finite ele-

ments, we outlined explanations for the break-down of cayesce rates in the asymptotic range
due to the geometric error introduced by recursive subidiviguadrature. We also confirmed that
element-wise parametrization with Lagrange polynomiadd tnatch the order of the basis func-
tions for the approximation of the solution do not producehsa geometric error, thus preserving
optimal convergence rates in the asymptotic limit.

In the technical part of the paper, we described a framevandrametrizing cut tetrahedral el-
ements with quadratic Lagrange polynomials, open to ditlogvard extension to arbitrary order.
Assuming a sharp boundary based on a spline representatioframework is based on charac-
terizing the intersection topology for each cut tetrahkdl@ment and subsequently constructing
a sequence of higher-order mappings. The latter includasfireding to determine intersection
points of element edges and further rays with the splinasarfThese points serve as interpolation
points for quadratic Lagrange polynomials that are defimetetrahedral and prismatic reference
elements. These reference elements can be used to maprdteidehedral and Gaussian quadra-
ture rules to geometrically accurate points and weightatersected element domains.

We presented several benchmark problems that demonstreesignificant advantages of
element-wise parametrization over subdivision quadeatuterms of accuracy and computational
cost in problems that are defined by a sharp boundary. Th&€MWikith subdivision quadrature is
(in theory) able to achieve full accuracy, but at a prohieity large number of quadrature points.
In contrast, the TetFCM with element-wise parametrizatsoable to achieve full accuracy, while
keeping the number of quadrature points at a level that ig slightly increased with respect
to boundary-fitted discretizations of comparable size. W&e showed the critical importance of
an accurate geometry resolution for the accurate appraximaf solution fields directly at the
embedded boundary, which is particularly important whendémbedded boundary represents a
coupling interface to another domain.

In the final part of the paper, we applied a combination of lpihdrature variants in the
context of a patient-specific workflow for the simulatiorsbd performance analysis of coupled
bone/implant configurations. This example involves twdedént geometric models based on
fuzzy medical imaging data for the bone and sharp CAD boynegaresentations for the implant.
We highlighted the specific strengths of each quadratunamadepending on which geometric
model is considered. In the bone, the large number of subdivbased quadrature points proved
essential to take into account the inhomogeneous stifftissisbution at each voxel in the sense
of a homogenization procedure. In the implant, elemenewarametrization enabled an accurate
oscillation free stress resolution at the surface of thdampwhile significantly reducing the num-
ber of point evaluations. We conclude that there is no optgquadrature method for the TetFCM,
but its accuracy, flexibility, and computational efficienaycomplex simulation scenarios relies
on flexibly applying different quadrature variants.
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