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Abstract

We illustrate the importance of geometrically accurate volume quadrature for obtaining optimal
accuracy with non-boundary-fitted finite element discretizations, when the problem domain is de-
fined by sharp boundaries. We consider the tetrahedral finitecell method (TetFCM) and replace its
recursive subdivision based integration approach with geometrically accurate quadrature rules that
emanate from higher-order geometric parametrizations of cut tetrahedral elements. The element-
wise parametrization procedure relies on the identification of the intersection topology and a series
of higher-order mappings based on Lagrange polynomials. Wedemonstrate with several 3D exam-
ples that geometrically faithful local parametrization ensures optimal accuracy, while significantly
reducing the number of quadrature points with respect to recursive subdivision. On the other hand,
we highlight the strength of subdivision quadrature in the context of a patient-specific workflow for
the simulation-based performance analysis of coupled bone/implant configurations. In particular,
we show that accuracy, flexibility and computational efficiency of the TetFCM critically depends
on flexibly applying the two different quadrature variants for fuzzy imaging data and sharp bound-
ary representations, respectively.
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1. Introduction

Embedded domain finite element methods approximate the solution of boundary value prob-
lems using non-boundary-fitted meshes [1]. Their primary goal is to increase the geometric flex-
ibility of the finite element method and to alleviate mesh related obstacles that often appear for
geometrically complex domains. For example, embedded domain concepts have been success-
fully employed to deal with trimmed CAD surfaces [2–5] and image based geometries [6, 7], to
prevent mesh updating and mesh distortion effects [8–11], or to handle fluid–structure interaction
problems involving large displacements and contact [12–15].

Embedded domain methods require two fundamental components beyond standard finite ele-
ment technology. First, they need to be able to enforce Dirichlet boundary conditions at embedded
surfaces, for which variational methods such as Lagrange multipliers [16–18] or Nitsche-type tech-
niques [19–21] have been successfully employed. Second, they need to be able to evaluate surface
and volume integrals in cut elements. In this context, the importance of geometrically faithful
quadrature has been recently highlighted in a series of papers. An early account can be found
in the thesis of STAVREV [22] who demonstrated the direct relation between geometric accuracy,
numerical quadrature of cut elements and reduced rates of convergence in the Cartesian finite cell
method. KAMENSKY et al. [13] recently presented the role of geometry in embedded domain-type
methods from a broader perspective, coining the termimmersogeometric analysisfor methods that
precisely capture immersed geometry in a non-boundary-fitted background mesh. Several authors
recently contributed techniques to generate geometrically accurate quadrature points for cut ele-
ments [18, 23–28]. We highlight the framework presented by FRIES and OMEROVIĆ [24], which
we will make frequent use of in our implementation.

The finite cell method introduced by PARVIZIAN , DÜSTER and RANK [29, 30] combines non-
boundary-fitted Cartesian meshes with higher-order approximation of the solution fields and adap-
tive quadrature of intersected elements based on recursivesubdivision. A concise summary of the
Cartesian finite cell method can be found for example in the recent review in [31]. Readers inter-
ested in an instructive and easy-to-handle starting point for implementing the finite cell method are
referred to the open source code FCMlab1 [32]. The tetrahedral finite cell method (TetFCM) is an
emerging variant that employs non-boundary-fitted meshes based on tetrahedra with direct access
to local mesh adaptivity [33, 34] as an alternative to other local refinement schemes in the Carte-
sian finite cell method [35–38]. A considerable advantage ofthe finite cell method is the flexibility
of its recursive subdivision based quadrature approach, which is easy to implement and can oper-
ate with almost any type of geometric model. It is based on thedecomposition of each intersected
element into adaptive sub-cells that can be efficiently organized in hierarchical tree data structures,
aggregating quadrature points around the intersecting surface. Given a large enough depth of the
tree, the geometry in intersected elements is resolved withsufficient fidelity, so that higher-order
accuracy of the solution fields can be maintained. The finite cell method therefore falls under the
umbrella of immersogeometric methods [33, 34]. However, the evaluation of the large number
of quadrature points in intersected elements involves a prohibitively large computational cost, in
particular for high-fidelity analysis of three-dimensional problems.

1http://fcmlab.cie.bgu.tum.de
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In this paper, we first outline a framework for automaticallyparametrizing the geometry of
tetrahedral elements that are arbitrarily intersected by asmooth surface parametrized by non-
uniform rational B-splines (NURBS) [39]. The element-wiseparametrization procedure is based
on the identification of cut elements in the non-boundary-fitted mesh and their classification in
terms of a few topological cut cases that decompose each tetrahedron into a combination of sub-
elements. Core components of our framework are root-findingalgorithms and a series of higher-
order mappings motivated by the NURBS-enhanced finite element concept [40–42]. The former
determine element intersections with a smooth spline surface, the latter blend sub-element surfaces
on the intersecting spline surface. The robustness and efficiency of this procedure can be improved
by a variety of techniques shown in [24].

We use the element-wise geometric parametrizations to derive geometrically accurate volume
quadrature rules as an alternative to the recursive-subdivision based quadrature approach in the
tetrahedral finite cell method. The main part of the paper attempts a careful assessment of each
quadrature variant with respect to accuracy and convergence of the solution, the number of quadra-
ture points and the associated computational cost, and the compatibility with different geometric
models. To this end, we employ several benchmark problems defined by sharp spline surfaces to
compare the performance of the two quadrature variants in the TetFCM. We also present a cou-
pled bone/implant simulation of a fractured human femur bone that is held together by a proximal
femoral nail implant. This example involves both geometricmodels based on fuzzy medical imag-
ing data and sharp CAD boundary representations. Our results emphasize that, depending on the
specific geometric model, both quadrature variants play an important role to preserve the flexibility
of the TetFCM, while increasing its computational efficiency in high-fidelity 3D computations.

The paper is organized as follows: In Section 2, we provide a concise summary of the TetFCM
technology, with particular focus on the quadrature of intersected elements based on recursive
subdivision. Section 3 illustrates the importance of geometrically accurate volume quadrature for
obtaining optimal accuracy with non-boundary-fitted meshes. Section 4 outlines our parametriza-
tion framework, discussing its basic components. Section 5presents numerical benchmarks and
the coupled bone/implant analysis, computed with our TetFCM framework that uses a combina-
tion of the two quadrature variants. Section 6 puts the numerical results into perspective and draws
conclusions about the competitiveness of quadrature techniques in the non-boundary-fitted setting.

2. Brief review of the tetrahedral finite cell method

We start with a summary of the tetrahedral finite cell method in the context of linear elasticity.
For details, we refer the interested reader to the recent TetFCM contributions in [33, 34].

2.1. Discretization with non-boundary-fitted tetrahedralelements

The starting point is the variational form of a problem, defined on the domainΩ with Dirichlet
and Neumann boundariesΓD andΓN , respectively. For linear elasticity, we use the principleof
virtual work

δW (u, δu) =

∫

Ω

σ : δε dΩ−

∫

Ω

δu · b dΩ−

∫

ΓN

δu · t dΓN = 0 (1)

4



Γ

Ω

t

N

ΓD

Figure 1: Boundary value problem defined onΩ and its discretization with a non-boundary-fitted triangular mesh,
leading to elements intersected by the embedded boundary (in red).

whereu andδu are the true and virtual displacements,σ andδε = 1/2 (∇u + ∇u
T ) denote

the Cauchy stress and virtual strain tensors, andb andt are body forces and boundary traction,
respectively [43, 44].

In contrast to the standard finite element method, the TetFCMallows the discretization of the
variational form (1) with basis functions that can arbitrarily overlap the domain boundaryΓ. This
leads to a non-boundary-fitted finite element mesh, whose elements can be arbitrarily intersected
by the domain boundary. Figure 1 illustrates the concept forthe two-dimensional analogue with
triangular elements. Releasing the constraint of boundary-fitted elements constitutes a significant
simplification for meshing geometrically complex domains.From a practical point of view, it is
convenient to first define an embedding domain of simple geometry that can be meshed easily and
subsequently remove all elements without support in the problem domain.

The same principle applies in three dimensions for tetrahedral elements. Figure 2 illustrates
the generation of a non-boundary-fitted tetrahedral mesh. In a first step, we identify a suitable
embedding domain and employ a standard octree [45] to specify regions of local refinement. The
octree can be easily transferred into a measure of local meshdensity by writing out the position of
the center of each octree leaf and the associated edge lengththat specifies the local element width
h in its vicinity. In a second step, we feed this cloud of pointsand the associatedh-values into the
open-source mesh generator Netgen [46] (or any other standard tetrahedral meshing tool), which
generates a corresponding adaptive non-boundary-fitted tetrahedral mesh. Advanced tetrahedral
mesh generators make use of built-in efficient mesh smoothing and regularization algorithms [47]

a Define an embedding domain
with a hierarchical octree.

b Adaptive tet mesh with octree
edge lengths as localh-value.

c Remove all elements without
support in the problem domain.

Figure 2: The three steps of generating an adaptive non-boundary-fitted tet mesh for a plate with a circular hole.
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that ensure high-quality undistorted elements with well-formed angles. In the third step, we re-
move all elements that have no support in the problem domain.The resulting tetrahedral mesh is
independent of the geometric boundaries of the immersed object and its local features.

To enforce Dirichlet boundary conditions at embedded surfaces, the TetFCM uses variationally
consistent Nitsche methods, which do not introduce additional unknowns and preserve a positive
definite stiffness matrix. For linear elasticity, the Nitsche method extends the principle of virtual
work (1) as follows

δWK(u, δu) =

∫

Ω

σ : δε dΩ− γ

∫

ΓD

uh · (δσ · n+) dΓ

−

∫

ΓD

(σh · n
+) · δu dΓ + β

∫

ΓD

u · δu dΓ (2)

δWf (δu) =

∫

Ω

b · δu dΩ− γ

∫

ΓD

û · (δσ · n+) dΓ +

∫

ΓN

t · δu dΓ + β

∫

ΓD

û · δu dΓ (3)

whereδWK = δWf . Functionû denotes the prescribed displacements along the Dirichlet bound-
ary ΓD andn+ is the outward unit normal vector onΓD. With γ = 1, we obtain the standard
symmetric form of Nitsche’s method, which we use in this paper. It requires a scalar stabilization
parameterβ that can be determined empirically or from a generalized eigenvalue problem [20, 48].
We note that withγ = −1, we obtain a parameter-free non-symmetric Nitsche method [49, 50],
which was recently shown to work accurately and robustly fornon-boundary-fitted discretizations
of linear elastic problems without stabilization (i.e.,β = 0) [21].

a Separate the four corner sub-cells first. b Split the remaining octahedron into four sub-cells.

Figure 3: Building block of the recursive subdivision approach: a tetrahedron is split into8 sub-cells.

2.2. Quadrature of cut tetrahedra based on recursive subdivision

Tetrahedral elements intersected by the embedded boundaryrequire special numerical integra-
tion methods, because the volume integrals in (2) and (3) areonly defined over portions of the
element domain. The tetrahedral finite cell method uses a quadrature technique based on recursive
octree subdivision of all cut elements. Its basic building block is the split of a tetrahedron into eight
tetrahedral sub-cells as shown in Fig. 3. This split can be applied recursively for each cut sub-cell

6



0

material
800600400200

972

Figure 4: Example of recursive subdivision quadrature: Tetrahedralmesh (black lines) of the embedding domain,
resolution of the cube geometry with sub-cells (blue lines), and quadrature points (green to red - inside, blue - outside).

until a predefined maximum level of sub-cells is reached. In each sub-cell, we apply a standard
5-point monomial rule for quadratic basis functions and an 11-point quadrature rule for cubic basis
functions [51], so that quadrature points are aggregated atthe immersed boundary. The weights
of the quadrature points in each sub-cell are scaled with thevolume of the sub-cell. The concept
of recursive subdivision is illustrated for a cube that is discretized by a non-boundary-fitted mesh.
Figure 4 illustrates the tetrahedral elements (black lines), the adaptive sub-cell structure (blue
lines) and the quadrature points. We note that all quadrature points outside the problem domain
are not taken into account during integration. Figure 4 illustrates the significant increase in point
evaluations produced by recursive subdivision. The TetFCMin this form therefore shifts the effort
from meshing to numerical quadrature of intersected tetrahedral cells.

From an algorithmic viewpoint, we implement recursive subdivision in a “bottom-up” fashion.
We first refine the complete tetrahedral element by generating all possible leaves at the maximum
tree depth. We then start to build up the octree by combining sets of uncut sub-cells into one
sub-cell of higher level. This pruning procedure is repeated recursively until we reach the root at
the top, that is, the original finite element. Our intersection test relies on an inside/outside test that
determines whether quadrature points of a sub-cell are located on different sides of the geometric
boundary. A major advantage of this approach is that small cuts are captured reliably, if they have
at least one quadrature point inside the problem domain, butleft out otherwise. The bottom-up
procedure is computationally more expensive than the top-down procedure applied e.g. in [33], but
is very well suited for parallelization. We refer to [34] fora detailed description of the algorithm.

3. Importance of geometrically accurate quadrature in embedded domain analysis

Before discussing the technical aspects of parametrization-based quadrature, we illustrate the
importance of geometrically accurate volume quadrature for obtaining optimal solution accuracy
on non-boundary-fitted finite element meshes. To this end, weexamine the convergence behavior
of a simple numerical example for two different quadrature variants and interpret our observations
by pointing out analogies to standard theoretical results for isoparametric finite elements.
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Figure 5: Annular ring under internal pressure (from [31]).

3.1. A model problem

We consider a confined ring in plain strain elasticity, subjected to internal pressure, which is
shown in the sketch of Fig. 5. A detailed description of the problem and its analytical solution
is given in [7]. We discretize the problem domain with Cartesian meshes whose elements do
not conform to the circular boundaries. We emphasize that the geometric aspects addressed in the
following do not depend on a specific type of basis functions.In the present case, we employ cubic
B-splines, but the same observations can be made for nodal quadrilateral or triangular elements.
The Dirichlet boundary conditions on the outer circle are imposed with Nitsche’s method, where
the stabilization parameterβ is estimated from a local eigenvalue problem [21, 48, 52].

Following the thesis of STAVREV [22], we compare recursive-subdivision and element-wise
parametrization based quadrature for numerically integrating intersected elements. The two quadra-
ture variants are illustrated in Figs. 6a and 6b, respectively. The recursive-subdivision based ap-
proach subdivides each cut element into a hierarchical sub-cell structure and subsequently removes
all quadrature points located outside of the problem domain. The approach for quadrilaterals
shown in Fig. 6a is equivalent to what has been described for tetrahedra in Section 2.2 above. The
alternative quadrature approach of Fig. 6b is based on the element-wise parametrization of the
portion of each element domain that is located within the annular ring. Since we employ cubic
B-splines for the approximation of the solution in this example, we use cubic Lagrange polyno-
mials defined over quadrilaterals and triangles for the approximation of the circular boundary in
each intersected element. The coefficients of the polynomial interpolation simply emanate from
the nodal coordinates of quadrilateral and triangular reference elements.

Figures 7a and 7b illustrate the convergence in theL2 norm and theH1 semi-norm, respec-
tively, as the mesh is uniformly refined. We observe that the computations based on the recursive-
subdivision approach achieve optimal higher-order rates of convergence in the pre-asymptotic
range. However, convergence abruptly stops after a critical error level has been reached, which de-
pends on the depth of the hierarchical sub-cell structure. In the present case, we use four recursive
levels of adaptive sub-cells. In contrast, the computations based on element-wise parametrization
of cut elements are not affected by the quadrature scheme, achieving optimal higher-order rates of
convergence also in the asymptotic range.

8



Finite cells
Sub-cell grid
Quadrature
point inΩ
Quadrature
point outsideΩ

a Subdivision quadrature: recursively refined sub-cells aggregate quadrature points at the geometric boundary.

b Element-wise parametrization with cubic quadrilateral and triangular reference elements.

Figure 6: The two quadrature variants employed in the annular ring benchmark.

3.2. Review of theoretical results for isoparametric finiteelements

Before performing computations, we review a theoretical result for boundary-fitted finite ele-
ments given in the classical book by STRANG and FIX [53]. In chapter 4.4, “Approximation of
domain and boundary conditions”,Strang and Fix examine the influence of the geometry approxi-
mation on the accuracy of the finite element solution for standard isoparametric discretizations.In
what they denote as “case 2”, they consider a boundary value problem with Neumann boundary
conditions only, defined over an exact problem domainΩ and discretized by isoparametric ele-
ments. Case 2 resembles our embedded domain situation, where Dirichlet boundary conditions
based on Nitsche’s method have a variational format similarto Neumann boundary conditions.

The main points can be summarized as follows: In general, a finite element mesh does not
represent the problem domainΩ exactly, but represents an approximationΩh of the exact domain
Ω. In the case of Neumann boundary conditions only, there is noquestion of imposing conditions
on the wrong boundary, since basis functions are unrestricted at the boundary. Therefore, the
effect of using an approximate domain enters exclusively via integrating overΩh instead ofΩ.
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Figure 7: Convergence in relative error norms vs. the number of degrees of freedom for the annular ring problem.

In this sense, the impact of integrating over an approximatedomain geometry and the impact of
integrating with an inaccurate quadrature rule can be directly related and the corresponding errors
commute. In [53], Strang and Fix provide an error estimate interms of the (squared) error in strain
energyE2 due to integration overΩh instead ofΩ, which reads

E2 ≤ C1 h
2p + C2 g

2q+1 (4)

The first term in Eq. 4 represents the usual strain energy error due to the difference between the
exact solutionu and the finite element approximationuh. It involves an error constantC1, the
characteristic mesh sizeh and the polynomial degreep of the finite element approximation. The
second term is purely geometrical and represents the effectof approximating the geometry of
the problem domain. It involves another error constantC2, the characteristic mesh sizeg and the
degreeq of the polynomial geometry approximation. For isoparametric elements, the characteristic
lengthsh and g and the polynomial degreesp and q coalesce. It is then easy to see that the
geometric part of Eq. 4 converges at a faster rate than the first term and will thus never affect the
performance of standard isoparametric methods.

3.3. Interrelation between quadrature and solution accuracy in the finite cell method

Equation 4 directly generalizes to the embedded domain case, as Strang and Fix did not as-
sume at any point during their derivation that the finite element basis functions or the underlying
elements need to be fitted to the domainΩ. In contrast to the isoparametric case discussed in [53],
the finite cell method uses a geometry approximation that is not tied to the finite element mesh. In
the embedded domain case,g andq of Eq. 4 are therefore independent fromh andp.

The key to understanding the interrelation between quadrature and solution accuracy in the
finite cell method is to consider the influence of the two quadrature variants ong andq. When
the recursive-subdivision based approach is used, the approximate domainΩh is represented by
a cloud of quadrature points that is generated from the sub-cell structure (see Fig. 6a). While
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the interpretation ofg as the edge length of the finest sub-cell is obvious,q remains unknown,
as the cloud of quadrature points is not a polynomial approximation. However, it is intuitively
clear when considering the “saw-tooth” pattern of the sub-cell structure that the equivalent to
q must be low order. The geometric fidelity can always be increased by adding more sub-cell
levels, that is, decreasingg. However, if the finite cell method employs basis functions of higher-
order polynomial degreep, the first term in Eq. 4 will converge significantly faster under mesh
refinement with constant number of recursive sub-cell levels than the second part that is dominated
by a low orderq. It is therefore unavoidable that at some error level, the low order convergence of
the geometry will start to dominate the overall error, leading to an abrupt change in convergence
rate as shown in Figs. 7a and 7b. In addition, increasing the depth of the sub-cell structure is
limited by the exponential growth in the number of quadrature points, which makes this approach
prohibitively expensive even for moderate recursive sub-cell refinement. The recursive subdivision
approach can therefore be considered unable to achieve higher-order convergence rates in the
asymptotic limit. With this being said, we emphasize that the recursive subdivision approach can
still lead to full accuracy in the pre-asymptotic range, if we start with a large enough number of
sub-cell levels. In particular for low order instantiations of the finite cell method, the recursive
subdivision approach can be a competitive choice (see e.g. [33]).

When an element-wise parametrization is used, the approximate domainΩh is represented by
higher-order accurate polynomials (see Fig. 6b). As we define geometric parametrizations for
each intersected element, the corresponding characteristic lengthg is of the same order ash. It is
therefore straightforward to see that if we choose polynomials of degreeq = p for parametrizing
the geometry in cut elements we are in the same situation as inthe isoparametric case.The second
term of Eq. 4 converges slightly faster than the first term andwill thus never affect the convergence
rate of the finite cell method. This is confirmed by Figs. 7a and7b, which illustrates asymptotic
higher-order convergence rates for the local parametrization variant.

4. Quadrature rules based on local parametrization of cut tetrahedra

The discussion in Section 3 motivates the use of local parametrization-based quadrature rules
in the tetrahedral finite cell method. In the following, we describe our framework that generalizes
the element-wise parametrization concept for tetrahedralelements intersected by trimmed NURBS
surfaces. Our implementation consists of three basic steps: (1) find intersected elements and clas-
sify them into topologically valid and invalid cases; (2) parametrize the cut element domain with
Lagrange polynomials if possible; (3) generate geometrically accurate quadrature rules from each
local parametrization. There are several contributions inthe recent literature that describe differ-
ent variants for parametrizing cut elements [18, 22, 24–27]. In particular, we would like to point
interested readers to the work of FRIES and OMEROVIĆ [24], which contains a comprehensive
discussion of basic concepts and technical details for all common 2D and 3D element types. We
also note that the basic concept of element-wise parametrization is closely related to blending
techniques employed in higher-order finite element methods[54, 55].

4.1. Identification and classification of valid intersection topologies
We start with a geometric boundary representation that consists of a trimmed NURBS surface

immersed into a non-boundary-fitted tetrahedral mesh. In the first step, we identify all elements
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a Cut into tet and prism. b Cut into two prisms.

Figure 8: Intersection topologies that allow for parametrization with basic combinations of Lagrange polynomials.

that are intersected by the immersed boundary. To this end, we perform inside/outside tests for
all vertex points and several test points distributed over each triangular face of the tetrahedral
mesh. For the latter, we use the locations of the 6-point triangular quadrature rule, which we
found sufficient for practical spline surfaces. We note thatfor surfaces with pronounced curvature
in coarse unfitted discretizations, one should increase thenumber of points. The inside/outside test
is based on a ray tracing framework for trimmed NURBS surfaces described in [56].

If we find that different points are located on different sides of the surface, we mark the ele-
ment as cut, otherwise as completely inside or outside. For tetrahedral elements, there are only
two intersection topologies that allow for parametrization with basic combinations of Lagrange
polynomials. As illustrated in Fig. 8, a tetrahedron can be either split into a sub-tetrahedron and a
sub-prism or into two sub-prisms [24, 57]. We determine if a cut element belongs to either of the
two valid intersection topologies by carrying out the following tests for each of the four triangular
faces:

• If all three vertex points of a face lie on one side of the NURBS surface, all other test points
on that face must lie on the same side.

• If vertex points of a face lie on different sides, two edges must be cut with only one cut per
edge. If a cut goes through a vertex, the opposite edge or no other edge must be cut.

• If we find a total of three cut edges in the element, we have thetet-prism case. If we find a
total of four cut edges in the element, we have the prism-prism case.

For determining intersections with element edges, we employ the same ray tracing framework
[56]. The global coordinates of intersections points are stored for use in the next step. We note that
there exist fast alternatives to ray tracing that are computationally more efficient. An example is
a GPU-accelerated point membership classification based ona finely sampled voxelization of the
CAD object and a rendering technique developed by Krishnamurthy et al. [58]. Recent tests in the
context of the finite cell method have shown that this method is able to determine an inside/outside
identification of half a billion voxels in less than 30 seconds on a GPU of a standard laptop [59].
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4.2. Beyond valid intersection topologies

There are a number of situations, when a valid intersection topology as defined above cannot
be established. Typical examples are cut elements with edges that are cut more than once or with
edges that are not cut at all, although the corresponding face is cut. These situations are quickly
encountered even for simple geometries and coarse meshes (see, e.g., [24] for illustrations). We re-
act to these situations by consecutively applying two different remedies. In a first step, we employ
subdivision into sub-elements. In many cases, this will restore valid intersection topologies for
each sub-element, for which the parametrization procedurecan be then applied separately. For all
sub-elements, whose intersection topology is still invalid, subdivision can be recursively repeated
until a maximum depth is reached or only valid intersection topologies are found. In a second step,
if recursive sub-division could not restore a complete set of valid intersection topologies, we resort
to the standard recursive subdivision based quadrature of the finite cell method (see Section 2.2).
We note that we will also apply the second option, if the geometric model has features, for example
sharp edges along trimming curves, that cannot be resolved by higher-order parametrization. We
anticipate that some sort of local mesh generation could be applied to fit sub-elements to sharp
features (see, e.g., [26]), which is outside the scope of this work.
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Figure 9: Reference elements for quadratic parametrization employed in this paper.

4.3. Parametrization based on nodal Lagrange polynomials

If the cut element can be characterized by one of two intersection topologies shown in Fig. 8,
we can parametrize the relevant part of the element domain with combinations of Lagrange poly-
nomials. These polynomials can be defined in a straightforward way by standard tetrahedral and
prism elements with one higher-order face. In the scope of this paper, we employ the following
three types of element parametrizations illustrated in Fig. 9: (a) a tetrahedron with a quadratic tri-
angular face, (b) a prism with a quadratic triangular face, and (c) a prism with a quadrilateral face
based on the quadratic serendipity element. This concept can be easily extended to higher-order
polynomials, if required, by using more nodes on each curvedsurface.
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In the following, we provide some basic technical details for the three cases applied in this
work. For triangular faces, we use the basis functionsLi of the 6-noded Lagrange triangle in
natural coordinates{θ1, θ2, θ3} = [0, 1], which read [60]

L1 = θ1(2θ1 − 1); L2 = θ2(2θ2 − 1); L3 = θ3(2θ3 − 1)

L4 = 4θ1θ2; L5 = 4θ2θ3; L6 = 4θ1θ3 (5)

The first and second lines represent vertex and edge modes, respectively.
The basis functionsLi of the 8-noded quadrilateral serendipity element in parametric coordi-

nates{ξ, η} = [0, 1] read [60]

L1 =
1

4
(1 + η)(1− ξ)(1 + η + ξ); L2 =

1

4
(1− η)(1− ξ)(1− η + ξ)

L3 =
1

4
(1− η)(1 + ξ)(1− η − ξ); L4 =

1

4
(1 + η)(1 + ξ)(1 + η − ξ)

L5 =
1

2
(1− η2)(1− ξ); L6 =

1

2
(1− ξ2)(1 + η)

L7 =
1

2
(1− η2)(1 + ξ); L8 =

1

2
(1− ξ2)(1− η) (6)

where the first two lines represent the vertex modes and the last two lines the edge modes. We
choose the serendipity over the 9-noded quadrilateral element, since it does not require finding
geometric parameters for the center node, but still achieves quadratic convergence.

The geometric mappings of the parametrized volumetric sub-elements are then obtained by
blending linear basis functions with the quadratic surfacemappings (5) and (6) at the higher-order
face. The sub-element geometric maps are parametrized by the coordinates[x̂i, ŷi, ẑi]

T of nodal
points. For the sub-tetrahedron with one quadratic triangular face, we obtain the map





x
y
z



 (r, s, t) = (1− t)
6

∑

i=1

Li(θ1, θ2, θ3) ·





x̂i

ŷi
ẑi



+ t





x̂7

ŷ7
ẑ7



 (7)

For the sub-prism with one quadratic triangular face, we obtain the map




x
y
z



 (r, s, t) = (1− t)

6
∑

i=1

Li(θ1, θ2, θ3) ·





x̂i

ŷi
ẑi



+ tr





x̂7

ŷ7
ẑ7



+ ts





x̂8

ŷ8
ẑ8



+ t(1− r − s)





x̂9

ŷ9
ẑ9



 (8)

In both (7) and (8), the natural coordinates of the quadratictriangle areθ1 = r
1−t

, θ2 = s
1−t

and
θ3 =

1−r−s
1−t

. For the sub-prism with one quadratic quadrilateral face, we obtain the map





x
y
z



 (r, s, t) = (1− r)
8

∑

i=1

Li(ξ, η) ·





x̂i

ŷi
ẑi



+ tr





x̂9

ŷ9
ẑ9



+ (1− t)r





x̂10

ŷ10
ẑ10



 (9)

where the parametric coordinates of the serendipity basis functions areξ = 2s
1−r

−1 andη = 2t−1.
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Figure 10: Sequence of mappings that enable the geometrically accurate parametrization of intersected elements.

4.4. Sequence of higher-order mappings

We can now construct a sequence of higher-order mappings that take us from the identification
of the intersection topology to the local geometric parametrization of the physical element domain.
Figure 10 illustrates the complete process. Once a valid intersection topology for a cut element is
found, we use the ray tracing framework [56] to find interpolation points on the element faces that
provide geometric parameters for the edge modes of the surface mappings (5) and (6). To this end,
we construct a search line on each cut triangular face that connects the mid-point of the uncut edge
with the opposite vertex. The ray tracing framework delivers the coordinates of the interpolation
nodes in parametric surface coordinates{ξ, η} of the spline space (yellow dots in Fig. 10). For
higher-order parametrizations where several interpolation nodes have to be chosen, optimal search
paths for different intersection topologies and element types are given in [24].

We can then recover the corresponding coordinates in physical space{x, y, z} by using the
NURBS surface map, for which we know B-spline basis functions, control points and weights
[39]. The corresponding anisotropic sub-elements carry the parameter space of the geometric
parametrization in parametric coordinates{r, s, t}. Using the physical coordinates[x̂i, ŷi, ẑi]

T of
the interpolation nodes as parametric input in expressions(7), (8), and (9), we can parametrize the
local geometry in each intersected tetrahedral element, mapping the sub-elements to the physical
space. For valid intersection topologies, the framework shown in Fig. 10 is a robust way to estab-
lish connections between the different geometric entities. There are a few interesting aspects that
we would like to address in the following three remarks.

Remark 1: As we use tetrahedral elements with strictly planar faces, the relation between global
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coordinates{x, y, z} and barycentric element coordinates{ζ1, ζ2, ζ3, ζ4}, in which the tetrahedral
basis functions are defined, can be exactly expressed as [34,61]









1
x
y
z









=









1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

















ζ1
ζ2
ζ3
ζ4









(10)

where the coordinates in the matrix are the vertex points of the original cut element. It is easy to
compute the inverse relation of (10) analytically, from which also partial derivatives of each phys-
ical coordinate with respect to each barycentric coordinate can be established (see for example
[61]). These partial derivatives can be used to map derivatives with respect to barycentric coordi-
nates to derivatives with respect to physical coordinates.Relation (10) also holds for higher-order
elements (subparametric mapping).

Remark 2: While the Jacobian matrix for mapping the basis functions iscontrolled by (10), the
integration over the parametrization domain requires the computation of a second “geometric” Ja-
cobian matrix, whose determinant is required for mapping differential elements from the paramet-
ric space{r, s, t} of the sub-elements to global coordinates{x, y, z}. This “geometric” Jacobian
can be computed in the usual way by re-expressing all basis functions in expressions (7), (8), and
(9) in terms of{r, s, t} and taking corresponding partial derivatives.

Figure 11: If a linear interpolation between the intersection vertices is assumed in the spline space, the parametriza-
tions in general do not maintain planar faces of the tetrahedral elements.

Remark 3: An important point of our framework is the higher-order polynomial interpolation of
the curved spline surface in each intersected element (see Fig. 10). As the interpolation nodes
are located on the planar faces of the tetrahedral element, this guarantees that the polynomial
parametrizations conform to the planar faces of the intersected tetrahedral element. In this context,
we would like to emphasize that applying an exact spline blending method, e.g., in the sense of
the NURBS-enhanced finite element method [18, 42, 62], assumes a linear interpolation between
the intersection vertices in the parametric space of the spline surface. It is clear that when mapped
forward to the physical space the resulting curves do not liein the planar faces of the tetrahedral
element. In particular, they arbitrarily bulge out of the planar element faces as illustrated in Fig. 11.
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Figure 12: Octant of a thick spherical shell.

a Quadratic parametrization (curved
edges approximated by straight lines).

b Recursive subdivision using four lev-
els of sub-cell refinement.

Figure 13: Sub-element structure.

a Quadratic parametrization. b Recursive subdivision.

Figure 14: Quadrature points corresponding to the sub-element structures shown in Fig. 13.
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To close the gap between the original affine non-boundary-fitted tetrahedron, on which finite
element basis functions are defined, and the spline based geometric parametrization, one could
map the finite element basis functions on the curved geometryvia the same exact spline blending
functions. However, this requires that common faces of neighboring elements are mapped in ex-
actly the same way to maintain a properly defined geometry without gaps and overlaps. Therefore,
re-introducing curved element faces into the non-boundary-fitted mesh leads to several restric-
tions. For example, in discretizations with both standard boundary-fitted elements and embedded
boundaries, the spline mapping in general also deforms the boundary-fitted faces in elements that
see both types of boundaries. Another restriction is that switching between several quadrature
variants in neighboring elements, e.g. spline blending andsubdivision based quadrature, is not
possible anymore, because these mappings in general imposedifferent geometric mappings that
lead to incompatible common faces.

4.5. Higher-order geometrically accurate quadrature rules

The sequence of mappings illustrated in Fig. 10 provides thebasis for generating higher-order
quadrature rules that also represent the geometry of a cut element with higher-order accuracy.
For tetrahedral sub-elements, we use a 5-point quadrature rule for the integration of quadratic
basis functions and an 11-point quadrature rule for the integration of cubic basis functions [51].
For prism-type sub-elements, we employ tensor-product extensions of 6- and 12-point triangular
monomial rules, multiplied by corresponding Gauss-Legendre rules in a tensor-product sense, for
integrating over quadratic and cubic basis functions, respectively. These rules are not exact, as
the “geometric” Jacobian is a rational function. We note that any other monomial rule can be
used as well that yields the desired accuracy (see for example [61, 63–65]). Before using a local
parametrization based quadrature rule we check the “geometric” Jacobian of the parametrization
mapping to ensure that it is well defined and larger than zero.If it is smaller than zero, which
could potentially happen in case of intersecting spline surfaces with very high curvature [24], we
initiate the subdivision procedure described in Section 4.2.

As a first test case, we use our quadrature framework for non-boundary-fitted tetrahedral ele-
ments for the integration of the volume of a thick spherical shell shown in Fig. 12a. The inner and
outer radii are chosen asRi=50 andRa=100, respectively. The domain is embedded in a cube,
which is discretized by a sequence of tetrahedral meshes. The coarsest mesh is shown in Fig. 12b.
We also compare the performance of our framework based on element-wise quadratic parametriza-
tion with the recursive subdivision approach that has been used within the finite cell method so far.
Figures 13a and 13b plot the sub-elements generated by the element-wise parametrization and by
recursive subdivision of level 4, respectively. We note that we choose this particular level of sub-
cell refinement, as it achieves approximately the same accuracy as the parametrization approach
for mesh densities of practical engineering interest (see Section 5). Figures 14a and 14b plot the
corresponding quadrature points generated by the two quadrature variants. Blue sub-elements and
points are within the domain, red points are outside and thusneglected in the quadrature process.

We observe from these plots that the recursive subdivision approach requires significantly more
quadrature points than the parametrization approach to achieve the same level of accuracy. This
is confirmed by Figs. 15a and 15b. They plot the relative errorin the volume integral and the
quadrature cost in terms of the number of points that are required to achieve this specific error
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level with respect to increasing mesh size. For the third mesh, the two quadrature variants shown
in Figs. 14a and 14b achieve the same accuracy, but the recursive subdivision approach at level 4
requires approximately 8 times more point evaluations. Forthe fourth tetrahedral mesh, the accu-
racy of the local parametrization approach is already out ofreach for recursive subdivision at level
5, which requires 15 times the number of quadrature points and is the maximum number of levels
computable on a standard laptop.

Remark 4: There is a cost involved for generating parametrization-based quadrature rules. In
particular, the root-finding step can be computationally expensive, when implemented in a naive
fashion. However, the final realistic computational effortfor geometry-related operations is diffi-
cult to estimate, as the implementation of corresponding algorithms in our research code could be
significantly improved, based on an abundance of related work in fields such as computer graph-
ics, computational visualization, or animation [66]. In addition, nonlinear or multiphysics simu-
lations, where computational cost is decisive for the feasibility of an analysis, typically require
a large number of iterations with the same quadrature points. From an analysis viewpoint, the
reparametrization cost quickly becomes insignificant, no matter how expensive, and the number
of quadrature points remains the only significant measure. In Figure 15 and all other figures in the
remainder of this paper, we therefore use the number of quadrature points as the only measure for
computational cost of a quadrature method.

5. Numerical examples in three dimensions

We are now in a position to test the performance of element-wise parametrization based vol-
ume quadrature of intersected elements in the tetrahedral finite cell method. To this end, we will
consider two benchmark problems and an application oriented example of a coupled bone/implant
simulation. The latter involves geometric models based on fuzzy imaging data and sharp CAD
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Figure 15: Comparison of element-wise parametrization and recursive-subdivision based quadrature for numerically
integrating an octant of a thick spherical shell over a non-boundary-fitted tetrahedral mesh.
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boundary representations, providing an opportunity to highlight the advantages of recursive subdi-
vision and parametrization based quadrature variants. In the scope of this work, we focus on local
parametrizations based on quadratic polynomials, using the framework discussed in the previous
section. We emphasize that second-order geometric accuracy is the most relevant case from a prac-
tical engineering viewpoint, as the finite cell method has been shown to be particularly attractive
at moderate polynomial degrees 2 and 3, representing a compromise between higher-order conver-
gence and a reasonably conditioned system [34]. We note thatour framework can be extended in
a straightforward way to geometric parametrizations higher than second order [24].

Figure 16: Three-dimensional thick plate with a circular hole.

5.1. Plate with a cylindrical hole

As a first benchmark, we consider a thick plate with a circularhole under uniform tension
shown in Fig. 16. We reduce the system to one octant of the original domain and apply symme-
try boundary conditions in a weak sense by Nitsche’s method.We generate a sequence of four
uniformly refined non-boundary-fitted tetrahedral meshes that discretize the embedding box irre-
spective of the hole. Quadrature of intersected elements isperformed with recursive subdivision
at different levels of sub-cell refinement and with element-wise parametrization. Figures 17a and
17b show the corresponding quadrature points for the coarsest non-boundary-fitted mesh.

Figure 18 plots the strain energy error versus the number of degrees of freedom for the four
different meshes. We compute the relative error in strain energy norm defined as [43, 44, 67]

er =

√

|Unum− Uref |

Uref
(11)

whereUnum represents the numerical strain energy obtained for a specific discretization, andUref

is a reference strain energy computed with an overkill discretization [34]. We observe that the
finite cell method with local parametrization achieves optimal rates of convergence. For the same
accuracy level, the subdivision approach requires at least3 levels of recursive sub-cell refinement.

In Fig. 19, we plot the circumferential stress, evaluated along the circular boundary of the
hole (θ = 0 . . . π/2), for different quadrature variants in the second mesh of our series. The
corresponding location is illustrated in Fig. 16 as a dashedred line. We observe that the geometric
error of the subdivision approach with just one level of sub-cell refinement leads to a significant
error in the boundary stresses. The error can be mitigated byadding additional sub-cells, but
we need at least four levels to match the accuracy of the element-wise parametrization approach.
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Geometrically accurate quadrature rules based on parametrization guarantee an accurate stress
solution directly at the embedded boundary from the onset. The results of Fig. 19 highlight again
the importance of geometric accuracy in embedded domain analysis, re-enforcing the opening
discussion of Section 3 that has been based on initial 2D results. We emphasize again that all
results of Fig. 19 have been generated from the same mesh withthe same quadratic finite element
basis functions, with the only difference being the quadrature rule in intersected elements.

5.2. Thick spherical shell under internal pressure

As a second example, we examine the spherical thick shell under internal pressure, whose
geometry corresponds to the example shown in Fig. 12a. Due tosymmetry, we consider only
one eighth of the original problem. Following the derivation shown in [68, 69], there exists an
analytical solution in spherical coordinates{r, φ, θ} of the form

σr = −
p

(

Ra
Ri

)3

− 1

[

(

Ra

r

)3

− 1

]

(12)

σφ = σθ =
p

(

Ra
Ri

)3

− 1

[

1

2

(

Ra

r

)3

+ 1

]

(13)

ur =
r

E
[(1− ν)σθ − νσr] (14)

The rest of the displacement components are zero due to symmetry. We choose an inner radius
Ri=50, an outer radiusRa=100, Young’s modulusE=10,000 and an internal pressurep=50.

We discretize an embedding box in such a way that both doubly curved surfaces are intersected
by the tetrahedral mesh. The coarsest discretization of a series of four uniformly refined meshes is

a Element-wise parametrization. b Recursive subdivision.

Figure 17: Coarsest mesh for the plate problem with integration pointsderived from the two quadrature variants.
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Figure 18: Convergence of the relative error in strain energy for the plate problem.

shown in Fig. 12b and the corresponding quadrature points generated from element-wise quadratic
parametrization and recursive subdivision are plotted in Figs. 14a and 14b, respectively. We em-
ploy quadratic basis functions and impose symmetry boundary conditions weakly using Nitsche’s
method as formulated in (2) and (3).

Figures 20a to 20c plot the von Mises stresses in a section of the thick shell computed with the
third mesh from our series and different quadrature variants. The three plots show that in the bulk
of the domain the stress results are equivalent irrespective of the quadrature method used. However,
the stress accuracy at the surface varies greatly between the methods. We observe in Fig. 20a that
using recursive subdivision with only one level of adaptiverefinement leads to large oscillations
in the surface stress. We can improve the stress accuracy by adding more levels (see Fig. 20b),
since this increases the geometric fidelity at the embedded boundary. Figure 20c demonstrates
that quadrature points based on quadratic parametrizationremove the oscillations entirely, leading
to an accurate stress solution at the surface.

Figure 21a compares the convergence in strain energy obtained with quadratic non-boundary-
fitted tetrahedral elements and different quadrature variants as the mesh is uniformly refined. We
once more observe the characteristic convergence behaviorthat we have already observed in Sec-
tion 3. Recursive subdivision based quadrature with only one level of sub-cell refinement leads
to sub-optimal rates of convergence due to its low-order geometry approximation. Increasing the
number of recursive refinement levels ensures optimal ratesin the pre-asymptotic range, but leads
to a sudden decrease asymptotically, as soon as the low-order geometric convergence of the sub-
division approach reaches its accuracy limit. Quadratic parametrization and associated quadrature
points represent the geometry with a second-order rate, which enables optimal rates of conver-
gence in the energy error at all accuracy levels.

Figure 21b repeats the same study for cubic tetrahedra, showing strain energy errors in the
pre-asymptotic range. We observe that the subdivision approach at both one and three levels of
recursive sub-cell refinement does not lead to full accuracy. The parametrization approach based
on quadratic Lagrange polynomials shows good accuracy, although the geometry representation
is one order lower than the cubic approximation of the solution. We observe that for the targeted
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a One level of sub-cell refinement. b Two levels of sub-cell refinement.

c Three levels of sub-cell refinement. d Four levels of sub-cell refinement.

Figure 19: Accuracy of the circumferential stress along the circular boundary for different levels of sub-cell refine-
ment. Note that we always use the same mesh and quadratic finite element basis functions.

error level can be reached before the lower quadratic approximation of the geometry, on which
quadrature points are based, can affect the strain energy convergence, governed the cubic approxi-
mation of the solution fields. This indicates that for engineering accuracy, quadratic element-wise
parametrization seems to be a viable approach also for tetrahedra with cubic or higher-order basis
functions.

Figures 22a and 22b demonstrate the advantages of element-wise parametrization from a com-
putational cost point of view. They compare the strain energy accuracy computed on cubic tetra-
hedral meshes with respect to the number of quadrature points at different levels of sub-cell refine-
ment. Accuracy is measured by the ratio between the “best possible” energy error on a given mesh
provided there is no geometry error and the actual strain energy error obtained with a given quadra-
ture variant. We use element-wise quadratic parametrization to approximate the “best possible”
strain energy error, as this is the most accurate way of integrating intersected elements currently
available to us. We observe that for achieving a ratio close to one, the recursive subdivision ap-
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a Subdivision level 1. b Subdivision level 3. c Quadratic parametrization.

Figure 20: Accuracy of the von Mises stress at the inner circular boundary, computed with the tetrahedral finite cell
method on the same mesh based on recursive subdivision at different sub-cell levels and quadratic parametrization.

a Quadratic tetrahedral elements. b Cubic tetrahedral elements.

Figure 21: Convergence of the relative error in strain energy for the thick spherical shell problem..

proach requires in general between one and two orders of magnitude more point evaluations than
quadrature based on element-wise parametrization. Figures 22a and 22b repeat the same study for
the initial coarse mesh and the mesh after two uniform mesh refinement steps. We see that the dif-
ference in point evaluations at the same accuracy level increases with mesh refinement, since the
higher approximation accuracy in the finer mesh also requires more levels of recursive refinement
to achieve the corresponding geometric fidelity.

5.3. Fractured femur bone with a nail implant
The previous examples demonstrated the advantages in termsof improved accuracy and com-

putational efficiency that element-wise parametrization of cut elements brings about for the tetra-
hedral finite cell method on domains with sharply defined boundaries. The following example
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Figure 22: Ratio of actual vs. best possible energy error with increasing levels of sub-cell refinement. The first blue
point on the left corresponds to one level of sub-cell refinement, which is then increased in steps of one.

illustrates that the success of a particular quadrature scheme depends very much on the type of
geometric model under consideration. In particular, we will demonstrate that depending on the
specific geometric model, both subdivision based quadrature and element-wise parametrization
play an important role to preserve the flexibility of the TetFCM.

5.3.1. Fuzzy imaging data vs. sharply defined B-rep models
We present a coupled bone/implant simulation of a fracturedhuman femur bone, which in-

volves both diffuse medical imaging data and a CAD model based on sharply defined boundary
data (B-rep) [66]. From an application point of view, the problem to be analyzed is part of a patient-
specific workflow for simulation-based performance analysis of coupled bone/implant configura-
tions. It supports physicians in reliably identifying the most suitable implant type and its optimal
position in a fractured bone of a specific patient. Predicting implant performance constitutes the
basis for an effective and reliable treatment of bone fractures.

Patient-specific stress and fracture simulations need to bebased on imaging data of an indi-
vidual bone. Figure 23a shows an X-ray of a broken bone that illustrates the fuzziness of the
underlying imaging based geometric information. Figure 23b plots data obtained from quantita-
tive computed tomography (qCT) scans after the layer-wise images have been transferred into a
3D rasterized voxel structure. Each voxel contains a color value that can be associated with the
bone’s mineral density. Based on experimental observations, an isotropic heterogeneous linear
elastic material can be assumed [70–72]. The distribution of the corresponding Young’s modulus

1Adapted from “Fixing Hip Fractures” by S. Mears, http://www.hopkinsmedicine.org/gec/series/fixinghip fractures
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a X-ray of fractured femur bone2. b 3D voxel model constructed from qCT scans.

Figure 23: Diffuse patient-specific imaging data of human femur bones.

can be inferred at each image point from the following empirical relations [72, 73]

ρash =(1.22 ρeqm + 0.0523) [g/cm3] (15)

Ecort =10200× ρ2.01ash [MPa] (16)

Etrab =5307× ρash + 469 [MPa] (17)

whereρeqm andρash denote the mineral density and the ash density, respectively [73]. Depending
on the local density, we use relation (16) for the cortical region (stiffer material in the outer part) or
relation (17) for the trabecular region (spongy material inthe inner part). In addition, we assume
a homogeneous Poisson’s ratioν = 0.3.

In contrast to the bone, the implant is a well-designed and optimized technical device, man-
ufactured from titanium with highly homogeneous material parameters, Young’s modulusE =
116 GPa and Poisson’s ratioν = 0.3, and a geometry that is known exactly from the CAD model.
Figures 24a and 24b show an X-ray of a nail implant under operating conditions and a plot of the
technical device itself along with corresponding B-rep NURBS surfaces and control points of the
CAD model. The CAD model uses the trimming paradigm to represent a perfectly bonded joint.

5.3.2. Phase-field modeling of brittle fracture
Our representation of a crack is based on a phase-field model for brittle fracture [74–77], which

is represented in variational form for quasistatic conditions by the following multifield equations
∫

(

4l0H0(x)

Gc

+ 1

)

c q dΩ +

∫

4l20 ∇c ∇q dΩ =

∫

q dΩ (18)

3Adapted from “Fixing Hip Fractures” by S. Mears, http://www.hopkinsmedicine.org/gec/series/fixinghip fractures
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a X-ray of a femur bone with a nail implant3. b Technical device itself, related CAD model.

Figure 24: A nail implant device defined by sharp boundary surfaces.

∫

(

σ
+ + σ

−
)

: ∇ẇ dΩ =

∫

b ·w dΩ +

∫

t ·w d∂Ω (19)

The pairs{u,w} and{c, q} represent the displacement and phase-field solutions and correspond-
ing test functions. Material parameters involved are the energy release rateGc, the characteristic
length scalel0, and the Lamé parameters of linear elasticityλ andµ. The tensile and compressive
parts of the stress tensor read

σ
+ := c2

(

λ 〈tr(ε)〉+ I + 2µ ε
+
)

(20)

σ
− := λ 〈tr(ε)〉− I + 2µ ε

− (21)

which are based on a corresponding additive split of the strain tensor.H0 is a history function that
tracks the maximum strain energy induced by the tensile partof the strain tensor. The phase-field
part (18) requires homogeneous Neumann boundary conditions, the elasticity part (19) the usual
traction and displacement constraints.

The basic idea of the phase-field fracture model (18) and (19)is to represent cracks by a con-
tinuous scalar fieldc that has a value of one away from the crack and is zero at the crack location.
The phase-field serves as a multiplication factor to tensileenergy components in (20) such that it
locally penalizes the capability of the material to carry tensile stress at the crack location. The
diffusiveness of the crack approximation is controlled by the length-scale parameterl0. From
a numerical point of view, the diffusive approximation of the crack by a continuous phase-field
eliminates the need for explicit discontinuities in the mesh.
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5.3.3. Bone/implant coupling based on Nitsche’s method
In the scope of the present work, we assume perfect bonding atthe interface between the bone

and the implant, neglecting any nonlinear or cohesive effects at the interface. The bone and the
implant domains can therefore be coupled weakly by introducing an interface term [21, 78] into
the variational form of Nitsche’s method (2) that extends the bilinear form as follows

δWK(u, δu) =
∑

K

∫

K

σh : δε dΩ− γ⋆

∫

Γ⋆

[[u]] : {δσ}dΓ −

∫

Γ⋆

{σ} : [[δu]] dΓ

−γ

∫

ΓD

u · (δσ · n+) dΓ −

∫

ΓD

(σ · n+) · δu dΓ

+ β⋆

∫

Γ⋆

[[u]] · [[δu]] dΓ + β

∫

Γ⋆

u · δu dΓ (22)

where quantities denoted with a star are defined on the bone/implant interfaceΓ⋆. The jump and
average operators in (22) are defined as

[[u]] = u
+ ⊗ n

+ + u
− ⊗ n

− (23)

{σ} =
1

2
(σ+ + σ

−) (24)

With γ⋆ = 1, we obtain the standard symmetric form of Nitsche’s method,which we use in
this paper. It requires a stabilization parameterβ⋆ that can be determined from a generalized
eigenvalue problem [3, 52, 79]. In the present study, we choose the parameter empirically to be as
small as possible. We note that forγ⋆ = −1, we obtain a parameter-free non-symmetric Nitsche
method [49, 50], which has been shown to work accurately and robustly for non-boundary-fitted
discretizations of linear elastic problems without stabilization (i.e.,β⋆ = 0) [21].

5.3.4. Supporting accuracy and flexibility of the TetFCM by adequate quadrature
We discretize the coupled bone/implant problem with two independent non-boundary-fitted

tetrahedral meshes, which are plotted in Figs. 25a and 25b for the bone and the implant, respec-
tively. The geometric basis for the patient-specific bone analysis is the voxel model shown in
Fig. 23b, which provides the qCT-based spatial distribution of Young’s modulus from (16) and
(17). For a fuzzy voxel model, the concept of intersected elements does not directly apply, as there
exists no sharply defined boundary of the problem domain. We therefore leverage the subdivision
approach to take into account the inhomogeneous stiffness distribution at the quadrature level. We
first locate all tetrahedral elements that are completely located outside of the bone domain. This
requires that the color value of all voxels located within a specific element are below a predefined
stiffness threshold. All elements outside of the bone domain are then removed from the mesh.

Second, we subdivide all remaining tetrahedral elements into sub-cells. The sub-cell resolu-
tion is chosen such that the density of the resulting quadrature points corresponds to the voxel
resolution. As a consequence, each voxel is associated withat least one quadrature point, so that
the voxel information is fully taken into account during theformation of the stiffness matrix. We
emphasize that a finer resolution of quadrature points should be avoided, as it could resolve sharp
interfaces and re-entrant corners between single voxels, which are an artifact of the geometric
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a Mesh of the bone. The fracture sur-
face is resolved adaptively.

b Mesh of the implant with two different quadrature vari-
ants plotted in a local zoom-in region.

Figure 25: Non-boundary-fitted tetrahedral meshes for the bone and theimplant.

model. In voxel based analysis, the abundance of points of subdivision based quadrature is a
clear benefit, as it is the essential mechanism that enables the incorporation of the influence of
all voxels in a coarse finite element discretization that is significantly below the voxel resolution.
In this sense, the subdivision based quadrature approach can be interpreted as a simple type of
homogenization procedure [80].

Having set up the image based model of the bone, we induce an existing fully developed
fracture by solving the phase-field equation (18) with a given staticH0 of the form

H0(x) =

{

B Gc

4l0

(

1− d
l0

)

if d(x) ≤ l0

0.0 if d(x) > l0
(25)

whereB = 1, 000 [81]. In our simulation,H0 represents a typical fracture plane between the
greater and the lesser trochanters, where approximately 40% of all hip fractures happen. We
note that (25) eliminates the material propertyGc, reducing the number of open parameters to the
characteristic length scalel0, which we choose asl0 = h/2 with respect to the mesh sizeh at the
crack location.

We adaptively resolve the fracture region by a finer mesh (seeFig. 25a), leveraging straightfor-
ward mesh refinement in three dimensions as one of the centraladvantages of the TetFCM [34].
The corresponding phase-field solution is plotted in Fig. 26a. The fracture topology in a typical
application scenario is given in terms of fuzzy images (see e.g. Fig. 23a), which impedes the extrac-
tion of an exact sharp fracture surface. Therefore, the diffuse fracture representation conceptually
fits well in this simulation framework.
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a Phase-field solution plotted on the
non-boundary-fitted mesh.

b Displacements on the deformed
bone/implant configuration.

c Von Mises stresses in the bone and the implant, plotted at a central cutting plane.

Figure 26: Coupled bone/implant analysis based on the TetFCM with flexibly applied quadrature variants, a phase-
field approach to fracture, and perfect bond Nitsche coupling.
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Being based on a sharp B-rep model, the implant fully benefitsfrom the advantages of the
quadrature approach based on element-wise parametrization developed in this paper. As we are
given the exact smooth spline surface of the implant, we can derive quadratic parametrizations
in a large part of the intersected elements, which serve as a higher-order accurate geometric map
for corresponding quadrature points. The presence of sharpedges along trimming curves and at
the outer edges of the two implant shafts lead to intersection cases that are not considered valid
in the scope of the present paper. This requires the application of the remedies that we discussed
in Section 4.2. In the present case, we apply recursive subdivision with three levels of adaptive
refinement. In Fig. 25b, the quadrature points generated by element-wise parametrization and
recursive subdivision are plotted for a zoom-in close to thejoint of the two shafts. We observe that
element-wise parametrization significantly reduces the number of quadrature points away from
the joint. In the area around the joint the density of quadrature points remains unchanged, as both
variants currently use subdivision quadrature due to the presence of sharp edges.

In the final step of the analysis, we tie the bone and implant meshes together, using the coupling
(22). Taking advantage of the exact CAD surface representation, we generate surface quadra-
ture points for integrating coupling terms directly based on the Bézier elements of the spline
parametrization [59]. We note that although we assume perfect bonding, we are fully taking into
account the varying local bone stiffness along the couplinginterface. In the limiting case, we are
coupling the full-stiffness titanium shaft of the implant to a zero stiffness voxel of the bone mesh,
which will effectively replicate a free surface on the implant. The imposition of homogeneous
Neumann boundary conditions in the phase-field equation (18) at the bone surface does not pose
a problem in the TetFCM, since this can be achieved without surface quadrature. For the elasticity
equation (19), we apply a load of 1000 N on the bone head distributed over a spherically shaped
loading area [6]. Displacement boundary conditions at the bones lower end are weakly enforced
with Nitsches method.

Figures 26b and 26c plot the coupled bone/implant displacements on the deformed configura-
tion and the von Mises stress over a surface that cuts the two non-boundary-fitted meshes in half.
The plots demonstrate the successful coupling between the bone and the implant that is essential
for bridging the intertrochanteric fracture. We observe that in accordance with our tests of Fig. 20,
element-wise parametrization based quadrature enables anoscillation free stress representation.
Due to the fuzziness of the image based geometric basis of thebone, the accuracy of stresses at a
specific point of the bone may vary, although the overall stress distribution from a global viewpoint
is accurate (see e.g. [6]). The disadvantage of subdivisionbased quadrature in terms of point-wise
accuracy on a surface therefore carries far less weight in image based analysis.

6. Summary and conclusions

The goal of this paper was to highlight the role of two different quadrature variants for inter-
sected elements in the context of the tetrahedral finite cellmethod (TetFCM). On the one hand
stands subdivision quadrature that is based on the recursive refinement of quadrature sub-cells
in cut elements and has been a fundamental component of the finite cell method since its begin-
nings. On the other hand stands the element-wise parametrization of cut elements by higher-order
Lagrange polynomials. It accommodates higher-order geometric fidelity that has been recently
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shown to be a key ingredient for preserving optimal accuracyin embedded domain-type methods.
Recalling a basic proof given by Strang and Fix on geometric accuracy in isoparametric finite ele-
ments, we outlined explanations for the break-down of convergence rates in the asymptotic range
due to the geometric error introduced by recursive subdivision quadrature. We also confirmed that
element-wise parametrization with Lagrange polynomials that match the order of the basis func-
tions for the approximation of the solution do not produce such a geometric error, thus preserving
optimal convergence rates in the asymptotic limit.

In the technical part of the paper, we described a framework for parametrizing cut tetrahedral el-
ements with quadratic Lagrange polynomials, open to straightforward extension to arbitrary order.
Assuming a sharp boundary based on a spline representation,our framework is based on charac-
terizing the intersection topology for each cut tetrahedral element and subsequently constructing
a sequence of higher-order mappings. The latter includes root finding to determine intersection
points of element edges and further rays with the spline surface. These points serve as interpolation
points for quadratic Lagrange polynomials that are defined on tetrahedral and prismatic reference
elements. These reference elements can be used to map standard tetrahedral and Gaussian quadra-
ture rules to geometrically accurate points and weights in intersected element domains.

We presented several benchmark problems that demonstratedthe significant advantages of
element-wise parametrization over subdivision quadrature in terms of accuracy and computational
cost in problems that are defined by a sharp boundary. The TetFCM with subdivision quadrature is
(in theory) able to achieve full accuracy, but at a prohibitively large number of quadrature points.
In contrast, the TetFCM with element-wise parametrizationis able to achieve full accuracy, while
keeping the number of quadrature points at a level that is only slightly increased with respect
to boundary-fitted discretizations of comparable size. We also showed the critical importance of
an accurate geometry resolution for the accurate approximation of solution fields directly at the
embedded boundary, which is particularly important when the embedded boundary represents a
coupling interface to another domain.

In the final part of the paper, we applied a combination of bothquadrature variants in the
context of a patient-specific workflow for the simulation-based performance analysis of coupled
bone/implant configurations. This example involves two different geometric models based on
fuzzy medical imaging data for the bone and sharp CAD boundary representations for the implant.
We highlighted the specific strengths of each quadrature variant depending on which geometric
model is considered. In the bone, the large number of subdivision based quadrature points proved
essential to take into account the inhomogeneous stiffnessdistribution at each voxel in the sense
of a homogenization procedure. In the implant, element-wise parametrization enabled an accurate
oscillation free stress resolution at the surface of the implant, while significantly reducing the num-
ber of point evaluations. We conclude that there is no optimal quadrature method for the TetFCM,
but its accuracy, flexibility, and computational efficiencyin complex simulation scenarios relies
on flexibly applying different quadrature variants.
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