
Flow-Based Web Application Brute-Force Attack
and Compromise Detection

Rick Hofstede1 • Mattijs Jonker1 • Anna Sperotto1 • Aiko
Pras1

Received: 12 June 2017 / Revised: 8 August 2017 / Accepted: 10 August 2017 /

Published online: 18 August 2017

� The Author(s) 2017. This article is an open access publication

Abstract In the early days of network and service management, researchers paid

much attention to the design of management frameworks and protocols. Since then

the focus of research has shifted from the development of management technologies

towards the analysis of management data. From the five FCAPS areas, security of

networks and services has become a key challenge. For example, brute-force attacks

against Web applications, and compromises resulting thereof, are widespread. Talks

with several Top-10 Web hosting companies in the Netherlands reflect that detec-

tion of these attacks is often done based on log file analysis on servers, or by

deploying host-based intrusion detection systems (IDSs) and firewalls. However,

such host-based solutions have several problems. In this paper we therefore

investigate the feasibility of a network-based monitoring approach, which detects

brute-force attacks against and compromises of Web applications, even in encrypted

environments. Our approach is based on per-connection histograms of packet

payload sizes in flow data that are exported using IPFIX. We validate our approach

using datasets collected in the production network of a large Web hoster in the

Netherlands.

This paper is based on Chapter 5 of the first author’s Ph.D. thesis. The thesis was defended on June 29,

2016; the title of the thesis is ‘‘Flow-based Compromise Detection’’.

& Aiko Pras

a.pras@utwente.nl

Rick Hofstede

r.j.hofstede@alumnus.utwente.nl

Mattijs Jonker

m.jonker@utwente.nl

Anna Sperotto

a.sperotto@utwente.nl

1 University of Twente, Enschede, The Netherlands

123

J Netw Syst Manage (2017) 25:735–758

DOI 10.1007/s10922-017-9421-4

http://orcid.org/0000-0002-5091-8608
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9421-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9421-4&domain=pdf

Keywords Flow monitoring � IPFIX � Intrusion detection � Compromise

detection � Web

1 Introduction

In the early nineteen-nineties, thus at the time JNSM was established, the research

community was focussing on the development of management frameworks,

architectures, and on the design of management protocols. At that time, JNSM,

but also conferences such as IM, were platforms to discuss the protocol wars

between the ISO–OSI (and later ITU) world at one side, and the Internet (IETF)

world at the other side. Researchers seemed to believe that, once management

technologies were in place, solving management challenges would become easy.

Now, 25 years later, we have learned that the key to solve complex management

problems is not so much in the design of new management technologies, but rather

in the clever analysis of available management data. Such data may not only be

retrieved from the MIBs that are found within management agents, but can also be

directly obtained from monitoring traffic within networks. An interesting network

monitoring approach that has become popular within the last decade, is the analysis

of flows that are exported using protocols such as IP flow information export

(IPFIX) [6]. In that context, a flow is defined as ‘‘a set of IP packets passing an

observation point in the network during a certain time interval, such that all packets

belonging to a particular flow have a set of common properties.’’ Individual packets

to and from, e.g., Web servers, can be aggregated into flows by a flow exporter/

probe, and sent to a flow collector for storage and analysis, as shown in Fig. 1.

Since the early days of research, the management problems that needed to be

solved focussed on five functional areas: fault, configuration, accounting, perfor-

mance and security (FCAPS). Whereas initially performance and fault management

attracted quite some attention, it is clear that nowadays security has become a key

problem. In this paper we will therefore demonstrate, based on the example of

securing Web applications, how data exported using IPFIX can be analyzed in a

clever way to solve current security management problems.

Web applications are widespread and their operation is crucial in our daily lives.

Examples of popular Web applications are content management systems (CMSs),

such asWordPress, Joomla, and Drupal. The popularity of CMSs, the aforementioned

three in particular, is also underlined by numbers: one-third of all Web sites on the

Internet are built using these CMSs.1 The widespread use of these CMSs also comes

with a risk: the fact that anybody can use them, even people with limited technical

skills that are unaware of security threats and measures, leads to outdated and

vulnerable CMSs, and reliance on weak administrator passwords [7]. As such, CMSs

end up being a prime attack target [10, 19, 28] and the number of attacks is increasing

every day. The security company Sucuri visualizes failed login attempts onWordPress

instances behind their protection services,which shows an increase up to a factor eight,

1 http://w3techs.com/technologies/overview/content_management/all

736 J Netw Syst Manage (2017) 25:735–758

123

http://w3techs.com/technologies/overview/content%5fmanagement/all

over a 6-month period [23]. Brute-force attacks on Web applications are a major

security threat for multiple reasons [19]. First, these attacks result in an increased load

on the underlying infrastructure. Second, following a compromise, malicious scripts

can be installed, such asWeb shells,2 [12, 18]. Third,Web applications can bemisused

for a wide range of illegal activities: distribution of pirated content and malware [5],

SPAM campaigns, participation in botnets and Distributed Denial of Service (DDoS)

attacks, etc. In such cases the entire IP-space owned by the hosting company may get

black-listed, thus a security mistake made by a single customer potentially impacts all

other customers of the hosting company.

Detecting attacks againstWebapplications canbedone in severalways. From talkswith

several Top-10 Web hosting companies in the Netherlands we have learned that the

detection of attacks in a host-based fashion (thus on the machine that runs the Web

applications) is by far the most popular approach. Such protection can be realised, for

example, by using CAPTCHA or IP-based authentication blockers. However, such

blockers must be implemented and maintained by the customers, who generally have

limited technical skills. A better approachmay therefore be to apply central authentication

monitors that analyze all log files on Web servers on-the-fly and block attackers by IP

address after a certain number of failed authentication attempts. Thesemonitors comewith

so-called Web panels—administration interfaces for Web hosting products. The fact that

all three major Web panels, namely cPanel, Plesk and DirectAdmin [1], provide this

functionality, indicates that this specific form of attack detection is used by many Web

hostingcompanies.Unfortunately this approachcanonlywork if theWebhostingcompany

has access to the complete set of Web server logs; in cases where the hosting company

provides Virtual Machines (VMs) to its customers, this approach is likely impossible.

To overcome the problems of host-based detection, this paper discusses the

feasibility of a network-based approach, in which only a single sensor needs to be

deployed at a strategic observation point. A network-based approach can be

implemented in two ways: we either take a specific intrusion detection system, such

as Snort or Bro, or we take a more generic approach that is based on established

monitoring technologies/protocols, such as IPFIX, for which the collected data can

also be used for other purposes than intrusion detection. This papers focuses on the

analysis of IPFIX data to detect brute force attacks on Web applications, and in

particular investigates whether such analysis can also unveil whether the attack has

been successful and the system has been compromised.

Internet

Flow probe with
IPFIX support

Flow collec-
tor & analyzer

Web servers

IPFIX

Fig. 1 Flow monitoring for Web servers using IPFIX

2 Web shells provide a remote server shell, yielding serious security risks.

J Netw Syst Manage (2017) 25:735–758 737

123

Existing works have shown that promising detection results can be achieved by

analyzing flow data of brute-force attacks [8, 9, 25–27], although fluctuations in

network traffic, such as transmission control protocol (TCP) retransmissions and

control information, may result in both false positives and false negatives [14]. To

overcome these problems, the novelty proposed by this paper is to analyze flow data

that is enhanced with histograms that describe packet payload distributions. These

histograms show not only the total size of a specific flow, as is the case for regular

flow data, but the entire payload size distribution. This allows us to discriminate

TCP control information and retransmissions from other traffic, among others, such

that these phenomena do not impair our data analysis. To extract the per-connection

histograms from network traffic, we use a flow exporter, or flow probe, which we

have equipped with an extension for exporting histograms for every observed flow,

to aid in our detection of attacks against Web applications.

Our contributions can be summarized as follows:

1. We present a network-based approach for detecting brute-force attacks and

compromises against Web applications, based on IPFIX, that is resilient against

attacks on the core hosting infrastructure (Sect. 4).

2. The use of histograms for detection makes our approach resilient against real-

world artifacts introduced by TCP, such as retransmissions and control

information, even if the network traffic is encrypted (Sect. 3).

3. Our work has been validated using a month-long dataset of a Top-10 Web

hosting company within the Netherlands. The dataset consists of flow data and

Web server log files for approximately 2500 Web hosting accounts (Sect. 5).

The remainder of this paper is structured as follows. In Sect. 2, we elaborate on

various characteristics of brute-force attacks, such as the phases they exhibit, as well

as related work on the detection of these attacks. The statistical information we use

for intrusion detection is outlined in Sect. 3, followed by an extensive description of

our detection approach in Sect. 4. After that, we describe our validation approach

and results in Sect. 5 and discuss possible mitigation approaches in Sect. 6. Finally,

we draw our conclusions in Sect. 7.

2 Background and Related Work

Previous studies have shown that brute-force attacks typically consist of three

phases [11], as shown in Fig. 2. First, in the scan phase, attackers perform

horizontal scans over a network to find targets, i.e., active daemons on a particular

port. This phase features only a very small number of packets per flow; TCP’s three-

Scan Brute-force Compromise

Start End

Fig. 2 Dictionary attack phases, from [11]

738 J Netw Syst Manage (2017) 25:735–758

123

way handshake is sometimes even stopped prematurely. Second, in the brute-force

phase, attackers perform the actual attack by trying to authenticate against a daemon

or service using dictionaries, lists of frequently-used username and password

combinations. The brute-force phase is generally the longest and most intense attack

phase, and features a significantly larger number of packets per flow than the scan

phase. Third, in case attacks reach the compromise phase, targets have been

compromised. Attackers may then either actively misuse targets or leave them aside

for the time being. Note that not all attack phases need to be visible within a certain

portion of network traffic, since attackers may choose to delay execution of attack

phases or execute attack phases from different machines to evade detection [13].

The scan phase in the context of attacks against Web applications is different in

nature from attacks against other applications. This is because Web applications can

typically not be scanned using target IP addresses only, as domain names are

required to reach Web applications. Web applications are served by vhosts, which

can be considered as virtual containers on a Web server, one per domain, such that

one Web server can serve multiple domains. Mapping IP addresses to vhosts is non-

trivial and not directly related to the attack itself, which is why we ignore the scan

phase in the remainder of this work.

The flow-based detection of brute-force attacks in general is not a new area of

research. However, related works have so far only focused on attacks against a

specific class of protocols, namely those protocols that are login-restrictive, such as

Secure SHell (SSH). These protocols require successful authentication to advance in

the protocol’s state machine. As such, they feature an important characteristic that

makes attacks against them relatively easy to detect: Performing brute-force attacks

on these protocols yields a very typical traffic pattern caused by many failed

authentication attempts. This is because repeated authentication attempts are almost

identical application-layer actions. We often refer to this kind of traffic as flat traffic,

since it features traffic flows in the brute-force phase that are alike in terms of the

number of packets and bytes, and duration. Most works in the context of flow-based

intrusion detection rely on the identification of this flat traffic to find brute-force

attacks [8, 9, 25–27]. The compromise phase is then typically identified by

deviations from the brute-force phase traffic pattern [27]. Another approach to SSH

compromise detection was presented in [11], where attack tool behavior upon

compromise is recognized instead of checking for traffic deviations, which was

proven to greatly reduce the number of false positives in production deployments.

The hypertext transfer protocol (HTTP) protocol is certainly not login-restrictive,

making the detection of brute-force attacks over this protocol more challenging.

This is even more true when Secure Sockets Layer (SSL) or Trans- port Layer

Security (TLS) is used to encrypt sessions in an end-to-end fashion. Several works

(e.g., [17]) have targeted the anomaly-based detection of attacks over HTTP(S), but

rely on individual packets for doing so. The only flow-based attempt in this

direction is described in [24], where the authors extract attack signatures from tools

that can be used for performing brute-force attacks against Web applications. The

major disadvantage of this signature-based approach is that it has shown to catch

legitimate traffic as well, mostly caused by calendar fetchers and Web crawlers.

This is because the approach is based on the assumption that brute-force attacks

J Netw Syst Manage (2017) 25:735–758 739

123

consist of many flows that are rather small in terms of packets and bytes, which is

however also true for the aforementioned type of Web applications. Although our

approach also assumes attack traffic in the brute-force phase to be flat, we design

our detection approach such that attack traffic can be discriminated from benign

traffic that is alike in terms of packets, bytes and durations, by means of using

histograms for intrusion detection.

3 Histograms for Intrusion Detection

In this section we demonstrate how histograms can be utilized for intrusion

detection. We start by covering background information on histograms and

motivating their use in Sect. 3.1. Then, in Sect. 3.2, we explain how to compare

histograms and form clusters, while in Sect. 3.3, we provide several concrete

examples and measurement-based insights into how indicative attack traffic is when

represented using histograms.

3.1 Traffic Characteristics

Key to identifying brute-force attacks in flow data is to aggregate similar records

into clusters. Ultimately, records describing the same attack, which are assumed to

be rather similar in terms of the number of packets and bytes, and duration, should

be part of the same cluster. Several works have however shown that relying on

packet and byte counters in flow data should be done with care, especially when it

comes to identifying flat traffic for network security analysis. For example, it has

been shown that TCP retransmissions and control information, which affect the

packet and byte counters due to timing parameters, cannot be discriminated in flow

data [14]. This causes attacks from countries that are far-away from the observation

point—above all in terms of geographical distance—to stay under the radar of

Intrusion Detection Systems (IDSs). But even if flat traffic is identified properly, its

‘‘detection for HTTP(S) was found to be ineffective, because valid AJAX updates

common on Web 2.0 tend to produce flat traffic pattern’’ [8]. This is also confirmed

by [24], where it is shown impossible to differentiate traffic of Web crawlers and

calendar fetchers from dictionary attack traffic based on packet and byte counters

alone. We therefore support the observations in [14] that flow data must be

enhanced by additional fields to become a reliable source of information for

intrusion detection.

To overcome the described problems with counters in flow data, we need more

granular information on individual packets in a flow. Several metrics could be used

for this purpose. For example, we have experimented with exporting packet inter-

arrival times in histograms, as it was shown that timing information can be used for

identifying applications in flow data [20]; Similar application-layer actions, such as

login attempts, would feature similar timing characteristics, allowing for the

aggregation of attack flows into the same cluster. We have however found two

problems with this approach. First, inter-arrival times do not allow TCP control

information packets to be discriminated from other packets, yielding this approach

740 J Netw Syst Manage (2017) 25:735–758

123

rather susceptible again to the problems described in [14]. Second, reliable

measurements can only be done using special clocks for accurate hardware

timestamping, which are neither available in our measurement infrastructure, nor in

many others. We have therefore found this approach to be too sensitive to

measurement errors, impairing subsequent clustering procedures.

Along with the other previously explained problems, the problems of inter-arrival

times can be overcome by using per-flow information on individual packet payload

sizes. This even allows us to discriminate TCP control information in flow data, as it

is often carried in zero-payload packets. Also, we know that Web crawlers, calendar

fetchers and dictionary attacks, for example, use different distributions of packets

within flows, which allows us to discriminate these applications using the more

granular data. Furthermore, since encrypted channel handshakes result in a constant

pattern in every connection, the use of histograms allows for clustering similar

encrypted channels. For these reasons, we export—per flow—a histogram with

packet payload sizes, such that each sample in the histogram represents the payload

size of one packet in that flow. To do so, we defined an enterprise-specific

Information Element (IE) for IPFIX and instrumented our measurement infrastruc-

ture with it. Based on the datasets described in Sect. 5.2, we can conclude that our

payload histograms extend the size of a flow record (on the wire) by at most 37

bytes in 99% of all flow records.

The use of histograms for intrusion detection in general is not new. An extensive

overview is given in [16], where it is explained how to map network traffic features

to histograms, cluster these histograms, and classify anomalous traffic patterns

based on the created clusters. While the authors provide examples of various

common network traffic anomalies, such as port scans, they demonstrate the generic

viability of their histogram-based approach, but do not focus on a specific

application or extension as we do in this paper for flow-based brute-force attack and

compromise detection. Also, we use a pivotal distance metric for clustering that is

not covered in [16], for reasons to be discussed in the next subsection.

3.2 Clustering Histograms

Clustering aims at grouping objects with similar characteristics into sets, such that

the sets feature a low inter-set similarity (i.e., large distance between objects in

different sets) and a high intra-set similarity (i.e., small distance between objects in

the same set). When histograms are used for intrusion detection, it is key to cluster

histograms that are ‘similar’ with respect to their bins. Alternative to maximizing

the similarity of histograms within a cluster is to minimize the distance between

histograms. Well-known and frequently-used distance metrics are the Manhattan

(L1-norm), Euclidean (L2-norm) and Mahalanobis distances [16, 21]. The main

problem with these distance metrics in the context of our work is that they fulfill the

shuffling invariance property, meaning that the distance between any two

histograms does not change when bin values are interchanged. This problem can

be observed in Fig. 3, which shows three payload size histograms in a typical HTTP

brute-force attack. Intuitively, we would assume the distance between Histograms A

and B to be smaller than the distance between Histograms A and C, given that the

J Netw Syst Manage (2017) 25:735–758 741

123

difference between 255 and 259 is much smaller than the difference between 255

and 459. This is however not the case for distance metrics that satisfy the shuffling

invariance property, as is demonstrated for the Euclidean distance:

Dðx; yÞ ¼
ffi

X

n

i¼1

jxi � yij2
s

ð1Þ

Using (1), we can calculate the distances between histograms in Fig. 3:

DðA;BÞ ¼
ffi

j7� 7j2 þ j2� 1j2 þ j0� 1j2
q

ð2Þ

DðA;BÞ ¼ DðA;CÞ ¼
ffiffiffi

2
p

ð3Þ

Note that both distances are equal, even though the histograms differ

significantly, especially when they are visualized to scale. Once we translate this

result to network traffic, the unsuitability of the (Euclidean) distance metric

becomes clear immediately; The difference between Histogram A and B can easily

be caused by variability in the TCP header or differences in username and password

lengths, for example, while Histogram C shows significantly different traffic. A

solution to this ‘problem’ is provided in [4], where the Minimum Difference of Pair

Assignments (MDPA) distance metric is defined. In a nutshell, MDPA aims at

finding the minimum difference of pair assignments between two sets, where sets are

histogram bins in our context:

Dðx; yÞ ¼ min
x;y

X

n�1

i;j¼0

dðxi; yjÞ
 !

ð4Þ

Here, dðxi; yjÞ is defined as the arithmetic difference between bin i in histogram X

and bin j in histogram Y. Hence, the more similar any two histograms are, the

smaller the value D. For the histograms in Fig. 3, the following distances can be

obtained: DðA;BÞ ¼ 4 and DðA;CÞ ¼ 204, as demonstrated in ‘‘Appendix 1’’. From

these results it becomes clear what the added value of the MDPA distance metric is,

compared to commonly-used metrics like Euclidean. The MDPA distance metric

does not satisfy the shuffling invariance property, but, besides, is similar in nature to

the commonly used distance metrics. We therefore rely on this metric in the

0 255 259 459

7

2
0 0P

ac
ke

ts

(a) Histogram A

0 255 259 459

7

1 1 0P
ac
ke

ts

(b) Histogram B

0 255 259 459

7

1 0 1P
ac
ke

ts

(c) Histogram C

Fig. 3 Payload size histograms in typical HTTP brute-force attack traffic. a Histogram A. b Histogram
B. c Histogram C

742 J Netw Syst Manage (2017) 25:735–758

123

remainder of this work, unless indicated differently. For a detailed MDPA example,

we refer the reader to ‘‘Appendix 1’’.

3.3 Measurements

Based on the concept of using histograms for intrusion detection and calculating

inter-distances for clustering, we provide in this section several measurement-based

insights into how this works in practice.

In Fig. 4, we visualize the payload size histograms of three consecutive flows in a

benign client-server interaction with a Web shop. What catches attention are the

zero-value bins, which appear to be relatively large in some histograms, such as for

Histogram F. Packets accounted in the zero-value bin feature no payload, meaning

that they are likely made up of TCP acknowledgements, window updates and other

control information. What all histograms in Figs. 3 and 4 have in common are the

seemingly minor deviations in the number of bytes. To investigate whether— and if

so, until which extent—the password length of authentication attempts affects the

size of a flow, we have measured various password lengths and resulting flow sizes

in a lab setup. We have done this by generating—per selected password length—

100 random passwords that were fed into the Patator3 brute-force attack tool, and

captured the resulting traffic. The results, which are shown in Fig. 5 together with

their respective standard deviations, indicate that every password character accounts

for one byte in the total flow size. Deviations in flow sizes are found to be mainly

the result of TCP sometimes dividing the returned Web page over two segments

instead of one, resulting in additional acknowledgements. Given that most popular

passwords, which are naturally also commonly found in dictionaries, typically

feature no more than ten characters [2], we conclude that the impact of password

lengths on the total flow size is limited.

Another reason for histograms to appear significantly different is when they

represent packet payloads in hypertext transfer protocol secure (HTTPS) connec-

tions, as opposed to histograms for regular HTTP connections. To investigate how

different the resulting histograms are, we have also measured attacks over HTTPS

in a lab setup. As shown in Fig. 6, HTTPS connections are bin-wise fundamentally

different from their non-encrypted counterparts when compared to the histograms in

Figs. 3 and 4: Both the total number of bins and the total flow size are larger, while

the number of zero-payload packets is basically the same. The differences can be

0 273 274 309

5 0 1 0P
ac
ke

ts

(a) Histogram D

0 273 274 309

9
0 0 1P

ac
ke

ts

(b) Histogram E

0 273 274 309

35

1 0 0P
ac
ke

ts

(c) Histogram F

Fig. 4 Payload size histograms in benign HTTP flows. a Histogram D. b Histogram E. c Histogram F

3 Patator v0.7, which can be retrieved from https://github.com/lanjelot/patator

J Netw Syst Manage (2017) 25:735–758 743

123

https://github.com/lanjelot/patator

accounted to the establishment of the encrypted channel, which requires cipher

selection, key exchange, etc. However, when considering histograms of benign

client-server interactions and brute-force attacks in HTTPS, a characteristic

difference in distances similar to that in the case of HTTP traffic can be observed.

The most important take-away from the measurements and histograms presented

in this section is that histograms for benign connections are quite different from

histograms in typical brute-force attacks, such as those visualized in Fig. 3. We will

use this observation in our detection approach, which we explain in the next section,

to discriminate brute-force phase traffic from other traffic and identify any

subsequent compromises.

4 Detection Approach

Our detection approach is based on data exported by a flow exporter using IPFIX,

and consists of two phases: Preselection and detection. The detection phase in itself

is made up of several steps, as is depicted in Fig. 7. Both phases, and the respective

steps they comprise, are explained in the remainder of this section.

As with most flow-based analysis applications, the various analysis steps operate

on flow data chunks. Data chunks consist of flow data that has been received in

fixed-length time intervals, typically in the order of several minutes. The use of data

chunks allows for near-real-time processing of network traffic on the one hand, and

demarcates the dataset used per iteration on the other.

4.1 Preselection

The Preselection phase serves to make a rough data selection based on a number of

criteria, such that the amount of data to be processed in further steps is reduced.

Since this has advantages solely in terms of performance, this is an optional step. If

used, Preselection returns a list of IPv4 and IPv6 address tuples of possible attackers

and targets. More formally, we define a tuple as a pair of source and destination IP

1,000

1,100

1,200 HTTP HTTPS

0 10 20 30 40 50 60
400

500

600

Password length (characters)

F
lo
w

si
ze

(B
yt
es
)

Fig. 5 Impact of password length on total flow size

744 J Netw Syst Manage (2017) 25:735–758

123

addresses, source port number and vhost.4 To qualify for preselection, an attacker

must have generated at least N flows towards a target. Note that we refer several

times to this number in the remainder of this paper and that the used value for N is

explained in Sect. 5.

Since the goal of Preselection is data filtering and not detection, exceeding the

threshold for tuple qualification is often easy, even for benign applications, such as

Web crawlers and calendar fetchers. It is then up to the detection phase to classify

these cases as benign. Nevertheless, our measurements have shown that Preselec-

tion can improve the detection process’ overall performance by more than a factor 7

in terms of processing time on our validation datasets. This is because the clustering

procedure, covered in Sect. 4.3, is by far our most computationally expensive

component, so its use should be limited as much as possible by confining the input

dataset.

4.2 Data Retrieval

This step retrieves the flow data used within the detection phase. In case a

Preselection was done before, only data that belongs to the preselected tuples within

the current data chunk is retrieved, and a full data chunk otherwise. After retrieval,

flow data that cannot be part of an attack by definition is filtered out. For example,

flow records from attacker to target typically feature at least four packets, because

every valid HTTP request consists of the following packets at least:

0 31 126 517 1427 1448

7

1 1 1 1

7

Payload size (Bytes)

P
ac
ke

ts

Fig. 6 Payload size histogram
of a TLS flow

Preselection

Detection

Data retrieval Clustering Brute-force
phase detection

Compromise
phase detection

Tuples

Fig. 7 Conceptual detection approach

4 Many IPFIX flow exporters extract vhosts, often referred to as HTTP hostname, from HTTP headers.

This information is no prerequisite for our detection approach and therefore only used within the

Preselection phase.

J Netw Syst Manage (2017) 25:735–758 745

123

• TCP SYN—First packet of three-way handshake.

• TCP ACK—Third packet of three-way handshake.

• HTTP GET/POST—Actual HTTP request.

• TCP FIN/RST—Connection teardown.

Note that network flows are typically unidirectional in nature, so these packets

represent merely the traffic from attacker to target. Since we can only identify TCP

flags in flow data and not whether a flow actually features an HTTP request, we use

the TCP PSH flag. This flag signals an application-layer data exchange, so we

consider a new connection to a common Web server port (80, 443) to feature an

HTTP request. We filter out every flow that does not feature at least TCP SYN, ACK,
PSH and FIN/RST flags. The retrieved data is presented to the next step, clustering,

per tuple.

4.3 Clustering

Histograms of attack traffic are very much alike when attacks reside in the brute-

force phase, since repeated application-layer behavior results in flat traffic, as shown

in Sect. 3. As a consequence, this will cause brute-force traffic to be clustered. For

the compromise phase, however, we analyze precisely the traffic that falls outside

the cluster featuring brute-force phase histograms. We avoid any clustering

impairment caused by TCP protocol variability (e.g., control information segments),

as described in [14], by removing the zero-value bins from histograms; potential

traffic variability is typically caught in zero-value bins as related segments do not

feature any payload.

In this work, we use Hierarchical Cluster Analysis (HCA), which aims at

building clusters based on inter-cluster distances in a hierarchical fashion [15].

HCA uses either one of the following strategies: divisive (also commonly referred to

as top-down), or agglomerative (bottom-up). We take the agglomerative approach,

because it is faster than divisive clustering for larger datasets if the entire hierarchy

needs to be built. Since histograms describing compromises are assumed to be

outliers compared to histograms describing brute-force traffic, we would need to

‘divide’ all the way down to individual histograms to find potential ‘compromise

outliers’ in case of divisive clustering.

The advantage of using HCA is that, unlike other clustering approaches such as

k-means, HCA does not require the number of clusters to be set in advance. Instead,

HCA can stop the clustering process (referred to as stop linking clusters in HCA

jargon) as soon as certain criteria are no longer satisfied. An example criterion is

that the distance between the selected pair of observations for cluster linkage is

above a given threshold. Linking clusters is done based on a linkage method and a

distance metric. The linkage method determines which two histograms from two

potentially to be linked clusters to apply the distance metric to (i.e., which

histograms to use for inter-cluster distance calculation), as each of the two clusters

potentially contains multiple histograms. In this work, we rely on single-linkage as

the linkage method, and on MDPA as the distance metric, as discussed in Sect. 3.

Single-linkage selects the two least dissimilar histograms in two clusters to

746 J Netw Syst Manage (2017) 25:735–758

123

determine the inter-cluster distance. The choice for single-linkage, as opposed to

complete-linkage (which considers the two most dissimilar histograms), was made

empirically based on clustering results for datasets that were confirmed to feature

Web attacks.

To find the optimum number of clusters, we express the validity of clustering

results in terms of an ‘internal index’ after every HCA step. This index indicates

how well observations, i.e., histograms, lie within their cluster, and how well

clusters are distanced. As opposed to an external index, an internal index does not

require external information (e.g., ground truth) for validation, which is desirable in

our case because we need to account for diverse datasets. As shown in [22], a

cluster can be graphically represented by its so-called Silhouette, which is composed

of the Silhouette coefficients of each observation in that cluster. Silhouette

coefficients are mathematically defined as follows:

sðxÞ ¼ bðxÞ � aðxÞ
maxðaðxÞ; bðxÞÞ ð5Þ

In our context, a(x) represents the average dissimilarity of histogram X to all

other objects within the same cluster, while b(x) is the inter-distance of histogram X

to its neighboring cluster (i.e., the second-best cluster choice for histogram X).

Silhouette coefficients are particularly interesting for our approach, since they can

be calculated based only on pair-wise distances between observations in the dataset,

for which we can use the MDPA metric. The average of all Silhouette coefficients

lends itself well as an internal index, and as such can be used to validate clustering

results and determine the optimum number of clusters [22]. To this end we have

also studied alternative internal indices, such as the one used in Calinski and

Harabasz (CH) [3], which is based on a ‘sum-of-squares’. Unlike the average

Silhouette coefficient, the CH index is based on the distance of the cluster centroids

to the general mean of the data [16]. Since the MDPA metric does not allow for the

mean between more than two histograms to be determined, neither cluster centroids,

nor the general mean can be calculated. This yields not only the CH approach

infeasible in combination with MDPA, but any other internal index that relies on

‘sums-of-squares’.

4.4 Brute-Force Phase Detection

Detection of the brute-force phase is always done using the largest cluster of a tuple,

since we assume that attack traffic is dominant enough to comprise a (large) cluster

by itself. In cases of non-attack traffic, the largest cluster may however contain

histograms that are not very similar, meaning that distances between histograms are

rather large. To filter out such candidates, we calculate the average intra-cluster

distance for the largest cluster. In case it exceeds a predefined threshold h,5 we

ignore the tuple in the remainder of the detection procedure.

5 We use h ¼ 3, meaning that a cluster’s histograms must be roughly identical, i.e., three bytes deviation

on average. This value was empirically established based on the analysis of real attacks.

J Netw Syst Manage (2017) 25:735–758 747

123

Several CMSs, such as recent versions of Joomla and Drupal, have built-in

mechanisms to mitigate simple brute-force attacks against their backends, mostly by

requiring a token, served by the CMS as part of a session cookie or a form nonce, to

be included in authentication requests. Depending on the attacked CMS, the

token(s) required for authentication may have to be retrieved only once per attack

(Joomla) or once per authentication request (Drupal). The thought behind this is that

not-so-clever brute-force tools start their attacks without retrieving the authentica-

tion pages first, causing the attacks to never yield any useful result. However, our

analysis of modern attack tools has revealed that they are perfectly able to

circumvent this type of protection nowadays, which will be reflected in the overall

cluster structure. Therefore, besides analyzing merely the largest cluster, we analyze

the relation between the two largest clusters and verify whether they have the

following characteristics:

• Clusters must feature a typical relation in terms of size, such as 1:1, 1:2 or 1:3.

• The average distance between histograms in both clusters, c, must be at least 75.

This value has been established empirically based on our datasets and our

analysis has shown that many CMSs will trigger such behavior with a distance

of only around 200. This distance can be explained by the completely different

nature of requests for token retrieval and authentication attempts. Also, this

minimum is used to avoid considering two clusters that have somewhat similar

histograms which should not have been separated into these two clusters to

begin with.

Given the alternating nature of token retrieval (typically done using HTTP GET

requests) and authentication attempts (using HTTP POST), we refer to this behavior

as GET/POST-alternation or GET/GET/POST-sequence.

Finally, once the largest cluster is found to feature a brute-force phase, we

perform a sanity check to rule out false positives: in case the set of clusters features

many small clusters, i.e., clusters with only one or two histograms, we ‘overrule’ the

detection of the brute-force phase. Many small clusters indicate that the network

traffic was highly variable in terms of payload, therefore contradicting our definition

of typical attack behavior.

4.5 Compromise Phase Detection

Authentication attempts that ultimately result in a compromise are no different from

connections resulting in failed authentication attempts, as the request sent to the

Web server is basically identical (except for the credentials themselves). We

therefore analyze return traffic, i.e., traffic from target to attacker, to identify

potential compromises. Our analysis of attacks has shown that these return

connections are different in size upon successful authentication. The difference in

size can be explained by the (new) page, e.g., CMS backend panel, that is served to

the attacker, which is different from the login forms used in the brute-force phase.

Since compromises can only be present after login attempts, an attack must reside

in the brute-force phase before the compromise phase detection is activated. To

748 J Netw Syst Manage (2017) 25:735–758

123

detect compromises, we retrieve flow data from target to attacker and cluster the

payload histograms in exactly the same way as for the brute-force phase detection.

Since traffic from target to attacker consists of many authentication errors in a

typical brute-force attack, we assume that traffic to be rather alike in terms of its

payload distribution. If there exists only one cluster with a single histogram

(referred to as the single-histogram cluster in the remainder of this section), we

continue the detection. Otherwise, many small clusters point to traffic that is

scattered in terms of payload, while clusters with more histograms are unlikely to

feature a compromise, because the compromise should be considered an ‘excep-

tional’ case within the attack.

Based on measurements in a lab environment, where we have recorded the

network traffic between the attack tool Patator and the three CMSs considered in

this work, we have identified various characteristics of a compromise. As such, if a

histogram in the single-histogram cluster matches the following two criteria, we

consider it a compromise:

• The histogram ‘size’, i.e., each bin multiplied by its value, is larger than the

average size of all other clusters.

• The histogram’s bins must differ from bins in all other clusters, since we assume

that the flow for the compromise carries significantly different traffic, such as a

CMS backend management page. The only exceptions are the zero-value bins,

which are ignored from our detection, as explained in Sect. 4.3, and the bins that

represent the maximum segment size (MSS), as they are also likely present in

both brute-force phase and compromise phase histograms.

These characteristics are visualized in Fig. 8, where we show both a brute-force

phase histogram and a compromise phase histogram based on our measurements. It

is clear that the overall size of the compromise phase histogram is larger than the

size of the brute-force phase histogram and that the histogram’s bins are different. It

should be noted that the brute-force phase obviously consists of a whole bunch of

histograms like the one shown in Fig. 8a, rather than only one.

5 Validation

In the context of our validation, we define an attack as a sequence of at least N flows

towards a CMS backend. Due to the fact that connections that are part of an attack

feature at least one authentication attempt, N consecutive flows feature at least N

authentication attempts. By measuring the number of consecutive connections

towards the same CMS backend Uniform Resource Locator (URL), we have found

that N ¼ 20 covers roughly the upper 10% of attack sizes measured in our

validation datasets. This value, on the one hand, causes benign failed login attempts

to be filtered out implicitly, and, on the other hand, reduces the load on our

prototype due to very small attacks and noise.

The remainder of this section is structured as follows. In Sect. 5.1, we introduce

the two prototypes that are developed for demonstrating the contributions of this

J Netw Syst Manage (2017) 25:735–758 749

123

work. Then, in Sect. 5.2, we explain the datasets that have been collected and

analyzed for validation. This is followed by an introduction of our validation

approach and the applied metrics in Sects. 5.3 and 5.4, respectively, followed by a

discussion of the validation results in Sect. 5.5.

5.1 Prototypes

For the sake of validating our detection approach, we have implemented two

prototypes. First, we have modified the IPFIX Metering and Exporting processes of

our flow exporter, such that it is able to export payload size histograms for every

observed/metered flow using IPFIX. INVEA-TECH’s FlowMon platform was

chosen for this purpose, as it has been designed with extensibility in mind.

Nevertheless, our extension can easily be ported to other flow exporters, such as

nProbe6 and YAF.7 Second, we have implemented an intrusion detection prototype

that performs the preselection and detection as described in Sect. 4.

5.2 Datasets

The datasets used for validation of this work have been collected in the production

network of Hosting 2GO, a Top-10 Web-hosting company in the Netherlands, for a

period of a month in July/August 2015. The systems under observation host

approximately 2500 Web hosting accounts, worth a total of 2603 vhosts. In total, the

datasets consist of traffic records worth 414 GB, generated by more than 237k hosts.

More specifically, we use two types of datasets, summarized in Table 1, both from

the same observation point, but collected on different systems:

• Log files—These Web server access log files serve as ground-truth for our

validation and are the only means of verifying whether an attacker has

compromised a system.

• Flow data—This data has been exported using IPFIX with 1:1 sampling applied

on the exporting device, and consists of the typical set of fields seen in many

NetFlow v9 implementations. Among those fields are IP addresses and port

numbers, L3 protocol number, IP Type of Service (ToS) byte and Simple

0 1599

4 4

Payload size (Bytes)

P
ac
ke

ts

(a) Brute-force phase.

0 5 566 1599

5

1 1

5

Payload size (Bytes)

P
ac
ke

ts

(b) Compromise phase.

Fig. 8 Histograms for flows in various phases of an attack against a vanilla Drupal instance. a Brute-
force phase. b Compromise phase

6 http://www.ntop.org/products/netflow/nprobe/
7 https://tools.netsa.cert.org/yaf/

750 J Netw Syst Manage (2017) 25:735–758

123

http://www.ntop.org/products/netflow/nprobe/
https://tools.netsa.cert.org/yaf/

Network Management Protocol (SNMP) input interface ID. Additionally, we

augment the exported data with HTTP information, namely hostname and URL,

and payload metadata, as discussed in Sect. 3. The functionality for parsing

hostnames in HTTP and HTTPS traffic, and URLs in HTTP traffic is available

on every modern FlowMon device. The code for exporting payload size

histograms is our own. Our flow data serves as input for the prototype described

in Sect. 5.1.

To protect the privacy of individuals of whom we have captured network traffic

and log files, we have anonymized all fields that can potentially lead to personal

identification. First and foremost, we have anonymized all IP addresses in both the

flow data and log files in a prefix-preserving manner using the de facto standard in

this area: Crypto-PAn. Crypto-PAn is consistent across traces, such that we can

correlate IP addresses in both datasets, even after anonymization. Second, we have

hashed all HTTP hostnames (i.e., vhosts), such that the original hostname cannot be

retrieved anymore, while hostnames can still be uniquely identified in both datasets.

5.3 Approach

Out of the three attack phases discussed in Sect. 2, only the scan phase has not been

touched in this work, due to its irrelevance in the context of attacks against Web

applications. We therefore validate our detection performance only with respect to

the brute-force and compromise phases. Additionally, to underline the improve-

ments of our approach compared to the state-of-the-art, we also compare our results

to results obtained based on the approach described in [24].

Before we can compare detection results to our ground-truth, we have to post-

process the datasets to obtain the same unit of comparison, as shown in Fig. 9. For

this purpose, we define an interaction as a set of consecutive sessions/connections

towards a CMS backend within a certain time period. To obtain interactions from

Web server log files, we developed an Apache access log parser that aggregates log

records into interactions based on a number of heuristics. In the case of flow data,

which naturally consists of session/connection entries, the only post-processing

needed is the aggregation of sessions between a tuple with less than 5 min of idle

time between sessions. This idle time was chosen as a tradeoff between the typical,

very short-lived HTTP(S) sessions between server and client on the one hand, and a

buffer for coping with time offsets between datasets on the other. After post-

processing, our ground-truth consists of 854945 interactions.

As for identifying brute-force attacks and compromises from log files, we take

the following approaches. For the brute-force phase, we determine the number of

consecutive HTTP POST requests towards CMS backend login pages. If this

number exceeds N, we classify the interaction as malicious. For the compromise

phase, the general approach is to label an interaction as to feature a compromise as

soon as an attacker is not interacting with the login form anymore, which however

strongly varies per CMSs. WordPress is the most simple case, since it uses different

URLs for login page and backend. Joomla’s backend page after login is greater in

size than the login page itself, so one or few larger responses by the Web server

J Netw Syst Manage (2017) 25:735–758 751

123

signal a login. In the case of Drupal, a successful login is indicated by a different

HTTP status code, which performs a redirection and thus carries less HTTP

payload.

5.4 Metrics

IDS performance metrics are typically expressed in terms of positive and negative

detections being either true or false. We therefore define metrics for the brute-force

phase as follows:

• True Positive (TP)B: Interaction labeled as malicious that is reported by our

prototype.

• False Positive (FP)B: Interaction labeled as benign that is reported by our

prototype.

• True Negative (TN)B: Interaction labeled as benign that is not reported by our

prototype.

• False Negative (FN)B: Interaction labeled as malicious that is not reported by

our prototype.

These metrics can also be expressed as percentages. For example, the True

Positive Rate (TPR) is defined in the context of this work as the percentage of

interactions correctly labeled as malicious and reported by our prototype:

Table 1 Validation datasets
Dataset Size on disk (GB) Size (entries)

Access logs 2.8 12.2 M

Flow data 16.8 42.1 M

Log files

Interactions

Classified
interactions

Flow data

Classified
interactions

Aggregation

Classification

IDS

Validation

Fig. 9 Dataset post-processing for validation

752 J Netw Syst Manage (2017) 25:735–758

123

TPR ¼ TP

TPþ FN
ð6Þ

To avoid any bias of brute-force phase detection results on detection results for

the compromise phase, we only consider those attacks that were successfully found

to feature a brute-force phase. This is a logical consequence of the fact that the

compromise phase can only be reached after the brute-force phase, as described in

Sect. 2. From the ground truth, we conclude a compromise upon change of a URL

between a tuple from a backend authentication URL to another URL on the same

vhost, after more than N authentication attempts. As for our prototype, we measure

its performance in terms of the following evaluation metrics for the compromise

phase:

– TPC: TPB correctly identified to feature a compromise.

– FPC: TPB incorrectly identified to feature a compromise.

– TNC: TPB correctly identified to not feature a compromise.

– FNC: TPB incorrectly identified to not feature a compromise.

Additionally, we use the aforementioned evaluation metrics to calculate the

accuracy (Acc) of our prototype:

Acc ¼ TPþ TN

TPþ FPþ TN þ FN
ð7Þ

We have found some (positive and negative) detection results for the brute-force

phase that could not be matched with our ground-truth, mostly because of timing

deviations between our datasets. To make sure that these detections are not

accounted wrongly in any of our evaluation metrics, we have listed them separately

as unclassified.

5.5 Results

Our validation results are shown in Tables 2 and 3, which lists the values for all

evaluation metrics, as well as their respective rates/percentages. The most important

take-away is that our approach (Table 2) significantly outperforms existing works

(Table 3), in all respects. Besides detecting a significantly larger number of TPB
(469 vs. 237), the number of false detections has been reduced to almost 10% of

existing works. Also, our approach has shown to be able to detect the one

compromise in the dataset. It should be noted that we validated our work in a

conservative case, because our validation network has a firewall in place that blocks

remote hosts when generating too many connections. Consequently, (very) large

attacks have never reached the Web servers and are therefore not recorded in our

datasets, while they would likely be detected by our prototype.

With respect to false detections, we made several observations. First, almost all

FPs are somehow related to photo galleries. Photos in a gallery are often similar in

size, because they have been shot by the same camera and post-processed in the

same way. They may even have been compressed such that they end up having the

J Netw Syst Manage (2017) 25:735–758 753

123

same size. Thumbnails are even worse (for our approach); Once an album is opened,

thumbnails of the album’s contents are fetched by the client, resulting in tons of

similar connections, due to the fact that the thumbnails have exactly the same

dimensions and are typically identical in size. Second, FNs have two major causes:

either they are caused by low-intensity attacks that do not generate more than N

connections/requests per 5 min data chunk, or the distance between histograms in

the largest cluster slightly exceeds our threshold h.

6 Discussion

This work so far presented a detection approach for identifying brute-force attacks

in flow data and potential compromises resulting thereof, without referencing any

mitigation possibilities. A straightforward mitigation approach is blacklisting; by

adding identified attackers to access control lists (ACLs) in a firewall or router, any

traffic from these sources is blocked. However, although our prototype has shown to

report just a small number of false detections, we propose a less radical mitigation

approach: graylisting. As with typical blacklisting, graylisting works by listing IP

address of attackers in a router or firewall, but instead of pure blocking, attackers are

redirected to a static landing page. This page allows one to be delisted by clicking a

button or entering a keyword, and since it is not recognized by attack tools, humans

can easily be unblocked, while automated attacks are mitigated.

Several Top-10 Web hosting companies in the Netherlands mitigate attacks by

serving a CAPTCHA or HTTP Basic Authentication ahead of every CMS backend

login page, enforced on a per-server basis. Our analysis of attack tools has shown

that tools do not recognize this behavior and naively continue an attack. We want to

point out that our approach still works in such environments, since attacks will

feature many connections that are similar in terms of their payload distribution.

Table 2 Validation results for our approach

Phase TP FP TN FN Acc Uncl.

Brute-force 469 (0.597) 519 (0.000) 1.748M (1.000) 317 (0.403) 1.000 21,336

Compromise 1 (1.000) 14 (0.030) 454 (0.970) 0 (0.000) 0.970 0

Table 3 Validation results for existing works

Phase TP FP TN FN Acc Uncl.

Brute-force 237 (0.303) 5058 (0.003) 1.744M (0.997) 545 (0.697) 0.997 21382

Compromise – – – – – –

754 J Netw Syst Manage (2017) 25:735–758

123

7 Conclusions

A lesson learned from 25 years of network and systems management research, is

that the focus has changed from designing new management technologies towards

solving real management problems. One key problem managers are faced with

today, is the detection of security attacks on their infrastructure. In this paper we

discuss how to detect brute-force attacks and subsequent compromises of Web

applications. Traditionally such detection is performed on the Web server hosts

(systems management) by analysing log files. However, in environments where

hosting companies do not have complete access to all log files, for example in cases

where customers are offered VMs, such approach may no longer be possible. This

paper therefore discusses the feasibility of a network-based approach, in which

IPFIX data is analysed to detect compromises.

The use of clustering methods together with histograms for discriminating

between attack traffic and non-attack traffic makes our approach applicable to

almost any Web application (Sect. 4). In addition, it allows us to overcome the

problems faced by related works, e.g., false negatives due to TCP control

information, and false positives as a consequence of benign applications generating

many similar connections, such as Web crawlers (Sect. 3).

Although the use of histograms increases the size per flow record and therefore

the amount of data to be transferred and processed, we show that their impact is very

limited; our histograms extend the size of flow records by at most 37 bytes in 99%

of observed cases (Sect. 3). This number can certainly be optimized if circum-

stances dictate, by using binary encoding, for example. Our validation results show

that, although the number of compromises in our datasets is very limited, we are

able to detect all of them (Sect. 5). In addition, we significantly outperform related

works by roughly halving the number of false detections.

There are still several directions for future work. First and foremost, like most

security measurement studies, false positives and negatives remain an important

issue. For this specific study more work is needed to understand the most dominant

sources of false detections, such as online galleries with thumbnails. Since

retrieving thumbnails is typically done in batches, e.g., when opening a Web page,

we expect that timing characteristics may be useful for discriminating traffic

towards galleries from attack traffic. Second, different cipher suites and key

exchange protocols will affect the size of HTTPS flows. Attackers could try to use

different cipher suites and protocols in an attempt to remain invisible. In general it is

important to make detection approaches more resilient against evasion techniques.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

J Netw Syst Manage (2017) 25:735–758 755

123

http://creativecommons.org/licenses/by/4.0/

Appendix 1: Minimum Difference of Pair Assignment (MDPA)

MDPA is a distance metric for calculating how similar two histograms are. Its most

distinguishing feature is that it does not satisfy the shuffling invariance metric,

meaning that shuffling any bin values in a histogram does affect histogram inter-

distance, as explained by means of an example in Sect. 3. In short, MDPA aims at

finding the minimum difference of pair assignments between two sets, histograms in

our context. As such, one has to find the best combination of one-to-one

assignments such that the sum of all differences is as small as possible [4].

Calculation

The formal definition of the inter-distance of two histograms using the MDPA

metric has been defined in (4). How the actual calculation works can best be

explained based on Fig. 10, where Histogram A, B and C are taken from Fig. 3.

Distances between any two histograms are the sums of differences between pairs of

samples. For example, the difference between Histogram A and B is 4. The

minimum distance of pairs between Histogram A and C is 204. To illustrate the

effect of MDPA not satisfying the shuffling invariance, we have shuffled the

samples in Histogram C in Fig. 10 such that the samples are not in ascending order

of their values anymore. Given that all distance permutations are compared in (4),

the overall distance between any two histograms is not affected by the order of the

samples.

Normalization

Since the number of samples in a histogram is not necessarily the same between any

two histograms, one can apply normalization of the histograms by multiplying all

elements by a common multiple N of both histograms. One common multiple is the

product of the number of samples in two histograms x and y, i.e., nx � ny. The
normalized distance between two histograms is then defined as follows [4]:

Histogram B

0

0

0

255

259

Histogram A

0

0

0

255

255

Histogram C

459

0

0

255

0

0

0

0

0

4

Distance:
+

4

0

0
204 0

+
204

0

Fig. 10 MDPA calculation. Visualization based on [4]

756 J Netw Syst Manage (2017) 25:735–758

123

DNðx; yÞ ¼ DðxN ; yNÞ
N

ð8Þ

Although normalization is only necessary in case of inequality of the number of

samples in any set of histograms, we use the normalized distance in all our

calculations for the following reasons:

• It is very unlikely that histograms within a cluster are identical in terms of the

number of featured samples.

• Comparing histogram distances between different clusters can only be done if

the distances are normalized.

References

1. Best Host News: cPanel vs. Plesk vs. DirectAdmin comparison. https://www.besthostnews.com/

cpanel-vs-plesk-vs-directadmin/ (2015). Accessed 9 June 2017

2. Burnett, M.: Yes, 123456 is the most common password, but here’s why that’s misleading. http://

arstechnica.com/security/2015/01/yes-123456-is-the-most-common-password-but-heres-why-thats-

misleading/ (2015). Accessed 9 June 2017

3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods

3(1), 1–27 (1974)

4. Cha, S.H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognit. 35(6),
1355–1370 (2002)

5. Cid, D.: WordPress malware—active VisitorTracker campaign. https://blog.sucuri.net/2015/09/

wordpress-malware-active-visitortracker-campaign.html (2015). Accessed 9 June 2017

6. Claise, B., Trammell, B., Aitken, P.: Specification of the IP flow information export (IPFIX) protocol

for the exchange of flow information. RFC 7011 (Internet Standard). http://www.ietf.org/rfc/rfc7011.

txt (2013)

7. Dell’Amico, M., Michiardi, P., Roudier, Y.: Password strength: an empirical analysis. Proc. IEEE

INFOCOM 2010, 1–9 (2010)

8. Drašar, M.: Protocol-independent detection of dictionary attacks. In: Proceedings of the 19th

EUNICE/IFIP WG 6.6 International Workshop, EUNICE’13, pp. 304–309 (2013)

9. Drašar, M.: Behavioral detection of distributed dictionary attacks. Ph.D. thesis, Masaryk University,

Brno, Czech Republic (2015)

10. Gooding, S.: 100,000? WordPress sites compromised using the slider revolution security vulnera-

bility. http://wptavern.com/100000-wordpress-sites-compromised-using-the-slider-revolution-security-

vulnerability (2014). Accessed 9 June 2017

11. Hofstede, R., Hendriks, L., Sperotto, A., Pras, A.: SSH compromise detection using NetFlow/IPFIX.

ACM SIGCOMM Comput. Commun. Rev. 44(5), 20–26 (2014)

12. Huckaby, J.: How to scan WordPress like a hacker. http://www.rackaid.com/blog/scan-wordpress/

(2014). Accessed 9 June 2017

13. Javed, M., Paxson, V.: Detecting stealthy, distributed SSH brute-forcing. In: Proceedings of the 2013

ACM SIGSAC conference on Computer and Communications Security, CCS’13, pp. 85–96 (2013)

14. Jonker, M., Hofstede, R., Sperotto, A., Pras, A.: Unveiling flat traffic on the internet: an SSH attack

case study. In: Proceedings of the 14th IFIP/IEEE Symposium on Integrated Network and Service

Management, IM’15 (2015)

15. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol.

344. Wiley, Hoboken (2009)

16. Kind, A., Stoecklin, M.P., Dimitropoulos, X.: Histogram-based traffic anomaly detection. IEEE

Trans. Netw. Serv. Manag. 6(2), 110–121 (2009)

J Netw Syst Manage (2017) 25:735–758 757

123

https://www.besthostnews.com/cpanel-vs-plesk-vs-directadmin/
https://www.besthostnews.com/cpanel-vs-plesk-vs-directadmin/
http://arstechnica.com/security/2015/01/yes-123456-is-the-most-common-password-but-heres-why-thats-misleading/
http://arstechnica.com/security/2015/01/yes-123456-is-the-most-common-password-but-heres-why-thats-misleading/
http://arstechnica.com/security/2015/01/yes-123456-is-the-most-common-password-but-heres-why-thats-misleading/
https://blog.sucuri.net/2015/09/wordpress-malware-active-visitortracker-campaign.html
https://blog.sucuri.net/2015/09/wordpress-malware-active-visitortracker-campaign.html
http://www.ietf.org/rfc/rfc7011.txt
http://www.ietf.org/rfc/rfc7011.txt
http://wptavern.com/100000-wordpress-sites-compromised-using-the-slider-revolution-security-vulnerability
http://wptavern.com/100000-wordpress-sites-compromised-using-the-slider-revolution-security-vulnerability
http://www.rackaid.com/blog/scan-wordpress/

17. Koch, R.H.: Systemarchitektur zur Ein- und Ausbruchserkennung in verschlüsselten Umgebungen.

Ph.D. thesis, Universität der Bundeswehr München, München, Germany (2015)

18. Mekky, H., Torres, R., Zhang, Z.L., Sabyasachi, Nucci, A.: Detecting malicious HTTP redirections

using trees of user browsing activity. In: Proceedings of IEEE INFOCOM 2014, pp. 1159–1167

(2014)

19. Perez, T.: Understanding denial of service and brute force attacks—WordPress, Joomla, Drupal,

vBulletin. https://blog.sucuri.net/2014/03/understanding-denial-of-service-and-brute-force-attacks-

wordpress-joomla-drupal-vbulletin.html (2014). Accessed 9 June 2017

20. Piskac, P., Novotny, J.: Using of time characteristics in data flow for traffic classification. In:

Proceedings of the 5th International Conference on Autonomous Infrastructure, Management and

Security, AIMS 2011. Lecture Notes in Computer Science, vol. 6734, pp. 173–176. Springer, Berlin

(2011)

21. Qiu, H., Eklund, N., Hu, X., Yan, W., Iyer, N.: Anomaly detection using data clustering and neural

networks. In: Proceedings of the IEEE International Joint Conference on Neural Networks, 2008,

IJCNN’08, pp. 3627–3633 (2008)

22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.

J. Comput. Appl. Math. 20, 53–65 (1987)

23. Sucuri: WordPress brute force attacks. https://sucuri.net/security-reports/brute-force/ (2015).

Accessed 9 June 2017

24. van der Toorn, O., Hofstede, R., Jonker, M., Sperotto, A.: A first look at HTTP(S) intrusion detection

using NetFlow/IPFIX. In: Proceedings of the 14th IFIP/IEEE Symposium on Integrated Network and

Service Management, IM’15, pp. 862–865 (2015)

25. Vizváry, M., Vykopal, J.: Flow-based detection of RDP brute-force attacks. In: Proceedings of 7th

International Conference on Security and Protection of Information, SPI’13, pp. 131–137 (2013)

26. Vykopal, J.: Flow-based brute-force attack detection in large and high-speed networks. Ph.D. thesis,

Masaryk University, Brno, Czech Republic (2013)

27. Vykopal, J., Plesnik, T., Minarik, P.: Network-based dictionary attack detection. In: Proceedings of

2009 International Conference on Future Networks, ICFN’09, pp. 23–27 (2009)

28. Walker, D.: Botnet of Joomla servers furthers DDoS-for-hire scheme. http://www.scmagazine.com/

ddos-campaign-exploits-servers-with-vulnerable-google-maps-plug-in/article/400473/ (2015). Acce-

ssed 9 June 2017

Rick Hofstede is a former Ph.D. student of the University of Twente and the University der Bundeswehr

München, Germany. In 2016, he successfully defended his Ph.D. thesis titled ‘‘Flow-based Compromise

Detection’’, after which he switched to the cyber security industry. His main areas of interest include

cyber security, big data processing and network forensics.

Mattijs Jonker received the B.Sc. and M.Sc. degrees in Computer Science from the University of

Twente, The Netherlands, where he is currently pursuing the Ph.D. degree within the Design and Analysis

of Communication Systems group. The focus of his research is DDoS attack mitigation. His main

research interests include network security, Internet measurements and big data analytics.

Anna Sperotto is assistant professor at the Design and Analysis of Communication Systems Group of the

University of Twente, the Netherlands. She received a Ph.D. degree from the University of Twente, in

2010, with the thesis titled ‘‘Flow-based intrusion detection’’. Her research interests include network

security, network measurements and traffic monitoring and modeling.

Aiko Pras is a professor in the area of Network Operations and Management at the University of Twente,

The Netherlands. His research interests include network management technologies, network monitoring,

measurements and security. He was chair of IFIP TC6 and coordinator of the European FP7 FLAMINGO

project.

758 J Netw Syst Manage (2017) 25:735–758

123

https://blog.sucuri.net/2014/03/understanding-denial-of-service-and-brute-force-attacks-wordpress-joomla-drupal-vbulletin.html
https://blog.sucuri.net/2014/03/understanding-denial-of-service-and-brute-force-attacks-wordpress-joomla-drupal-vbulletin.html
https://sucuri.net/security-reports/brute-force/
http://www.scmagazine.com/ddos-campaign-exploits-servers-with-vulnerable-google-maps-plug-in/article/400473/
http://www.scmagazine.com/ddos-campaign-exploits-servers-with-vulnerable-google-maps-plug-in/article/400473/

	Flow-Based Web Application Brute-Force Attack and Compromise Detection
	Abstract
	Introduction
	Background and Related Work
	Histograms for Intrusion Detection
	Traffic Characteristics
	Clustering Histograms
	Measurements

	Detection Approach
	Preselection
	Data Retrieval
	Clustering
	Brute-Force Phase Detection
	Compromise Phase Detection

	Validation
	Prototypes
	Datasets
	Approach
	Metrics
	Results

	Discussion
	Conclusions
	Open Access
	Appendix 1: Minimum Difference of Pair Assignment (MDPA)
	Calculation

	References

