
A Practical and Secure Fault-Tolerant

Conference-Key Agreement Protocol�

Wen-Guey Tzeng

Department of Computer and Information Science
National Chiao Tung University

Hsinchu, Taiwan 30050
tzeng@cis.nctu.edu.tw

Abstract. When a group of people wants to communicate securely over
an open network, they run a conference-key protocol to establish a com-
mon conference key K such that all their communications thereafter are
encrypted with the key K. In this paper we propose a practical and prov-
ably secure fault-tolerant conference-key agreement protocol under the
authenticated broadcast channel model. The adversary that attacks our
protocol can be either active or passive. An active adversary (malicious
participant) tries to disrupt establishment of a common conference key
among the honest participants, while a passive adversary tries to learn
the conference key by listening to the communication of participants.
We show that a passive adversary gets no information (zero knowledge)
about the conference key established by the honest participants under
the assumption of a variant Diffie-Hellman decision problem. We also
show that the honest participants can agree on a common conference
key no matter how many participants are malicious.

1 Introduction

When a group of people wants to communicate securely over an open network,
they run a conference-key protocol to establish a common conference key K such
that all their communications thereafter are encrypted with the key K. The first
type of conference-key protocols, called conference-key distribution, is that a
chairman selects a conference key and distributes the key to the participants. The
second type of conference-key protocols, called conference-key agreement, is that
all participants together compute a common key without a chairman. The later
one is suitable for distributed environments. Conference-key protocols are also
designed for various types of network connection, such as the ring connection,
the star connection, the broadcast connection, etc. The conference keys of a
conference-key protocol are either pre-distributed or dynamic. The conference
key is fixed for a particular group of participants in a pre-distributed conference-
key protocol, while it is different for each session in a dynamic conference-key
protocol. The pre-distributed conference-key protocol lacks of flexibility often.
� Research supported in part by the National Science Council, Taiwan, ROC, grant
NSC-88-2213-E-009-053

H. Im ai , Y. Zh e n g (E d s.): P KC 2000, LNCS 1751, p p . 1– 13, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Wen-Guey Tzeng

In this paper we propose a practical and provably secure fault-tolerant
conference-key agreement protocol under the authenticated broadcast channel
model. The adversary that attacks our protocol can be either active or passive.
An active adversary (malicious participant) tries to disrupt establishment of
a common conference key among the honest participants, while a passive ad-
versary tries to learn the conference key by listening to the communication of
participants. We tolerate the case that a malicious participant gets the confer-
ence key since the malicious participant can simply behave properly to get the
key. We show that a passive adversary gets no information (zero knowledge)
about the common conference key established by the honest participants under
the assumption of the Diffie-Hellman decision problem. We also show that the
honest participants can agree on a common conference key no matter how many
participants are malicious.

We can relax the requirement of the broadcast channel being authenticated.
For an un-authenticated broadcast channel, the attack from impersonators who
try to impersonate participants is possible. We shall argue that our protocol
is secure in this sense. We can actually use a more sophisticated commitment
scheme in the protocol to achieve rigid security against impersonators. Never-
theless, in order to keep the protocol’s structure and simplicity for practicality,
we design our protocol as it is now.

Computing a conference key is a special case of secure multiparty computa-
tion in which a group of people evaluate a function f(k1, k2, · · ·) securely with
each person possessing a private input ki. Therefore, it is possible to have a
secure conference-key agreement protocol by the generic construction for se-
cure multiparty computation. However, there are some distinct features in the
conference-key agreement protocol. First, there are no private channels between
participants, which is a general assumption in secure multiparty computation.
Second, a cheater’s goal in a conference-key agreement protocol is to disrupt
conference-key establishment among the honest participants. This is quite dif-
ferent from the goal of cheaters in secure multiparty computation. Third, in
multiparty computation when a cheater is found, the cheater’s secret xi, which
is shared into others, is recovered by honest participants so that evaluation can
proceed. In conference-key agreement, since a cheater’s secret is not a necessity
in computing a conference key, the cheater is simply excluded from participating
when found.

There have been intensive research on conference-key protocols. For exam-
ple, conference-key distribution protocols (with a chairman) have been stud-
ied in [3,9,10,16], pre-distributed conference-key protocols have been stud-
ied in [4,5,19], and conference-key agreement protocols have been studied
in [14,16,17,28,29]. Most proposed protocols focus on security and message effi-
ciency for various types of network connection. Nevertheless, they do not have
the capability of fault-tolerance so that a malicious participant can easily mis-
lead other participants to compute different keys. On the other hand, Klein et.
al. [15] proposed a fault-tolerant conference-key agreement protocol. However,
the protocol is quite inefficient and its security is not rigidly proved. Burmester

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 3

and Desmedt [7] proposed an efficient (two-round) protocol (Protocol 3) for
the broadcast channel with f(k1, k2, . . . , kn) = gk1k2+k2k3+···+knk1 mod p. They
showed that an eavesdropper cannot compute the common conference key if the
Diffie-Hellman decision problem is intractable. In contrast, an eavesdropper gets
zero knowledge about the common conference key in our protocol if a variant
Diffie-Hellman decision problem is hard. Their basic protocol cannot withstand
the attack of malicious participants. In the modified Protocol 7 (authenticated
key distribution), they used an interactive proof for authenticating sent messages
and showed that the protocol is secure against impersonators. The number of
rounds in the protocol is proportional to the number of participants, which is
not practical in some cases.

2 Model

A user in the system is a probabilistic polynomial-time Turing machine. Each
user Ui has a secret information xi and a corresponding public information yi.
The system has a public directory that records the system’s public parameters
and each user’s public information that can be accessed by every one. All users
are connected by an authenticated broadcast network such that the messages
sent on the network can be identified and cannot be altered, blocked or delayed.
Therefore, every one can send and receive the message on the network without
interruption. No private channel exists between users. A group of users who
wants to establish a conference key is called the set of participants. A participant
may be malicious in any way.

There are two types of adversaries. A passive adversary who is not a par-
ticipant listens to the broadcast channel and tries to learn the conference key
established by the honest participants. An active adversary who is a participant
tries to disrupt establishment of a common conference key among the honest
participants. An active adversary mainly sends ”malicious” messages into the
broadcast channel to fool an honest participant to believe that he has computed
the same conference key as that of other honest participants, while he does not
indeed. We don’t care about the possibility that two or more cheating partici-
pants collaborate and result in one of them or other malicious participants not
being able to compute the key. This includes the following case. A malicious
participant Ui sends ”malicious” messages, but all honest participants compute
the same key. Another malicious participant Uj , though receiving an incorrect
key, still claims that he has had received the correct key. We tolerate this case
since this type of collaboration between Ui and Uj do no harm to the honest
participants.

A conference-key agreement protocol is secure if it can withstand attacks
of passive and active adversaries. For security against a passive adversary, we
mean that the adversary alone can construct a view that is computationally
indistinguishable from the real conversation occurred among the participants.
For security against an active adversary, we mean that if the adversary does not

4 Wen-Guey Tzeng

follow the protocol in any way, the probability that he can disrupt establishment
of a common conference key among honest participants is negligible.

3 Design Principles

Our protocol is component-based, that is, our protocol uses cryptographic mod-
ules as building blocks. Component-based design has many merits. First, because
of using modular design, it is easy to upgrade the components of the protocol in
case that better components, in either efficiency, cost, or security, are available.
Also, in case that security flaws are found in a component, we can replace the
component only and need not abandon the whole established system. Second,
it is easier to apply strong security analysis on the protocol. Since each compo-
nent has a single security goal, we can analyze each component in the focused
security features. Third, it is flexible and suitable for use in a large system. A
conference may be called among the participants all over the world. Flexibility of
component-based design allows each user choose adequate components for each
conference session. Therefore, component-based design is suitable for large and
heterogeneous systems.

Suppose that each participant Ui holds a secret xi, 1 ≤ i ≤ n. They need
evaluate a function f to get the conference key K = f(k1, k2, . . . , kn), where ki

is a randomly selected secret (sub-key) of Ui for the conference session. In our
protocol, we let each participant Ui handle a function fi and the conference-key
function is

f(k1, k2, . . . , kn) = Σfi(k1, k2, . . . , kn)

where fi(k1, k2, . . . , kn) = ki. Since the result ki of fi is independent of other
parameters kj , j �= i, participant Ui can broadcast messages so that other par-
ticipants can evaluate fi in a secure multiparty computation way. As mentioned
previously, our protocol is component-based. It contains the following compo-
nents:

1. Component of secure multiparty computation for fi:
2. Component of ki commitment and verification:

Our conference key agreement protocol has the following four stages.

1. Secret distribution and commitment: Using the paradigm of secure
multiparty computation, each participant Ui broadcasts wi so that any par-
ticipant Uj can compute fi(. . . , ki, . . .) = ki from wi and his secret xj . Since
the computation is secure, no passive adversary shall get any information
about ki. Also, Ui broadcasts ci that commits to ki so that other partici-
pants can verify correctness of ki..

2. Sub-key computation and verification: Ui computes k′
j of all other par-

ticipants Uj , j �= i. When Ui gets k′
j , he can use uj to check whether k′

j is
correct.

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 5

3. Fault detection: If the above verification is not correct,Ui asks Uj to reveal
information about commitment ci and messages wi so that all participants
can determine whether Ui is cheating. If Ui detects a cheater, he deletes the
cheater from his participant set and restarts the protocol.

4. Conference-key computation: When no faults are detected, add all sub-
keys together to get the conference key.

Actually, each participant Ui can use a different method for securely computing
fi and committing to ki as long as the methods are known by other participants.

4 A Concrete Protocol

The system has public parameters:

– p: a large prime number that is 2q + 1, where q is a large prime also.
– H : a one-way permutation from Zq to Zq.
– g: a generator (primitive root) for the subgroup Hq of quadratic residues of

Z∗
p .

Each user Ui has two parameters:

– Private parameter xi: a number in Z∗
q .

– Public parameter yi = gxi mod p. Since q is prime, yi is a generator for Hq.

The protocol starts with that an initiator calls for a conference for a set U of
participants. Without loss of generality, let U = {U1, U2, . . . , Un} be the initial
participant set. Each Ui, 1 ≤ i ≤ n, knows U .

1. Secret distribution and commitment: each participant Ui does the fol-
lowing:
(a) Randomly select Ri,Ki ∈ Zq, Si ∈ Z∗

q .
(b) Compute a polynomial hi(x) (over Zq) of degree n that passes points

(j, yR
j mod p mod q), 1 ≤ j ≤ n, and (0,Ki).

(c) Compute and broadcast

wij = hi(n+ j) mod q, 1 ≤ j ≤ n,

αi = gRi mod p,

γi = gSi mod p,

δi = S−1
i (H(Ki)− γixi) mod q.

2. Sub-key computation and verification: each participant Ui does the
following for j �= i:
(a) On receiving wjl, 1 ≤ l ≤ n, and αj , compute polynomial h′

j(x) (over Zq)
of degree n that passes (n+ l, wjl), 1 ≤ l ≤ n, and (i, αxi

j mod p mod q).
(b) Let K ′

j = h′
j(0) mod q.

6 Wen-Guey Tzeng

(c) Check whether (γj , δj) is the ElGamal signature of H(K ′
j) by Uj ,

i.e., check whether gH(K′
j) mod p = y

γj

j γ
δj

j mod p. If so, broadcast
Vij=”success”. Otherwise, broadcast Vij=”failure”.

3. Fault detection: each participant Ui does the following for j �= i:
(a) On receiving Vji=”failure” for some Uj: Uj claims that Ui itself is faulty.

i. Output Ri,Ki, Si.
(b) On receiving Vjm=”failure”: Uj claims that Um, m �= i, is faulty.

i. Wait for Um’s fault detection messages Rm,Km, Sm.
ii. If Um’s fault detection messages are not received, set Um as a mali-

cious participant.
iii. On receiving Rm,Km, Sm, check whether wml, 1 ≤ m ≤ n, αm, γm,

and δm are correct, i.e., check whether αm = gRm mod p, whether
there is an n-degree polynomial over Zq passing points (0,Km),
(l, yRm

l mod p mod q), and (n + l, wml), 1 ≤ l ≤ n, and whether
(γm, δm) is the ElGamal signature of Um on H(Km). If so, set Uj as
a malicious participant. Otherwise, set Um as a malicious participant.

(c) Restart the protocol by deleting malicious participants from his partici-
pant set U.

4. Conference-key computation: If no faults are detected in the fault de-
tection stage, each particpant Ui computes the conference

K = (K ′
i1 +K ′

i2 + · · ·+K ′
im
) mod q

where the current participant set is U ′ = {Ui1 , Ui2 , . . . , Uim}.

5 Security Analysis

We show security of the above protocol in correctness, fault tolerance and with-
standing the attack of passive adversaries.

5.1 Correctness and Fault Tolerance

For correctness (completeness) of our protocol, we show that if all participants
follow the protocol, they compute a common conference key.

Theorem 1 (Correctness). If all participants follow the protocol, they com-
pute a common conference key.

Proof. ¿From the broadcast messages of participant Uj , participant Ui can com-
pute the polynomial hj(x) mod q passing points (n + l, wjl), 1 ≤ l ≤ n, and
(i, αxi

j mod p mod q). Ui then computes Kj = hj(0) mod q. By the verification
messages γj and δj, Ui can check whether Kj is correct. Since for fixed γj and δj

the signed text Kj ∈ Zq is unique, all participants compute the same Kj . Thus,
they compute the same conference key K = (K1 +K2 + · · ·+Kn) mod q.

For fault-tolerance (robustness), we show two things:

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 7

1. Any malicious participant Ui who tries to cheat honest participants to ac-
cept different Ki will be excluded from the participant sets of all honest
participants.

2. An honest participant will not be excluded from the participant set of any
other honest participant.

Note that it does not matter that a malicious Ui causes other malicious partici-
pants to compute different Ki.

Lemma 1. Any malicious participant Ui who tries to cheat honest participants
to accept different Ki shall be excluded from the participant sets of all honest
participants.

Proof. Malicious participants can deviate from the protocol in two ways. First,
a malicious participant Ui sends ”wrong” wil, 1 ≤ l ≤ n, αi, γi and δi so that
two honest participants Uj and Um compute different Ki. In this case, one of
them, say Uj, shall send Vji=”failure” since γi and δi can not be the ElGamal
signature of two different Ki’s. Then, Ui has to broadcast Ri,Ki and Si for
verification. Every honest participant verifies whether αi = gRi mod p, (γi, δi) is
the signature of H(Ki), and the polynomial passing (n + l, wil), 1 ≤ l ≤ n and
(0,Ki) also passes points (j, yRi

j mod p mod q), 1 ≤ j ≤ n. Since the honest Uj

claims that Ki is wrong, for all participants at least one of the above checkings
cannot hold. Therefore, all honest participants exclude Ui from their participant
sets.

Second, Ui sends Vij=”failure” of claiming that Uj is malicious, while Uj is
indeed honest. In this case, Uj broadcasts Rj ,Kj and Sj to prove his honesty.
Since Uj is honest, all honest participants decide that Ui is malicious. Therefore,
the malicious Ui is excluded by all honest participants.

Lemma 2. No honest participant excludes any other honest participant from
his participant set.

Proof. Since an honest participant Ui follows the protocol, his broadcast mes-
sages make all participants compute the same Ki. Even some malicious partici-
pant Uj claims that he is faulty, he can send Ri,Ki and Si to prove his honesty.
Therefore, no honest participant shall exclude Ui from his participant set.

By the above two lemmas, we can show that all honest participants compute
the same conference key even the majority of the participants are malicious.

Theorem 2 (Robustness). All honest participants have the same participant
set and thus they compute same conference key no matter how many participants
are malicious.

Proof. By the above two lemmas, each honest participant’s participant set con-
sists of two types of participants: honest participants and those participants Ui,
though deviating from the protocol, make all honest participants compute the
same Ki. Therefore, all honest participants compute the same conference key.

8 Wen-Guey Tzeng

5.2 Security against Passive Attackers

A passive attacker (eavesdropper) tries to learn information about the conference
key by listening the broadcast channel. We show that an eavesdropper cannot
get any information about Ki of Ui. Since each participant chooses his Ki inde-
pendently, we show that the attacker’s view of the messages broadcast by Ui on
the broadcast channel can be simulated without knowing the secrets xi and Ki.

We need an assumption to show that the simulated transcript is computa-
tionally indistinguishable from the real one. This assumption is a little stronger
than that about the regular Diffie-Hellman decision problem that is discussed in
some papers [6,21,27]. The assumption about the regular Diffie-Hellman decision
problem is that for any given y1, y2 ∈ Hq − {1} and u1, u2 ∈ Hq,

(y1, y2, y
R
1 mod p, yR

2 mod p)

and
(y1, y2, u1, u2)

are computationally indistinguishable and thus

(y1, y2, y
R
1 mod p mod q, yR

2 mod p mod q)

and
(y1, y2, u1 mod q, u2 mod q)

are computationally indistinguishable. Note that y1 and y2 must be quadratic
residues of Z∗

p , otherwise one can tell apart the above probability distributions.
We note that u1 mod q and u2 mod q do not range all over Zq. Therefore, we
need an assumption about a variation of the Diffie-Hellman decision problem.

Assumption 1 (Variant Diffie-Hellman decision problem). Let p = 2q+1
and Hq be the quadratic-residue subgroup of Z∗

p . Given any generators y1, y2 ∈
Hq − {1}, the following two random-variable tuples are computationally indis-
tinguishable:

(y1, y2, y
R
1 mod p mod q, yR

2 mod p mod q)

and
(y1, y2, u1, u2).

where R, u1, u2 ∈ Zq.

The simulator of the adversary’s view on broadcast messages of Ui does the
following:

1. Randomly select w′
ij ∈ Zq, 1 ≤ j ≤ n, R′

i ∈ Zq, S′
i ∈ Z∗

q , δ′i ∈ Zq,
2. Output the simulated transcript:

w′
ij , 1 ≤ j ≤ n,

α′
i = gR′

i mod p,

γ′
i = gS′

i mod p,

δ′i.

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 9

We now show, on random variables Ki, Ri ∈ Zq, Si ∈ Z∗
q , the real view

(wi1, wi2, . . . , win, αi, γi, δi)

and, on random variables w′
ij ∈ Zq, 1 ≤ j ≤ n,R′

i ∈ Zq, S
′
i ∈ Z∗

q , δ
′
i ∈ Zq, the

simulated view
w′

i1, w
′
i2, . . . , w

′
in, α

′
i, γ

′
i, δ

′
i

are computationally indistinguishable, where αi = gRi mod p, γi = gSi mod p,
δi = S−1

i (Ki − γixi) mod q, α′
i = gR′

i mod p, γ′
i = gS′

i mod q, and wij = hi(n+
j), 1 ≤ j ≤ n, is described in our protocol. Since for any γ0 ∈ Hq − {1} and
δ0 ∈ Zq,

Pr[γi = γ0, δi = δ0] = Pr[γ′
i = γ0, δ

′
i = δ0] =

1
q(q − 1)

,

we only have to consider the probability distributions

Pr[(wi1, wi2, . . . , win, αi)]γi = γ0, δi = δ0]

and
Pr[(w′

i1 , w
′
i2, . . . , w

′
in, α

′
i)|γ′

i = γ0, δ
′
i = δ0].

For any fixed γ0 and δ0, the random variable Ki is fixed, say k0. We have

Pr[(wi1 , wi2, . . . , win, αi)|γi = γ0, δi = δ0]
= Pr[(wi1, wi2, . . . , win, αi)|Ki = k0]

and

Pr[(w′
i1, w

′
i2, . . . , w

′
in, α

′
i)|γ0, δ0]

= Pr[(w′
i1, w

′
i2, . . . , w

′
in, α

′
i)]

for some k0 ∈ Zq. We show that they are computationally indistinguishable.

Lemma 3. Under Assumption 1, for any fixed K = k0, on random variables
Ri, R

′
i, w

′
i1, w

′
i2, . . . , w

′
in ∈ Zq,

(wi1, wi2, . . . , win, αi)

and
(w′

i1, w
′
i2, . . . , w

′
in, α

′
i)

are computationally indistinguishable.

Proof. By the assumption

(y1, y2, . . . , yn, y
Ri
1 mod p mod q, yRi

2 mod p mod q, . . . , yRi
n mod p mod q,

gRi mod p)

and
(y1, y2, . . . , yn, u1, u2, . . . , un, g

R′
i mod p)

10 Wen-Guey Tzeng

are computationally indistinguishable, where Ri, R
′
i, uj ∈ Zq, 1 ≤ j ≤ n. Let

K = k0 be fixed. Let h̄i (over Zq) be the n-degree polynomial passing points
(0, k0) and (j, uj), 1 ≤ j ≤ n. By applying a polynomial interpolation on them,
we have that,

(wi1, wi2, . . . , win, g
Ri mod p)

and
(w̄i1, w̄i2, . . . , w̄in, g

R′
i mod p)

are computationally indistinguishable, where w̄ij = h̄i(n+ j) mod q, 1 ≤ j ≤ n.
Since for any w̄0

ij ∈ Zq, 1 ≤ j ≤ n, and ᾱ0 ∈ Hq,

Pr[(w̄i1, w̄i2, . . . , w̄in, g
R′

mod p) = (w̄0
i1, w̄

0
i2, . . . , w̄

0
in, ᾱ0)] =

1
qn+1

,

thus (wi1, wi2, . . . , win, αi) and (w′
i1, w

′
i2, . . . , w

′
in, α

′
i) are computationally indis-

tinguishable.

Therefore, the simulator outputs a transcript that is computationally indis-
tinguishable from the real one.

Theorem 3 (Privacy). Under Assumption 1, for any i, 1 ≤ i ≤ n, the real
communication transcript of Ui

(wi1, wi2, . . . , win, αi, γi, δi)

and the simulated one

(w′
i1, w

′
i2, . . . , w

′
in, α

′
i, γ

′
i, δ

′
i)

are computationally indistinguishable, where random variables Ri,Ki ∈ Zq, Si ∈
Z∗

q and w′
i1, w

′
i2, . . . , w

′
in ∈ Zq, S′

i ∈ Z∗
q , δ

′
i ∈ Zq.

Proof. This is obvious by Lemma 3.

6 Security against Imp ersonators

We have discussed the security of our protocol against eavesdroppers and ma-
licious participants. We have assumed that the broadcast channel is authentic.
Therefore, no impersonator (outsider) can succeed in pretending to be a legal
participant without being detected. It is easy to enforce ”authentication” on the
broadcast channel since we can simply require participants to sign their broad-
cast messages. However, it is cumbersome.

In fact, we can relax the requirement of ”authenticated” broadcast channel.
In our protocol, we require the participant Ui to sign H(Ki), instead of Ki.
The reason is to prevent impersonation of Ui. We note that an outsider without
knowing Ui’s secret xi can sign a random message m = −γiab

−1 mod p by
choosing γi = gayb

i mod p and δi = −γib
−1 mod q first for a ∈ Zq and b ∈

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 11

Z∗
q [20]. If we only require Ui to sign Ki = m, the impersonator can share Ki

with other participants even though he cannot compute other participants’ Kj’s.
We don’t have a rigid proof for our protocol’s strength against impersonators.

Nevertheless, we give some explanation. First, if the impersonator chooses Ki

first and then signs H(Ki), he has to sign a chosen message H(Ki), which is
not known to be possible in the ElGamal signature scheme. Second, if the im-
personator chooses m = H(Ki) first, he has to compute Ki = H−1(m) in order
to share Ki with other participants. This occurs with only a negligible proba-
bility under H being a one-way permutation. A strong evidence shows that this
approach (full-domain-hash-then-sign) is secure against signature forgery, thus
impersonators [1].

7 Conclusion

Assuming an authenticated broadcast channel, we have presented a conference-
key agreement protocol that is provably secure against passive and active adver-
saries under the assumption of a variant Diffie-Hellman decision problem. We
argue that our protocol is secure against active impersonators if the full-domain-
hash-then-sign paradigm for ElGamal signature is secure.

Our protocol is round-efficient. It uses only two rounds to compute a com-
mon conference key after all malicious participants are detected. Nevertheless,
the size of messages that each participant sends is proportional to the num-
ber of participants. It is interesting to design a provably secure conference-key
agreement protocol with both round- and message-efficiency.

References

1. M. Bellare, P. Rogaway, ”The Exact Security of Digital Signatures, How to Sign
with RSA and Rabin”, Advances in Cryptology: Proceedings of Eurocrypt ’96,
Lecture Notes in Computer Science 1070, Springer-Verlag, pp.399-416, 1996 11

2. M. Ben-Or, S. Goldwasser, A. Wigderson, ”Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”, In Proceedings of the
20th ACM Symposium on the Theory of Computing, pp.1-10, 1988.

3. S. Berkovits, ”How to Broadcast a Secret”, Advances in Cryptology: Proceedings
of Eurocrypt ’91, Lecture Notes in Computer Science 547, Springer-Verlag, pp.535-
541, 1991. 2

4. R. Blom, ”An Optimal Class of Symmetric Key Generation Systems”, Advances
in Cryptology: Proceedings of Eurocrypt ’84, Lecture Notes in Computer Science
196, Springer-Verlag, pp.335-338, 1985. 2

5. C. Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung, ”Perfectly-
Secure Key Distribution for Dynamic Conferences”, Advances in Cryptology: Pro-
ceedings of Crypto ’92, Lecture Notes in Computer Science 740, Springer-Verlag,
pp.471-486, 1993. 2

6. D. Boneh, R. Venkatesan, ”Hardness of Computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Problems”, Advances in Cryptology:
Proceedings of Crypto ’96, Lecture Notes in Computer Science 1109, Springer-
Verlag, pp.129-142, 1996. 8

12 Wen-Guey Tzeng

7. M. Burmester, Y. Desmedt, ”A Secure and Efficient Conference Key Distribution
System”, Advances in Cryptology: Proceedings of Eurocrypt ’94, Lecture Notes in
Computer Science 950, Springer-Verlag, pp.275-286, 1995. 3

8. R. Canetti, A. Herzberg, ”Maintaining Security in the Presence of Transient
Faults”, Advances in Cryptology: Proceedings of Crypto ’94, Lecture Notes in
Computer Science 839, Springer-Verlag, pp.425-438, 1994.

9. C.C. Chang, C.H. Lin, ”How to Converse Securely in a Conference”, In Proceedings
of IEEE Security Technology, 30th Annual 1996 International Carnahan Confer-
ence, pp.42-45, 1996. 2

10. C.C. Chang, T.C. Wu, C.P. Chen, ”The Design of a Conference Key Distribution
System”, Advances in Cryptology: Proceedings of Auscrypt ’92, Lecture Notes in
Computer Science 718, Springer-Verlag, pp.459-466, 1992. 2

11. W. Diffie, M. Hellman, ”New Directions in Cryptography”, IEEE Transaction of
Information Theory, Vol. IT-22, pp.644-654, 1976.

12. M. Fitzi, M. Hirt, U. Maurer, ”Trading Correctness for Privacy in Unconditional
Multi-Party Compution”, Advances in Cryptology: Proceedings of Crypto ’98, Lec-
ture Notes in Computer Science 1462, Springer-Verlag, pp.121-136, 1998.

13. T. Hwang, J.L. Chen, ”Identity-Based Conference Key Broadcast Systems”, IEE
Computers and Digital Techniques, Vol. 141, No. 1, pp.57-60, 1994.

14. I. Ingemarsson, D.T. Tang, C.K. Wong, ”A Conference Key Distribution System”,
IEEE Transactions on Information Theory, Vol. IT-28, No. 5, pp.714-720, 1982. 2

15. B. Klein, M. Otten, T. Beth, ”Conference Key Distribution Protocols in Dis-
tributed Systems”, In Proceedings of Codes and Ciphers-Cryptography and Coding
IV, IMA, pp.225-242, 1995. 2

16. K. Koyama, ”Secure Conference Key Distribution Schemes for Conspiracy Attack”,
Advances in Cryptology: Proceedings of Eurocrypt ’92, Lecture Notes in Computer
Science 658, Springer-Verlag, pp.449-453, 1993. 2

17. K. Koyama, K. Ohta, ”Identity-Based Conference Key Distribution Systems”, Ad-
vances in Cryptology: Proceedings of Crypto ’87, Lecture Notes in Computer Sci-
ence 293, Springer-Verlag, pp.175-184, 1988. 2

18. K. Koyama, K. Ohta, ”Security of Improved Identity-Based Conference Key Distri-
butioin Systems”, Advances in Cryptology: Proceedings of Eurocrypt ’88, Lecture
Notes in Computer Science 330, Springer-Verlag, pp.11-19, 1988.

19. T. Matsumoto, H. Imai, ”On the Key Predistribution System: A Practical Solution
to the Key Distribution Problem”, Advances in Cryptology: Proceedings of Crypto
’87, Lecture Notes in Computer Science 293, Springer-Verlag, pp.185-193, 1988. 2

20. C.J. Mitchell, F. Piper, P. Wild, ”Digital Signature”, In Contempary Cryptogra-
phy, The Science of Information Integrity, pp.325-378, IEEE Press, 1992. 11

21. M. Naor, O. Reingold, ”Number-theoretic Constructions of Efficient Pseudoran-
dom Functions”, In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, 1997. 8

22. R. Ostrovsky, M. Yung, ”How to Withstand Mobile Virus Attacks”, In Proceedings
of ACM Symposium on Principles of Distributed Computing, pp.51-61, 1991.

23. T. Rabin, M. Ben-Or, ”Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority”, Proceedings of the 26th ACM Symposium on the Theory of
Computing, pp73-85, 1989.

24. R.A. Rueppel, P.C. Van Oorschot, ”Modern Key Agreement Techniques”, Com-
puter Communications, 1994.

25. A.Shamir, ”How to share a secret”, Communications of the ACM, Vol. 22, pp.612-
613, 1979.

A Practical and Secure Fault-Tolerant Conference-Key Agreement Protocol 13

26. A. Shimbo, S. I. Kawamura, ”Cryptanalysis of Several Conference Key Distribution
Schemes”, Advances in Cryptology: Proceedings of Asiacrypt ’91, Lecture Notes
in Computer Science 739, Springer-Verlag, pp.265-276, 1993.

27. V. Shoup, ”Lower Bounds for Discrete Logarithms and Related Problems”, Ad-
vances in Cryptology: Proceedings of Eurocrypt ’97, Lecture Notes in Computer
Science 1233, Springer-Verlag, pp.256-266, 1997. 8

28. D.G. Steer, L. Strawczynski, W. Diffie, M. Wiener, ”A Secure Audio Teleconference
System”, Advances in Cryptology: Proceedings of Crypto ’88, Lecture Notes in
Computer Science 409, Springer-Verlag, pp.520-528, 1990. 2

29. T.C. Wu, ”Conference Key Distribution System with User Anonymity Based on
Algebraic Approach”, Proceedings of IEE Computers and Digital Techniques, Vol.
144, No 2, pp.145-148, 1997. 2

30. Y. Yacobi, ”Attack on the Koyama-Ohta Identity Based Key Distribution Scheme”,
Advances in Cryptology: Proceedings of Crypto ’87, Lecture Notes in Computer
Science 293, Springer-Verlag, pp429-433, 1988.

	Introduction
	Model
	Design Principles
	A Concrete Protocol
	Security Analysis
	Correctness and Fault Tolerance
	Security against Passive Attackers

	Security against Impersonators
	Conclusion

